Generalized optimization-based synthesis of membrane systems for multicomponent gas mixture separation
•Proposed superstructure-based optimization approach for membrane systems synthesis.•Developed new physics-based surrogate models describing permeation of multicomponent mixtures.•General problem, with variable inlet flows and recycle streams, considered.•Approach applied to address different types...
Saved in:
| Published in: | Chemical engineering science Vol. 252; no. C; p. 117482 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United Kingdom
Elsevier Ltd
28.04.2022
Elsevier |
| Subjects: | |
| ISSN: | 0009-2509, 1873-4405 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Proposed superstructure-based optimization approach for membrane systems synthesis.•Developed new physics-based surrogate models describing permeation of multicomponent mixtures.•General problem, with variable inlet flows and recycle streams, considered.•Approach applied to address different types of mixture and problems.
Synthesizing a membrane system to separate multicomponent gas mixture is challenging due to the combinatorial number of feasible configurations and the difficulties in describing the multicomponent permeators. We present a mixed-integer nonlinear programming (MINLP) model for synthesizing membrane systems for multicomponent gas mixture separation. The approach employs a richly connected superstructure to represent numerous potential system configurations, and different physics-based surrogate permeator models, such as countercurrent flow or crossflow, to be used in each stage. Moreover, to describe realistic systems, pressure drop equations can be included. We also present solution methods to accelerate the solution process. Through a case study of natural gas sweetening, we demonstrate that the proposed approach is able to obtain good solutions using an off-the-shelf global optimization solver. Finally, we expand the conventional membrane system synthesis problem by introducing feed variability in our model through a case study of an integrated reactor-separation system. |
|---|---|
| AbstractList | •Proposed superstructure-based optimization approach for membrane systems synthesis.•Developed new physics-based surrogate models describing permeation of multicomponent mixtures.•General problem, with variable inlet flows and recycle streams, considered.•Approach applied to address different types of mixture and problems.
Synthesizing a membrane system to separate multicomponent gas mixture is challenging due to the combinatorial number of feasible configurations and the difficulties in describing the multicomponent permeators. We present a mixed-integer nonlinear programming (MINLP) model for synthesizing membrane systems for multicomponent gas mixture separation. The approach employs a richly connected superstructure to represent numerous potential system configurations, and different physics-based surrogate permeator models, such as countercurrent flow or crossflow, to be used in each stage. Moreover, to describe realistic systems, pressure drop equations can be included. We also present solution methods to accelerate the solution process. Through a case study of natural gas sweetening, we demonstrate that the proposed approach is able to obtain good solutions using an off-the-shelf global optimization solver. Finally, we expand the conventional membrane system synthesis problem by introducing feed variability in our model through a case study of an integrated reactor-separation system. |
| ArticleNumber | 117482 |
| Author | Taifan, Garry S.P. Maravelias, Christos T. |
| Author_xml | – sequence: 1 givenname: Garry S.P. surname: Taifan fullname: Taifan, Garry S.P. organization: Department of Chemical and Biological Engineering, Princeton University, 50-70 Olden St, Princeton, 08540, NJ, USA – sequence: 2 givenname: Christos T. surname: Maravelias fullname: Maravelias, Christos T. email: maravelias@princeton.edu organization: Department of Chemical and Biological Engineering, Princeton University, 50-70 Olden St, Princeton, 08540, NJ, USA |
| BackLink | https://www.osti.gov/biblio/1846695$$D View this record in Osti.gov |
| BookMark | eNp9kEFLwzAYhoNMcJv-AG_Fe2vSpE2LJxk6hYEXPYc0_eoy2mQkmbj9etPVkwdPIR_P8_F-7wLNjDWA0C3BGcGkvN9lCnyW4zzPCOGsyi_QnFScpozhYobmGOM6zQtcX6GF97v45ZzgOerWYMDJXp-gTew-6EGfZNDWpI30ceSPJmzBa5_YLhlgaJw0EKc-wOCTzrpkOPRBKzvsYyATkk_pk0F_h4OLGOylO2-7Rped7D3c_L5L9PH89L56STdv69fV4yZVtOQhpawiJWlZV0BBJW0UoTUmqsZcAmM1SFkqTHFe8UiUBQfSNbRsmKoaTIpO0SW6m_ZaH7TwSgdQW2WNARUEqVhZ1kWE-AQpZ7130InInWMGJ3UvCBZjp2InYqdi7FRMnUaT_DH3Tg_SHf91HiYH4t1fGtwYC4yCVrsxVWv1P_YPUYiTWA |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2025_145708 crossref_primary_10_3390_membranes14060143 crossref_primary_10_1080_01496395_2024_2424953 crossref_primary_10_3390_app132011333 crossref_primary_10_3390_pr12112415 crossref_primary_10_1016_j_seppur_2025_134225 crossref_primary_10_1016_j_energy_2024_133229 crossref_primary_10_1016_j_dche_2025_100246 crossref_primary_10_1021_acs_iecr_4c03693 crossref_primary_10_1016_j_memsci_2025_124701 crossref_primary_10_1016_j_compchemeng_2023_108464 crossref_primary_10_1016_j_memsci_2024_123574 crossref_primary_10_3390_membranes13030318 crossref_primary_10_1016_j_jgsce_2024_205479 crossref_primary_10_1016_j_pmatsci_2024_101324 crossref_primary_10_1016_j_compchemeng_2024_108616 crossref_primary_10_3390_en17020464 crossref_primary_10_1016_j_ces_2022_118406 crossref_primary_10_1016_j_cherd_2023_10_007 |
| Cites_doi | 10.1016/j.ijggc.2016.08.005 10.1016/S0065-2377(08)60203-3 10.3390/pr6110221 10.1021/ma1006396 10.1016/S0376-7388(00)80721-8 10.1002/1521-4125(20020709)25:7<717::AID-CEAT717>3.0.CO;2-N 10.1016/0376-7388(92)87001-E 10.1002/ceat.200500077 10.1016/j.compchemeng.2016.02.013 10.1021/acs.iecr.0c05072 10.1016/j.compchemeng.2019.106650 10.1016/j.ces.2003.07.011 10.1002/aic.690290405 10.1016/j.memsci.2008.04.030 10.1016/0009-2509(87)80128-8 10.1021/ie030787c 10.1016/0098-1354(94)88021-2 10.1021/ie301571d 10.1080/01496398508060692 10.1002/aic.690321212 10.1016/j.memsci.2009.10.041 10.1016/j.cherd.2016.10.036 10.1021/ie960701y 10.1016/j.memsci.2015.10.007 10.1016/j.memsci.2018.08.024 10.1016/j.ijggc.2019.02.010 10.1016/0009-2509(84)80090-1 10.1016/j.cherd.2015.03.002 10.1002/(SICI)1099-0488(19961115)34:15<2613::AID-POLB9>3.0.CO;2-T 10.1002/aic.13888 10.1016/j.jclepro.2017.02.151 10.1016/0376-7388(95)00102-I 10.1016/S0098-1354(00)00625-6 10.1016/j.fuproc.2020.106464 10.1016/j.memsci.2021.119514 10.1016/j.memsci.2014.04.026 10.1016/0255-2701(84)80024-0 10.1016/S0927-5193(06)80015-X 10.1002/aic.690420806 10.1002/marc.201000775 10.1126/science.1146744 10.1016/j.memsci.2006.03.004 10.1063/1.1699653 10.1016/j.memsci.2016.11.022 10.1016/j.compchemeng.2019.106653 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION OTOTI |
| DOI | 10.1016/j.ces.2022.117482 |
| DatabaseName | CrossRef OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4405 |
| ExternalDocumentID | 1846695 10_1016_j_ces_2022_117482 S0009250922000665 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SPC SPCBC SSG SSZ T5K XPP ZMT ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ NDZJH R2- SC5 SEW T9H VH1 WUQ Y6R ZY4 ~HD AALMO ABPIF ABPTK ABQIS OTOTI |
| ID | FETCH-LOGICAL-c367t-348161d4f5e53a3bc13901c907ae449eaa6c030287f5e657e1fb36b4c8b015fc3 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000810111200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0009-2509 |
| IngestDate | Fri May 19 01:41:00 EDT 2023 Sat Nov 29 07:31:53 EST 2025 Tue Nov 18 21:26:13 EST 2025 Fri Feb 23 02:40:25 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Global optimization Membrane gas separation Process synthesis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-348161d4f5e53a3bc13901c907ae449eaa6c030287f5e657e1fb36b4c8b015fc3 |
| Notes | SC0018409 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
| OpenAccessLink | https://www.osti.gov/biblio/1846695 |
| ParticipantIDs | osti_scitechconnect_1846695 crossref_citationtrail_10_1016_j_ces_2022_117482 crossref_primary_10_1016_j_ces_2022_117482 elsevier_sciencedirect_doi_10_1016_j_ces_2022_117482 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-28 |
| PublicationDateYYYYMMDD | 2022-04-28 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | United Kingdom |
| PublicationPlace_xml | – name: United Kingdom |
| PublicationTitle | Chemical engineering science |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Oishi, Matsumura, Higashi, Ike (b0130) 1961; 3 Castro-Dominguez, Leelachaikul, Messaoud, Takagaki, Sugawara, Kikuchi, Oyama (b0015) 2015; 97 Mores, Arias, Scenna, Caballero, Mussati, Mussati (b0115) 2018 Murad Chowdhury, Feng, Douglas, Croiset (b0120) 2005; 28 Chen, Z., Gooty, R.T., Velasco, J.A.C., Tawarmalani, M., Agrawal, R., 2020. Global optimization of multicomponent membrane cascade. https://aiche.confex.com/aiche/2020/webprogram/Paper602370.html. AIChE Annual Meeting. Pinnau, Casillas, Morisato, Freeman (b0160) 1996 Gilassi, Taghavi, Rodrigue, Kaliaguine (b0055) 2019; 83 Grossmann (b0060) 1996 Iulianelli, Drioli (b0075) 2020; 206 Park, Jung, Lee, Hill, Pas, Mudie, Van Wagner, Freeman, Cookson (b0145) 2007 Qi, Henson (b0165) 1997; 36 Marriott, Sørensen (b0100) 2003 Ramírez-Santos, Bozorg, Addis, Piccialli, Castel, Favre (b0175) 2018; 566 Wijmans, Baker (b0235) 1995; 107 Gabrielli, Gazzani, Mazzotti (b0045) 2017; 526 Paterson (b0150) 1984 Ohs, Lohaus, Wessling (b0125) 2016; 498 Koros, Lively (b0090) 2012; 58 Du, Cin, Pinnau, Nicalek, Robertson, Guiver (b0040) 2011 Agrawal, Xu (b0005) 1996 Robeson (b0185) 2008; 320 Merkel, Lin, Wei, Baker (b0110) 2010; 359 Ryu, Kong, Pastore de Lima, Maravelias (b0190) 2020 Yang, Ren, Li, Wang (b0240) 2017; 117 Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., et al., 2020. The scip optimization suite 7.0. Technical Report. Spillman (b0205) 1995; 2 Stern, Perrin, Naimon (b0210) 1984 Rautenbach, Dahm (b0180) 1985; 19 Shafiee, Nomvar, Liu, Abbas (b0195) 2017 Uppaluri, Linke, Kokossis (b0215) 2004; 43 Davis (b0030) 2002 Velasco, Gooty, Tawarmalani, Agrawal (b0225) 2021 Demirel, Li, Hasan (b0035) 2021; 60 Qi, Henson (b0170) 2000; 24 Hasan, Baliban, Elia, Floudas (b0065) 2012; 51 Weller, Steiner (b0230) 1950; 21 Humphrey, Keller (b0070) 1997 Kong, Maravelias (b0080) 2020; 133 Pettersen, Lien (b0155) 1994; 18 Uppaluri, Smith, Linke, Kokossis (b0220) 2006; 280 Yuan, Narakornpijit, Haghpanah, Wilcox (b0245) 2014 Arias, Mussati, Mores, Scenna, Caballero, Mussati (b0010) 2016; 53 McKeown, Budd (b0105) 2010 Pan (b0135) 1983 Krovvidi, Kovvali, Vemury, Khan (b0095) 1992 Chen (b0020) 1987 Pan (b0140) 1986 Shindo, Hakuta, Yoshitome (b0200) 1985 Kong, Sen, Henao, Dumesic, Maravelias (b0085) 2016; 91 Kong (10.1016/j.ces.2022.117482_b0085) 2016; 91 Rautenbach (10.1016/j.ces.2022.117482_b0180) 1985; 19 Ryu (10.1016/j.ces.2022.117482_b0190) 2020 Arias (10.1016/j.ces.2022.117482_b0010) 2016; 53 10.1016/j.ces.2022.117482_b0050 Yang (10.1016/j.ces.2022.117482_b0240) 2017; 117 Qi (10.1016/j.ces.2022.117482_b0165) 1997; 36 Ramírez-Santos (10.1016/j.ces.2022.117482_b0175) 2018; 566 Weller (10.1016/j.ces.2022.117482_b0230) 1950; 21 Hasan (10.1016/j.ces.2022.117482_b0065) 2012; 51 Pettersen (10.1016/j.ces.2022.117482_b0155) 1994; 18 Iulianelli (10.1016/j.ces.2022.117482_b0075) 2020; 206 Robeson (10.1016/j.ces.2022.117482_b0185) 2008; 320 Ohs (10.1016/j.ces.2022.117482_b0125) 2016; 498 Shafiee (10.1016/j.ces.2022.117482_b0195) 2017 Chen (10.1016/j.ces.2022.117482_b0020) 1987 Du (10.1016/j.ces.2022.117482_b0040) 2011 Humphrey (10.1016/j.ces.2022.117482_b0070) 1997 Oishi (10.1016/j.ces.2022.117482_b0130) 1961; 3 Kong (10.1016/j.ces.2022.117482_b0080) 2020; 133 Uppaluri (10.1016/j.ces.2022.117482_b0215) 2004; 43 Wijmans (10.1016/j.ces.2022.117482_b0235) 1995; 107 Velasco (10.1016/j.ces.2022.117482_b0225) 2021 Koros (10.1016/j.ces.2022.117482_b0090) 2012; 58 Paterson (10.1016/j.ces.2022.117482_b0150) 1984 Stern (10.1016/j.ces.2022.117482_b0210) 1984 Qi (10.1016/j.ces.2022.117482_b0170) 2000; 24 McKeown (10.1016/j.ces.2022.117482_b0105) 2010 Gilassi (10.1016/j.ces.2022.117482_b0055) 2019; 83 Shindo (10.1016/j.ces.2022.117482_b0200) 1985 Yuan (10.1016/j.ces.2022.117482_b0245) 2014 Gabrielli (10.1016/j.ces.2022.117482_b0045) 2017; 526 Marriott (10.1016/j.ces.2022.117482_b0100) 2003 Krovvidi (10.1016/j.ces.2022.117482_b0095) 1992 Pan (10.1016/j.ces.2022.117482_b0135) 1983 Spillman (10.1016/j.ces.2022.117482_b0205) 1995; 2 Castro-Dominguez (10.1016/j.ces.2022.117482_b0015) 2015; 97 Park (10.1016/j.ces.2022.117482_b0145) 2007 Pinnau (10.1016/j.ces.2022.117482_b0160) 1996 Murad Chowdhury (10.1016/j.ces.2022.117482_b0120) 2005; 28 Merkel (10.1016/j.ces.2022.117482_b0110) 2010; 359 Pan (10.1016/j.ces.2022.117482_b0140) 1986 Uppaluri (10.1016/j.ces.2022.117482_b0220) 2006; 280 Davis (10.1016/j.ces.2022.117482_b0030) 2002 Mores (10.1016/j.ces.2022.117482_b0115) 2018 Agrawal (10.1016/j.ces.2022.117482_b0005) 1996 Grossmann (10.1016/j.ces.2022.117482_b0060) 1996 10.1016/j.ces.2022.117482_b0025 Demirel (10.1016/j.ces.2022.117482_b0035) 2021; 60 |
| References_xml | – year: 2017 ident: b0195 article-title: Automated process synthesis for optimal flowsheet design of a hybrid membrane cryogenic carbon capture process publication-title: Journal of Cleaner Production – volume: 24 start-page: 2719 year: 2000 end-page: 2737 ident: b0170 article-title: Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming publication-title: Comput. Chem. Eng. – volume: 28 start-page: 773 year: 2005 end-page: 782 ident: b0120 article-title: A new numerical approach for a detailed multicomponent gas separation membrane model and aspenplus simulation publication-title: Chem. Eng. Technol. – volume: 21 start-page: 279 year: 1950 end-page: 283 ident: b0230 article-title: Separation of gases by fractional permeation through membranes publication-title: J. Appl. Phys. – volume: 97 start-page: 109 year: 2015 end-page: 119 ident: b0015 article-title: The optimal point within the robeson upper boundary publication-title: Chem. Eng. Res. Des. – volume: 566 start-page: 346 year: 2018 end-page: 366 ident: b0175 article-title: Optimization of multistage membrane gas separation processes. example of application to co2 capture from blast furnace gas publication-title: J. Membr. Sci. – year: 1992 ident: b0095 article-title: Approximate solutions for gas permeators separating binary mixtures publication-title: J. Membr. Sci. – year: 1984 ident: b0150 article-title: A replacement for the logarithmic mean publication-title: Chem. Eng. Sci. – volume: 60 start-page: 7197 year: 2021 end-page: 7217 ident: b0035 article-title: Membrane separation process design and intensification publication-title: Industrial & Engineering Chemistry Research – volume: 359 start-page: 126 year: 2010 end-page: 139 ident: b0110 article-title: Power plant post-combustion carbon dioxide capture: An opportunity for membranes publication-title: J. Membr. Sci. – volume: 19 start-page: 211 year: 1985 end-page: 219 ident: b0180 article-title: The separation of multicomponent mixtures by gas permeation publication-title: Chem. Eng. Process. – volume: 18 start-page: 427 year: 1994 end-page: 439 ident: b0155 article-title: A new robust design model for gas separating membrane modules, based on analogy with counter-current heat exchangers publication-title: Comput. Chem. Eng. – volume: 320 start-page: 390 year: 2008 end-page: 400 ident: b0185 article-title: The upper bound revisited publication-title: J. Membr. Sci. – year: 1997 ident: b0070 publication-title: Separation process technology – reference: Chen, Z., Gooty, R.T., Velasco, J.A.C., Tawarmalani, M., Agrawal, R., 2020. Global optimization of multicomponent membrane cascade. https://aiche.confex.com/aiche/2020/webprogram/Paper602370.html. AIChE Annual Meeting. – reference: Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., et al., 2020. The scip optimization suite 7.0. Technical Report. – year: 2007 ident: b0145 article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions publication-title: Science – year: 2020 ident: b0190 article-title: A generalized superstructure-based framework for process synthesis publication-title: Comput. Chem. Eng. – start-page: 119514 year: 2021 ident: b0225 article-title: Optimal design of membrane cascades for gaseous and liquid mixtures via minlp publication-title: J. Membr. Sci. – year: 2011 ident: b0040 article-title: Azide-based cross-linking of polymers of intrinsic microporosity (pims) for condensable gas separation publication-title: Macromol. Rapid Commun. – year: 2014 ident: b0245 article-title: Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization publication-title: J. Membr. Sci. – volume: 51 start-page: 15642 year: 2012 end-page: 15664 ident: b0065 article-title: Modeling, simulation, and optimization of postcombustion co2 capture for variable feed concentration and flow rate. 1. chemical absorption and membrane processes publication-title: Ind. Eng. Chem. Res. – volume: 280 start-page: 832 year: 2006 end-page: 848 ident: b0220 article-title: On the simultaneous optimization of pressure and layout for gas permeation membrane systems publication-title: J. Membr. Sci. – year: 1996 ident: b0160 article-title: Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (ptmsp), poly(1-phenyl-1-propyne) (ppp), and ptmsp/ppp blends publication-title: Journal of Polymer Science, Part B: Polymer Physics – year: 1986 ident: b0140 article-title: Gas separation by high-flux, asymmetric hollow-fiber membrane publication-title: AIChE J. – year: 2003 ident: b0100 article-title: The optimal design of membrane systems publication-title: Chem. Eng. Sci. – volume: 206 start-page: 106464 year: 2020 ident: b0075 article-title: Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications publication-title: Fuel Process. Technol. – volume: 36 start-page: 2320 year: 1997 end-page: 2331 ident: b0165 article-title: Modeling of spiral-wound permeators for multicomponent gas separations publication-title: Industrial & engineering chemistry research – volume: 133 start-page: 106650 year: 2020 ident: b0080 article-title: Expanding the scope of distillation network synthesis using superstructure-based methods publication-title: Computers & Chemical Engineering – volume: 83 start-page: 195 year: 2019 end-page: 207 ident: b0055 article-title: Optimizing membrane module for biogas separation publication-title: Int. J. Greenhouse Gas Control – year: 1996 ident: b0060 article-title: Mixed-integer optimization techniques for algorithmic process synthesis publication-title: Advances in Chemical Engineering – year: 1985 ident: b0200 article-title: Calculation methods for multicomponent gas separation by permeation publication-title: Sep. Sci. Technol. – year: 1984 ident: b0210 article-title: Recycle and multimembrane permeators for gas separations publication-title: J. Membr. Sci. – volume: 58 start-page: 2624 year: 2012 end-page: 2633 ident: b0090 article-title: Water and beyond: Expanding the spectrum of large-scale energy efficient separation processes publication-title: AIChE journal – volume: 107 start-page: 1 year: 1995 end-page: 21 ident: b0235 article-title: The solution-diffusion model: a review publication-title: Journal of membrane science – volume: 53 start-page: 371 year: 2016 end-page: 390 ident: b0010 article-title: Optimization of multi-stage membrane systems for co2 capture from flue gas publication-title: Int. J. Greenhouse Gas Control – volume: 91 start-page: 68 year: 2016 end-page: 84 ident: b0085 article-title: A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design publication-title: Computers & Chemical Engineering – year: 1983 ident: b0135 article-title: Gas separation by permeators with high-flux asymmetric membranes publication-title: AIChE J. – volume: 2 start-page: 589 year: 1995 end-page: 667 ident: b0205 article-title: Economics of gas separation membrane processes publication-title: Membrane Science and Technology – volume: 117 start-page: 376 year: 2017 end-page: 381 ident: b0240 article-title: Suitability of cross-flow model for practical membrane gas separation processes publication-title: Chem. Eng. Res. Des. – year: 1996 ident: b0005 article-title: Gas-separation membrane cascades utilizing limited numbers of compressors publication-title: AIChE J. – volume: 43 start-page: 4305 year: 2004 end-page: 4322 ident: b0215 article-title: Synthesis and optimization of gas permeation membrane networks publication-title: Industrial & engineering chemistry research – volume: 498 start-page: 291 year: 2016 end-page: 301 ident: b0125 article-title: Optimization of membrane based nitrogen removal from natural gas publication-title: J. Membr. Sci. – volume: 3 start-page: 923 year: 1961 end-page: 928 ident: b0130 article-title: An analysis of gaseous diffusion separating unit publication-title: Nippon Genshiryoku Gakkai-Shi – year: 2018 ident: b0115 article-title: Membrane-based processes: Optimization of hydrogen separation by minimization of power, membrane area, and cost publication-title: Processes – year: 1987 ident: b0020 article-title: Comments on improvements on a replacement for the logarithmic mean publication-title: Chem. Eng. Sci. – volume: 526 start-page: 118 year: 2017 end-page: 130 ident: b0045 article-title: On the optimal design of membrane-based gas separation processes publication-title: J. Membr. Sci. – year: 2002 ident: b0030 article-title: Simple gas permeation and pervaporation membrane unit operation models for process simulators publication-title: Chem. Eng. Technol. – year: 2010 ident: b0105 article-title: Exploitation of intrinsic microporosity in polymer-based materials publication-title: Macromolecules – volume: 53 start-page: 371 year: 2016 ident: 10.1016/j.ces.2022.117482_b0010 article-title: Optimization of multi-stage membrane systems for co2 capture from flue gas publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2016.08.005 – year: 1996 ident: 10.1016/j.ces.2022.117482_b0060 article-title: Mixed-integer optimization techniques for algorithmic process synthesis publication-title: Advances in Chemical Engineering doi: 10.1016/S0065-2377(08)60203-3 – year: 2018 ident: 10.1016/j.ces.2022.117482_b0115 article-title: Membrane-based processes: Optimization of hydrogen separation by minimization of power, membrane area, and cost publication-title: Processes doi: 10.3390/pr6110221 – year: 2010 ident: 10.1016/j.ces.2022.117482_b0105 article-title: Exploitation of intrinsic microporosity in polymer-based materials publication-title: Macromolecules doi: 10.1021/ma1006396 – year: 1984 ident: 10.1016/j.ces.2022.117482_b0210 article-title: Recycle and multimembrane permeators for gas separations publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)80721-8 – ident: 10.1016/j.ces.2022.117482_b0025 – year: 2002 ident: 10.1016/j.ces.2022.117482_b0030 article-title: Simple gas permeation and pervaporation membrane unit operation models for process simulators publication-title: Chem. Eng. Technol. doi: 10.1002/1521-4125(20020709)25:7<717::AID-CEAT717>3.0.CO;2-N – year: 1992 ident: 10.1016/j.ces.2022.117482_b0095 article-title: Approximate solutions for gas permeators separating binary mixtures publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(92)87001-E – volume: 28 start-page: 773 year: 2005 ident: 10.1016/j.ces.2022.117482_b0120 article-title: A new numerical approach for a detailed multicomponent gas separation membrane model and aspenplus simulation publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.200500077 – volume: 3 start-page: 923 year: 1961 ident: 10.1016/j.ces.2022.117482_b0130 article-title: An analysis of gaseous diffusion separating unit publication-title: Nippon Genshiryoku Gakkai-Shi – volume: 91 start-page: 68 year: 2016 ident: 10.1016/j.ces.2022.117482_b0085 article-title: A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2016.02.013 – volume: 60 start-page: 7197 year: 2021 ident: 10.1016/j.ces.2022.117482_b0035 article-title: Membrane separation process design and intensification publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.0c05072 – volume: 133 start-page: 106650 year: 2020 ident: 10.1016/j.ces.2022.117482_b0080 article-title: Expanding the scope of distillation network synthesis using superstructure-based methods publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2019.106650 – ident: 10.1016/j.ces.2022.117482_b0050 – year: 2003 ident: 10.1016/j.ces.2022.117482_b0100 article-title: The optimal design of membrane systems publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.07.011 – year: 1983 ident: 10.1016/j.ces.2022.117482_b0135 article-title: Gas separation by permeators with high-flux asymmetric membranes publication-title: AIChE J. doi: 10.1002/aic.690290405 – volume: 320 start-page: 390 year: 2008 ident: 10.1016/j.ces.2022.117482_b0185 article-title: The upper bound revisited publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.04.030 – year: 1997 ident: 10.1016/j.ces.2022.117482_b0070 – year: 1987 ident: 10.1016/j.ces.2022.117482_b0020 article-title: Comments on improvements on a replacement for the logarithmic mean publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(87)80128-8 – volume: 43 start-page: 4305 year: 2004 ident: 10.1016/j.ces.2022.117482_b0215 article-title: Synthesis and optimization of gas permeation membrane networks publication-title: Industrial & engineering chemistry research doi: 10.1021/ie030787c – volume: 18 start-page: 427 year: 1994 ident: 10.1016/j.ces.2022.117482_b0155 article-title: A new robust design model for gas separating membrane modules, based on analogy with counter-current heat exchangers publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(94)88021-2 – volume: 51 start-page: 15642 year: 2012 ident: 10.1016/j.ces.2022.117482_b0065 article-title: Modeling, simulation, and optimization of postcombustion co2 capture for variable feed concentration and flow rate. 1. chemical absorption and membrane processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301571d – year: 1985 ident: 10.1016/j.ces.2022.117482_b0200 article-title: Calculation methods for multicomponent gas separation by permeation publication-title: Sep. Sci. Technol. doi: 10.1080/01496398508060692 – year: 1986 ident: 10.1016/j.ces.2022.117482_b0140 article-title: Gas separation by high-flux, asymmetric hollow-fiber membrane publication-title: AIChE J. doi: 10.1002/aic.690321212 – volume: 359 start-page: 126 year: 2010 ident: 10.1016/j.ces.2022.117482_b0110 article-title: Power plant post-combustion carbon dioxide capture: An opportunity for membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.10.041 – volume: 117 start-page: 376 year: 2017 ident: 10.1016/j.ces.2022.117482_b0240 article-title: Suitability of cross-flow model for practical membrane gas separation processes publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.10.036 – volume: 36 start-page: 2320 year: 1997 ident: 10.1016/j.ces.2022.117482_b0165 article-title: Modeling of spiral-wound permeators for multicomponent gas separations publication-title: Industrial & engineering chemistry research doi: 10.1021/ie960701y – volume: 498 start-page: 291 year: 2016 ident: 10.1016/j.ces.2022.117482_b0125 article-title: Optimization of membrane based nitrogen removal from natural gas publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.10.007 – volume: 566 start-page: 346 year: 2018 ident: 10.1016/j.ces.2022.117482_b0175 article-title: Optimization of multistage membrane gas separation processes. example of application to co2 capture from blast furnace gas publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.08.024 – volume: 83 start-page: 195 year: 2019 ident: 10.1016/j.ces.2022.117482_b0055 article-title: Optimizing membrane module for biogas separation publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2019.02.010 – year: 1984 ident: 10.1016/j.ces.2022.117482_b0150 article-title: A replacement for the logarithmic mean publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(84)80090-1 – volume: 97 start-page: 109 year: 2015 ident: 10.1016/j.ces.2022.117482_b0015 article-title: The optimal point within the robeson upper boundary publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2015.03.002 – year: 1996 ident: 10.1016/j.ces.2022.117482_b0160 article-title: Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (ptmsp), poly(1-phenyl-1-propyne) (ppp), and ptmsp/ppp blends publication-title: Journal of Polymer Science, Part B: Polymer Physics doi: 10.1002/(SICI)1099-0488(19961115)34:15<2613::AID-POLB9>3.0.CO;2-T – volume: 58 start-page: 2624 year: 2012 ident: 10.1016/j.ces.2022.117482_b0090 article-title: Water and beyond: Expanding the spectrum of large-scale energy efficient separation processes publication-title: AIChE journal doi: 10.1002/aic.13888 – year: 2017 ident: 10.1016/j.ces.2022.117482_b0195 article-title: Automated process synthesis for optimal flowsheet design of a hybrid membrane cryogenic carbon capture process publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.02.151 – volume: 107 start-page: 1 year: 1995 ident: 10.1016/j.ces.2022.117482_b0235 article-title: The solution-diffusion model: a review publication-title: Journal of membrane science doi: 10.1016/0376-7388(95)00102-I – volume: 24 start-page: 2719 year: 2000 ident: 10.1016/j.ces.2022.117482_b0170 article-title: Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(00)00625-6 – volume: 206 start-page: 106464 year: 2020 ident: 10.1016/j.ces.2022.117482_b0075 article-title: Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2020.106464 – start-page: 119514 year: 2021 ident: 10.1016/j.ces.2022.117482_b0225 article-title: Optimal design of membrane cascades for gaseous and liquid mixtures via minlp publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119514 – year: 2014 ident: 10.1016/j.ces.2022.117482_b0245 article-title: Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.04.026 – volume: 19 start-page: 211 year: 1985 ident: 10.1016/j.ces.2022.117482_b0180 article-title: The separation of multicomponent mixtures by gas permeation publication-title: Chem. Eng. Process. doi: 10.1016/0255-2701(84)80024-0 – volume: 2 start-page: 589 year: 1995 ident: 10.1016/j.ces.2022.117482_b0205 article-title: Economics of gas separation membrane processes publication-title: Membrane Science and Technology doi: 10.1016/S0927-5193(06)80015-X – year: 1996 ident: 10.1016/j.ces.2022.117482_b0005 article-title: Gas-separation membrane cascades utilizing limited numbers of compressors publication-title: AIChE J. doi: 10.1002/aic.690420806 – year: 2011 ident: 10.1016/j.ces.2022.117482_b0040 article-title: Azide-based cross-linking of polymers of intrinsic microporosity (pims) for condensable gas separation publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201000775 – year: 2007 ident: 10.1016/j.ces.2022.117482_b0145 article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions publication-title: Science doi: 10.1126/science.1146744 – volume: 280 start-page: 832 year: 2006 ident: 10.1016/j.ces.2022.117482_b0220 article-title: On the simultaneous optimization of pressure and layout for gas permeation membrane systems publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.03.004 – volume: 21 start-page: 279 year: 1950 ident: 10.1016/j.ces.2022.117482_b0230 article-title: Separation of gases by fractional permeation through membranes publication-title: J. Appl. Phys. doi: 10.1063/1.1699653 – volume: 526 start-page: 118 year: 2017 ident: 10.1016/j.ces.2022.117482_b0045 article-title: On the optimal design of membrane-based gas separation processes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.11.022 – year: 2020 ident: 10.1016/j.ces.2022.117482_b0190 article-title: A generalized superstructure-based framework for process synthesis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106653 |
| SSID | ssj0007710 |
| Score | 2.4839087 |
| Snippet | •Proposed superstructure-based optimization approach for membrane systems synthesis.•Developed new physics-based surrogate models describing permeation of... |
| SourceID | osti crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 117482 |
| SubjectTerms | Global optimization Membrane gas separation Process synthesis |
| Title | Generalized optimization-based synthesis of membrane systems for multicomponent gas mixture separation |
| URI | https://dx.doi.org/10.1016/j.ces.2022.117482 https://www.osti.gov/biblio/1846695 |
| Volume | 252 |
| WOSCitedRecordID | wos000810111200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007710 issn: 0009-2509 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ_tofRJ82jRoacuNn5IlnUMJemDEgLdwp5qZFkuDrvesLsJS399Zyxp7SY0tIVejDF6gObzaDSa-YaQN0wDCkQaB7pMqoAlog7KEv4rHSea8VLBHtux638WZ2f5bCbPR6NvPhfmei7aNt9u5eV_FTV8A2Fj6uxfiHs3KHyAdxA6PEHs8PwjwTsi6eYHmJJLUAgLl2kZ4IZVIUUB2HyOhmRhFnBaBjvTEjp33Aw2xhBDzZctBgp8V-vJotl2Nw1rY6nCnSw9w4EnHTA9ueHEba29Z6Cpra_1vVqtQGGF52HvDccaSPNGDekO1pNpOHRJwGk2Yj7Fu_OT-VyZPjDJ6l4ZgMFlFaSx6jYXacBYxIf6OLGUtrd0u3UzXISgP0OcFe-bma1cdIMy-wvOhVMlXSJSxu-RvURwCVpv7_jjyezTbq8WIo58rT3s4O-9uwjAGxP9znIZL0EZD4yS6WPyyJ0m6LFFwRMyMu1T8nDAMfmM1AM80Nt4oDs80GVNPR6owwMFPNBf8UABD9ThgfZ4eE6-np5M330IXHGNQKeZ2ASYgJ3FFau54alKSx2j90vLSCjDmDRKZRo2ADhQQ4uMCxPXZZqVTOclWJC1Tl-QcQvzviQUzhSVFLlRJq1YxbNS11rCGDLiXCdJvE8iv3CFdszzWABlXvgQw4sC1rrAtS7sWu-Tt7sul5Z25a7GzEujcOC29mAB0Lmr2yFKDrsgX7LGwDLoE4NFnkl-8G-DHpIH_R9xRMab1ZV5Re7r602zXr128PsJbpWe0Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+optimization-based+synthesis+of+membrane+systems+for+multicomponent+gas+mixture+separation&rft.jtitle=Chemical+engineering+science&rft.au=Taifan%2C+Garry+S.P.&rft.au=Maravelias%2C+Christos+T.&rft.date=2022-04-28&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.eissn=1873-4405&rft.volume=252&rft_id=info:doi/10.1016%2Fj.ces.2022.117482&rft.externalDocID=S0009250922000665 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |