A Primal–Dual Fixed-Point Algorithm for TVL1 Wavelet Inpainting Based on Moreau Envelope
In this paper, we present a novel variational wavelet inpainting based on the total variation (TV) regularization and the l1-norm fitting term. The goal of this model is to recover incomplete wavelet coefficients in the presence of impulsive noise. By incorporating the Moreau envelope, the proposed...
Saved in:
| Published in: | Mathematics (Basel) Vol. 10; no. 14; p. 2470 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.07.2022
|
| Subjects: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we present a novel variational wavelet inpainting based on the total variation (TV) regularization and the l1-norm fitting term. The goal of this model is to recover incomplete wavelet coefficients in the presence of impulsive noise. By incorporating the Moreau envelope, the proposed model for wavelet inpainting can better handle the non-differentiability of the l1-norm fitting term. A modified primal dual fixed-point algorithm is developed based on the proximity operator to solve the proposed variational model. Moreover, we consider the existence of solution for the proposed model and the convergence analysis of the developed iterative scheme in this paper. Numerical experiments show the desirable performance of our method. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math10142470 |