Generalized optimization-based synthesis of membrane systems for multicomponent gas mixture separation

•Proposed superstructure-based optimization approach for membrane systems synthesis.•Developed new physics-based surrogate models describing permeation of multicomponent mixtures.•General problem, with variable inlet flows and recycle streams, considered.•Approach applied to address different types...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science Vol. 252; no. C; p. 117482
Main Authors: Taifan, Garry S.P., Maravelias, Christos T.
Format: Journal Article
Language:English
Published: United Kingdom Elsevier Ltd 28.04.2022
Elsevier
Subjects:
ISSN:0009-2509, 1873-4405
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Proposed superstructure-based optimization approach for membrane systems synthesis.•Developed new physics-based surrogate models describing permeation of multicomponent mixtures.•General problem, with variable inlet flows and recycle streams, considered.•Approach applied to address different types of mixture and problems. Synthesizing a membrane system to separate multicomponent gas mixture is challenging due to the combinatorial number of feasible configurations and the difficulties in describing the multicomponent permeators. We present a mixed-integer nonlinear programming (MINLP) model for synthesizing membrane systems for multicomponent gas mixture separation. The approach employs a richly connected superstructure to represent numerous potential system configurations, and different physics-based surrogate permeator models, such as countercurrent flow or crossflow, to be used in each stage. Moreover, to describe realistic systems, pressure drop equations can be included. We also present solution methods to accelerate the solution process. Through a case study of natural gas sweetening, we demonstrate that the proposed approach is able to obtain good solutions using an off-the-shelf global optimization solver. Finally, we expand the conventional membrane system synthesis problem by introducing feed variability in our model through a case study of an integrated reactor-separation system.
AbstractList •Proposed superstructure-based optimization approach for membrane systems synthesis.•Developed new physics-based surrogate models describing permeation of multicomponent mixtures.•General problem, with variable inlet flows and recycle streams, considered.•Approach applied to address different types of mixture and problems. Synthesizing a membrane system to separate multicomponent gas mixture is challenging due to the combinatorial number of feasible configurations and the difficulties in describing the multicomponent permeators. We present a mixed-integer nonlinear programming (MINLP) model for synthesizing membrane systems for multicomponent gas mixture separation. The approach employs a richly connected superstructure to represent numerous potential system configurations, and different physics-based surrogate permeator models, such as countercurrent flow or crossflow, to be used in each stage. Moreover, to describe realistic systems, pressure drop equations can be included. We also present solution methods to accelerate the solution process. Through a case study of natural gas sweetening, we demonstrate that the proposed approach is able to obtain good solutions using an off-the-shelf global optimization solver. Finally, we expand the conventional membrane system synthesis problem by introducing feed variability in our model through a case study of an integrated reactor-separation system.
ArticleNumber 117482
Author Taifan, Garry S.P.
Maravelias, Christos T.
Author_xml – sequence: 1
  givenname: Garry S.P.
  surname: Taifan
  fullname: Taifan, Garry S.P.
  organization: Department of Chemical and Biological Engineering, Princeton University, 50-70 Olden St, Princeton, 08540, NJ, USA
– sequence: 2
  givenname: Christos T.
  surname: Maravelias
  fullname: Maravelias, Christos T.
  email: maravelias@princeton.edu
  organization: Department of Chemical and Biological Engineering, Princeton University, 50-70 Olden St, Princeton, 08540, NJ, USA
BackLink https://www.osti.gov/biblio/1846695$$D View this record in Osti.gov
BookMark eNp9kEFLwzAYhoNMcJv-AG_Fe2vSpE2LJxk6hYEXPYc0_eoy2mQkmbj9etPVkwdPIR_P8_F-7wLNjDWA0C3BGcGkvN9lCnyW4zzPCOGsyi_QnFScpozhYobmGOM6zQtcX6GF97v45ZzgOerWYMDJXp-gTew-6EGfZNDWpI30ceSPJmzBa5_YLhlgaJw0EKc-wOCTzrpkOPRBKzvsYyATkk_pk0F_h4OLGOylO2-7Rped7D3c_L5L9PH89L56STdv69fV4yZVtOQhpawiJWlZV0BBJW0UoTUmqsZcAmM1SFkqTHFe8UiUBQfSNbRsmKoaTIpO0SW6m_ZaH7TwSgdQW2WNARUEqVhZ1kWE-AQpZ7130InInWMGJ3UvCBZjp2InYqdi7FRMnUaT_DH3Tg_SHf91HiYH4t1fGtwYC4yCVrsxVWv1P_YPUYiTWA
CitedBy_id crossref_primary_10_1016_j_jclepro_2025_145708
crossref_primary_10_3390_membranes14060143
crossref_primary_10_1080_01496395_2024_2424953
crossref_primary_10_3390_app132011333
crossref_primary_10_3390_pr12112415
crossref_primary_10_1016_j_seppur_2025_134225
crossref_primary_10_1016_j_energy_2024_133229
crossref_primary_10_1016_j_dche_2025_100246
crossref_primary_10_1021_acs_iecr_4c03693
crossref_primary_10_1016_j_memsci_2025_124701
crossref_primary_10_1016_j_compchemeng_2023_108464
crossref_primary_10_1016_j_memsci_2024_123574
crossref_primary_10_3390_membranes13030318
crossref_primary_10_1016_j_jgsce_2024_205479
crossref_primary_10_1016_j_pmatsci_2024_101324
crossref_primary_10_1016_j_compchemeng_2024_108616
crossref_primary_10_3390_en17020464
crossref_primary_10_1016_j_ces_2022_118406
crossref_primary_10_1016_j_cherd_2023_10_007
Cites_doi 10.1016/j.ijggc.2016.08.005
10.1016/S0065-2377(08)60203-3
10.3390/pr6110221
10.1021/ma1006396
10.1016/S0376-7388(00)80721-8
10.1002/1521-4125(20020709)25:7<717::AID-CEAT717>3.0.CO;2-N
10.1016/0376-7388(92)87001-E
10.1002/ceat.200500077
10.1016/j.compchemeng.2016.02.013
10.1021/acs.iecr.0c05072
10.1016/j.compchemeng.2019.106650
10.1016/j.ces.2003.07.011
10.1002/aic.690290405
10.1016/j.memsci.2008.04.030
10.1016/0009-2509(87)80128-8
10.1021/ie030787c
10.1016/0098-1354(94)88021-2
10.1021/ie301571d
10.1080/01496398508060692
10.1002/aic.690321212
10.1016/j.memsci.2009.10.041
10.1016/j.cherd.2016.10.036
10.1021/ie960701y
10.1016/j.memsci.2015.10.007
10.1016/j.memsci.2018.08.024
10.1016/j.ijggc.2019.02.010
10.1016/0009-2509(84)80090-1
10.1016/j.cherd.2015.03.002
10.1002/(SICI)1099-0488(19961115)34:15<2613::AID-POLB9>3.0.CO;2-T
10.1002/aic.13888
10.1016/j.jclepro.2017.02.151
10.1016/0376-7388(95)00102-I
10.1016/S0098-1354(00)00625-6
10.1016/j.fuproc.2020.106464
10.1016/j.memsci.2021.119514
10.1016/j.memsci.2014.04.026
10.1016/0255-2701(84)80024-0
10.1016/S0927-5193(06)80015-X
10.1002/aic.690420806
10.1002/marc.201000775
10.1126/science.1146744
10.1016/j.memsci.2006.03.004
10.1063/1.1699653
10.1016/j.memsci.2016.11.022
10.1016/j.compchemeng.2019.106653
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.ces.2022.117482
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4405
ExternalDocumentID 1846695
10_1016_j_ces_2022_117482
S0009250922000665
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
NDZJH
R2-
SC5
SEW
T9H
VH1
WUQ
Y6R
ZY4
~HD
AALMO
ABPIF
ABPTK
ABQIS
OTOTI
ID FETCH-LOGICAL-c367t-348161d4f5e53a3bc13901c907ae449eaa6c030287f5e657e1fb36b4c8b015fc3
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000810111200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0009-2509
IngestDate Fri May 19 01:41:00 EDT 2023
Sat Nov 29 07:31:53 EST 2025
Tue Nov 18 21:26:13 EST 2025
Fri Feb 23 02:40:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Global optimization
Membrane gas separation
Process synthesis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-348161d4f5e53a3bc13901c907ae449eaa6c030287f5e657e1fb36b4c8b015fc3
Notes SC0018409
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OpenAccessLink https://www.osti.gov/biblio/1846695
ParticipantIDs osti_scitechconnect_1846695
crossref_citationtrail_10_1016_j_ces_2022_117482
crossref_primary_10_1016_j_ces_2022_117482
elsevier_sciencedirect_doi_10_1016_j_ces_2022_117482
PublicationCentury 2000
PublicationDate 2022-04-28
PublicationDateYYYYMMDD 2022-04-28
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-28
  day: 28
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Chemical engineering science
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Oishi, Matsumura, Higashi, Ike (b0130) 1961; 3
Castro-Dominguez, Leelachaikul, Messaoud, Takagaki, Sugawara, Kikuchi, Oyama (b0015) 2015; 97
Mores, Arias, Scenna, Caballero, Mussati, Mussati (b0115) 2018
Murad Chowdhury, Feng, Douglas, Croiset (b0120) 2005; 28
Chen, Z., Gooty, R.T., Velasco, J.A.C., Tawarmalani, M., Agrawal, R., 2020. Global optimization of multicomponent membrane cascade. https://aiche.confex.com/aiche/2020/webprogram/Paper602370.html. AIChE Annual Meeting.
Pinnau, Casillas, Morisato, Freeman (b0160) 1996
Gilassi, Taghavi, Rodrigue, Kaliaguine (b0055) 2019; 83
Grossmann (b0060) 1996
Iulianelli, Drioli (b0075) 2020; 206
Park, Jung, Lee, Hill, Pas, Mudie, Van Wagner, Freeman, Cookson (b0145) 2007
Qi, Henson (b0165) 1997; 36
Marriott, Sørensen (b0100) 2003
Ramírez-Santos, Bozorg, Addis, Piccialli, Castel, Favre (b0175) 2018; 566
Wijmans, Baker (b0235) 1995; 107
Gabrielli, Gazzani, Mazzotti (b0045) 2017; 526
Paterson (b0150) 1984
Ohs, Lohaus, Wessling (b0125) 2016; 498
Koros, Lively (b0090) 2012; 58
Du, Cin, Pinnau, Nicalek, Robertson, Guiver (b0040) 2011
Agrawal, Xu (b0005) 1996
Robeson (b0185) 2008; 320
Merkel, Lin, Wei, Baker (b0110) 2010; 359
Ryu, Kong, Pastore de Lima, Maravelias (b0190) 2020
Yang, Ren, Li, Wang (b0240) 2017; 117
Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., et al., 2020. The scip optimization suite 7.0. Technical Report.
Spillman (b0205) 1995; 2
Stern, Perrin, Naimon (b0210) 1984
Rautenbach, Dahm (b0180) 1985; 19
Shafiee, Nomvar, Liu, Abbas (b0195) 2017
Uppaluri, Linke, Kokossis (b0215) 2004; 43
Davis (b0030) 2002
Velasco, Gooty, Tawarmalani, Agrawal (b0225) 2021
Demirel, Li, Hasan (b0035) 2021; 60
Qi, Henson (b0170) 2000; 24
Hasan, Baliban, Elia, Floudas (b0065) 2012; 51
Weller, Steiner (b0230) 1950; 21
Humphrey, Keller (b0070) 1997
Kong, Maravelias (b0080) 2020; 133
Pettersen, Lien (b0155) 1994; 18
Uppaluri, Smith, Linke, Kokossis (b0220) 2006; 280
Yuan, Narakornpijit, Haghpanah, Wilcox (b0245) 2014
Arias, Mussati, Mores, Scenna, Caballero, Mussati (b0010) 2016; 53
McKeown, Budd (b0105) 2010
Pan (b0135) 1983
Krovvidi, Kovvali, Vemury, Khan (b0095) 1992
Chen (b0020) 1987
Pan (b0140) 1986
Shindo, Hakuta, Yoshitome (b0200) 1985
Kong, Sen, Henao, Dumesic, Maravelias (b0085) 2016; 91
Kong (10.1016/j.ces.2022.117482_b0085) 2016; 91
Rautenbach (10.1016/j.ces.2022.117482_b0180) 1985; 19
Ryu (10.1016/j.ces.2022.117482_b0190) 2020
Arias (10.1016/j.ces.2022.117482_b0010) 2016; 53
10.1016/j.ces.2022.117482_b0050
Yang (10.1016/j.ces.2022.117482_b0240) 2017; 117
Qi (10.1016/j.ces.2022.117482_b0165) 1997; 36
Ramírez-Santos (10.1016/j.ces.2022.117482_b0175) 2018; 566
Weller (10.1016/j.ces.2022.117482_b0230) 1950; 21
Hasan (10.1016/j.ces.2022.117482_b0065) 2012; 51
Pettersen (10.1016/j.ces.2022.117482_b0155) 1994; 18
Iulianelli (10.1016/j.ces.2022.117482_b0075) 2020; 206
Robeson (10.1016/j.ces.2022.117482_b0185) 2008; 320
Ohs (10.1016/j.ces.2022.117482_b0125) 2016; 498
Shafiee (10.1016/j.ces.2022.117482_b0195) 2017
Chen (10.1016/j.ces.2022.117482_b0020) 1987
Du (10.1016/j.ces.2022.117482_b0040) 2011
Humphrey (10.1016/j.ces.2022.117482_b0070) 1997
Oishi (10.1016/j.ces.2022.117482_b0130) 1961; 3
Kong (10.1016/j.ces.2022.117482_b0080) 2020; 133
Uppaluri (10.1016/j.ces.2022.117482_b0215) 2004; 43
Wijmans (10.1016/j.ces.2022.117482_b0235) 1995; 107
Velasco (10.1016/j.ces.2022.117482_b0225) 2021
Koros (10.1016/j.ces.2022.117482_b0090) 2012; 58
Paterson (10.1016/j.ces.2022.117482_b0150) 1984
Stern (10.1016/j.ces.2022.117482_b0210) 1984
Qi (10.1016/j.ces.2022.117482_b0170) 2000; 24
McKeown (10.1016/j.ces.2022.117482_b0105) 2010
Gilassi (10.1016/j.ces.2022.117482_b0055) 2019; 83
Shindo (10.1016/j.ces.2022.117482_b0200) 1985
Yuan (10.1016/j.ces.2022.117482_b0245) 2014
Gabrielli (10.1016/j.ces.2022.117482_b0045) 2017; 526
Marriott (10.1016/j.ces.2022.117482_b0100) 2003
Krovvidi (10.1016/j.ces.2022.117482_b0095) 1992
Pan (10.1016/j.ces.2022.117482_b0135) 1983
Spillman (10.1016/j.ces.2022.117482_b0205) 1995; 2
Castro-Dominguez (10.1016/j.ces.2022.117482_b0015) 2015; 97
Park (10.1016/j.ces.2022.117482_b0145) 2007
Pinnau (10.1016/j.ces.2022.117482_b0160) 1996
Murad Chowdhury (10.1016/j.ces.2022.117482_b0120) 2005; 28
Merkel (10.1016/j.ces.2022.117482_b0110) 2010; 359
Pan (10.1016/j.ces.2022.117482_b0140) 1986
Uppaluri (10.1016/j.ces.2022.117482_b0220) 2006; 280
Davis (10.1016/j.ces.2022.117482_b0030) 2002
Mores (10.1016/j.ces.2022.117482_b0115) 2018
Agrawal (10.1016/j.ces.2022.117482_b0005) 1996
Grossmann (10.1016/j.ces.2022.117482_b0060) 1996
10.1016/j.ces.2022.117482_b0025
Demirel (10.1016/j.ces.2022.117482_b0035) 2021; 60
References_xml – year: 2017
  ident: b0195
  article-title: Automated process synthesis for optimal flowsheet design of a hybrid membrane cryogenic carbon capture process
  publication-title: Journal of Cleaner Production
– volume: 24
  start-page: 2719
  year: 2000
  end-page: 2737
  ident: b0170
  article-title: Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming
  publication-title: Comput. Chem. Eng.
– volume: 28
  start-page: 773
  year: 2005
  end-page: 782
  ident: b0120
  article-title: A new numerical approach for a detailed multicomponent gas separation membrane model and aspenplus simulation
  publication-title: Chem. Eng. Technol.
– volume: 21
  start-page: 279
  year: 1950
  end-page: 283
  ident: b0230
  article-title: Separation of gases by fractional permeation through membranes
  publication-title: J. Appl. Phys.
– volume: 97
  start-page: 109
  year: 2015
  end-page: 119
  ident: b0015
  article-title: The optimal point within the robeson upper boundary
  publication-title: Chem. Eng. Res. Des.
– volume: 566
  start-page: 346
  year: 2018
  end-page: 366
  ident: b0175
  article-title: Optimization of multistage membrane gas separation processes. example of application to co2 capture from blast furnace gas
  publication-title: J. Membr. Sci.
– year: 1992
  ident: b0095
  article-title: Approximate solutions for gas permeators separating binary mixtures
  publication-title: J. Membr. Sci.
– year: 1984
  ident: b0150
  article-title: A replacement for the logarithmic mean
  publication-title: Chem. Eng. Sci.
– volume: 60
  start-page: 7197
  year: 2021
  end-page: 7217
  ident: b0035
  article-title: Membrane separation process design and intensification
  publication-title: Industrial & Engineering Chemistry Research
– volume: 359
  start-page: 126
  year: 2010
  end-page: 139
  ident: b0110
  article-title: Power plant post-combustion carbon dioxide capture: An opportunity for membranes
  publication-title: J. Membr. Sci.
– volume: 19
  start-page: 211
  year: 1985
  end-page: 219
  ident: b0180
  article-title: The separation of multicomponent mixtures by gas permeation
  publication-title: Chem. Eng. Process.
– volume: 18
  start-page: 427
  year: 1994
  end-page: 439
  ident: b0155
  article-title: A new robust design model for gas separating membrane modules, based on analogy with counter-current heat exchangers
  publication-title: Comput. Chem. Eng.
– volume: 320
  start-page: 390
  year: 2008
  end-page: 400
  ident: b0185
  article-title: The upper bound revisited
  publication-title: J. Membr. Sci.
– year: 1997
  ident: b0070
  publication-title: Separation process technology
– reference: Chen, Z., Gooty, R.T., Velasco, J.A.C., Tawarmalani, M., Agrawal, R., 2020. Global optimization of multicomponent membrane cascade. https://aiche.confex.com/aiche/2020/webprogram/Paper602370.html. AIChE Annual Meeting.
– reference: Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., et al., 2020. The scip optimization suite 7.0. Technical Report.
– year: 2007
  ident: b0145
  article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions
  publication-title: Science
– year: 2020
  ident: b0190
  article-title: A generalized superstructure-based framework for process synthesis
  publication-title: Comput. Chem. Eng.
– start-page: 119514
  year: 2021
  ident: b0225
  article-title: Optimal design of membrane cascades for gaseous and liquid mixtures via minlp
  publication-title: J. Membr. Sci.
– year: 2011
  ident: b0040
  article-title: Azide-based cross-linking of polymers of intrinsic microporosity (pims) for condensable gas separation
  publication-title: Macromol. Rapid Commun.
– year: 2014
  ident: b0245
  article-title: Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization
  publication-title: J. Membr. Sci.
– volume: 51
  start-page: 15642
  year: 2012
  end-page: 15664
  ident: b0065
  article-title: Modeling, simulation, and optimization of postcombustion co2 capture for variable feed concentration and flow rate. 1. chemical absorption and membrane processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 280
  start-page: 832
  year: 2006
  end-page: 848
  ident: b0220
  article-title: On the simultaneous optimization of pressure and layout for gas permeation membrane systems
  publication-title: J. Membr. Sci.
– year: 1996
  ident: b0160
  article-title: Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (ptmsp), poly(1-phenyl-1-propyne) (ppp), and ptmsp/ppp blends
  publication-title: Journal of Polymer Science, Part B: Polymer Physics
– year: 1986
  ident: b0140
  article-title: Gas separation by high-flux, asymmetric hollow-fiber membrane
  publication-title: AIChE J.
– year: 2003
  ident: b0100
  article-title: The optimal design of membrane systems
  publication-title: Chem. Eng. Sci.
– volume: 206
  start-page: 106464
  year: 2020
  ident: b0075
  article-title: Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications
  publication-title: Fuel Process. Technol.
– volume: 36
  start-page: 2320
  year: 1997
  end-page: 2331
  ident: b0165
  article-title: Modeling of spiral-wound permeators for multicomponent gas separations
  publication-title: Industrial & engineering chemistry research
– volume: 133
  start-page: 106650
  year: 2020
  ident: b0080
  article-title: Expanding the scope of distillation network synthesis using superstructure-based methods
  publication-title: Computers & Chemical Engineering
– volume: 83
  start-page: 195
  year: 2019
  end-page: 207
  ident: b0055
  article-title: Optimizing membrane module for biogas separation
  publication-title: Int. J. Greenhouse Gas Control
– year: 1996
  ident: b0060
  article-title: Mixed-integer optimization techniques for algorithmic process synthesis
  publication-title: Advances in Chemical Engineering
– year: 1985
  ident: b0200
  article-title: Calculation methods for multicomponent gas separation by permeation
  publication-title: Sep. Sci. Technol.
– year: 1984
  ident: b0210
  article-title: Recycle and multimembrane permeators for gas separations
  publication-title: J. Membr. Sci.
– volume: 58
  start-page: 2624
  year: 2012
  end-page: 2633
  ident: b0090
  article-title: Water and beyond: Expanding the spectrum of large-scale energy efficient separation processes
  publication-title: AIChE journal
– volume: 107
  start-page: 1
  year: 1995
  end-page: 21
  ident: b0235
  article-title: The solution-diffusion model: a review
  publication-title: Journal of membrane science
– volume: 53
  start-page: 371
  year: 2016
  end-page: 390
  ident: b0010
  article-title: Optimization of multi-stage membrane systems for co2 capture from flue gas
  publication-title: Int. J. Greenhouse Gas Control
– volume: 91
  start-page: 68
  year: 2016
  end-page: 84
  ident: b0085
  article-title: A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design
  publication-title: Computers & Chemical Engineering
– year: 1983
  ident: b0135
  article-title: Gas separation by permeators with high-flux asymmetric membranes
  publication-title: AIChE J.
– volume: 2
  start-page: 589
  year: 1995
  end-page: 667
  ident: b0205
  article-title: Economics of gas separation membrane processes
  publication-title: Membrane Science and Technology
– volume: 117
  start-page: 376
  year: 2017
  end-page: 381
  ident: b0240
  article-title: Suitability of cross-flow model for practical membrane gas separation processes
  publication-title: Chem. Eng. Res. Des.
– year: 1996
  ident: b0005
  article-title: Gas-separation membrane cascades utilizing limited numbers of compressors
  publication-title: AIChE J.
– volume: 43
  start-page: 4305
  year: 2004
  end-page: 4322
  ident: b0215
  article-title: Synthesis and optimization of gas permeation membrane networks
  publication-title: Industrial & engineering chemistry research
– volume: 498
  start-page: 291
  year: 2016
  end-page: 301
  ident: b0125
  article-title: Optimization of membrane based nitrogen removal from natural gas
  publication-title: J. Membr. Sci.
– volume: 3
  start-page: 923
  year: 1961
  end-page: 928
  ident: b0130
  article-title: An analysis of gaseous diffusion separating unit
  publication-title: Nippon Genshiryoku Gakkai-Shi
– year: 2018
  ident: b0115
  article-title: Membrane-based processes: Optimization of hydrogen separation by minimization of power, membrane area, and cost
  publication-title: Processes
– year: 1987
  ident: b0020
  article-title: Comments on improvements on a replacement for the logarithmic mean
  publication-title: Chem. Eng. Sci.
– volume: 526
  start-page: 118
  year: 2017
  end-page: 130
  ident: b0045
  article-title: On the optimal design of membrane-based gas separation processes
  publication-title: J. Membr. Sci.
– year: 2002
  ident: b0030
  article-title: Simple gas permeation and pervaporation membrane unit operation models for process simulators
  publication-title: Chem. Eng. Technol.
– year: 2010
  ident: b0105
  article-title: Exploitation of intrinsic microporosity in polymer-based materials
  publication-title: Macromolecules
– volume: 53
  start-page: 371
  year: 2016
  ident: 10.1016/j.ces.2022.117482_b0010
  article-title: Optimization of multi-stage membrane systems for co2 capture from flue gas
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2016.08.005
– year: 1996
  ident: 10.1016/j.ces.2022.117482_b0060
  article-title: Mixed-integer optimization techniques for algorithmic process synthesis
  publication-title: Advances in Chemical Engineering
  doi: 10.1016/S0065-2377(08)60203-3
– year: 2018
  ident: 10.1016/j.ces.2022.117482_b0115
  article-title: Membrane-based processes: Optimization of hydrogen separation by minimization of power, membrane area, and cost
  publication-title: Processes
  doi: 10.3390/pr6110221
– year: 2010
  ident: 10.1016/j.ces.2022.117482_b0105
  article-title: Exploitation of intrinsic microporosity in polymer-based materials
  publication-title: Macromolecules
  doi: 10.1021/ma1006396
– year: 1984
  ident: 10.1016/j.ces.2022.117482_b0210
  article-title: Recycle and multimembrane permeators for gas separations
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)80721-8
– ident: 10.1016/j.ces.2022.117482_b0025
– year: 2002
  ident: 10.1016/j.ces.2022.117482_b0030
  article-title: Simple gas permeation and pervaporation membrane unit operation models for process simulators
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/1521-4125(20020709)25:7<717::AID-CEAT717>3.0.CO;2-N
– year: 1992
  ident: 10.1016/j.ces.2022.117482_b0095
  article-title: Approximate solutions for gas permeators separating binary mixtures
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(92)87001-E
– volume: 28
  start-page: 773
  year: 2005
  ident: 10.1016/j.ces.2022.117482_b0120
  article-title: A new numerical approach for a detailed multicomponent gas separation membrane model and aspenplus simulation
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.200500077
– volume: 3
  start-page: 923
  year: 1961
  ident: 10.1016/j.ces.2022.117482_b0130
  article-title: An analysis of gaseous diffusion separating unit
  publication-title: Nippon Genshiryoku Gakkai-Shi
– volume: 91
  start-page: 68
  year: 2016
  ident: 10.1016/j.ces.2022.117482_b0085
  article-title: A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2016.02.013
– volume: 60
  start-page: 7197
  year: 2021
  ident: 10.1016/j.ces.2022.117482_b0035
  article-title: Membrane separation process design and intensification
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.0c05072
– volume: 133
  start-page: 106650
  year: 2020
  ident: 10.1016/j.ces.2022.117482_b0080
  article-title: Expanding the scope of distillation network synthesis using superstructure-based methods
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2019.106650
– ident: 10.1016/j.ces.2022.117482_b0050
– year: 2003
  ident: 10.1016/j.ces.2022.117482_b0100
  article-title: The optimal design of membrane systems
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2003.07.011
– year: 1983
  ident: 10.1016/j.ces.2022.117482_b0135
  article-title: Gas separation by permeators with high-flux asymmetric membranes
  publication-title: AIChE J.
  doi: 10.1002/aic.690290405
– volume: 320
  start-page: 390
  year: 2008
  ident: 10.1016/j.ces.2022.117482_b0185
  article-title: The upper bound revisited
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.04.030
– year: 1997
  ident: 10.1016/j.ces.2022.117482_b0070
– year: 1987
  ident: 10.1016/j.ces.2022.117482_b0020
  article-title: Comments on improvements on a replacement for the logarithmic mean
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(87)80128-8
– volume: 43
  start-page: 4305
  year: 2004
  ident: 10.1016/j.ces.2022.117482_b0215
  article-title: Synthesis and optimization of gas permeation membrane networks
  publication-title: Industrial & engineering chemistry research
  doi: 10.1021/ie030787c
– volume: 18
  start-page: 427
  year: 1994
  ident: 10.1016/j.ces.2022.117482_b0155
  article-title: A new robust design model for gas separating membrane modules, based on analogy with counter-current heat exchangers
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(94)88021-2
– volume: 51
  start-page: 15642
  year: 2012
  ident: 10.1016/j.ces.2022.117482_b0065
  article-title: Modeling, simulation, and optimization of postcombustion co2 capture for variable feed concentration and flow rate. 1. chemical absorption and membrane processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie301571d
– year: 1985
  ident: 10.1016/j.ces.2022.117482_b0200
  article-title: Calculation methods for multicomponent gas separation by permeation
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496398508060692
– year: 1986
  ident: 10.1016/j.ces.2022.117482_b0140
  article-title: Gas separation by high-flux, asymmetric hollow-fiber membrane
  publication-title: AIChE J.
  doi: 10.1002/aic.690321212
– volume: 359
  start-page: 126
  year: 2010
  ident: 10.1016/j.ces.2022.117482_b0110
  article-title: Power plant post-combustion carbon dioxide capture: An opportunity for membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.10.041
– volume: 117
  start-page: 376
  year: 2017
  ident: 10.1016/j.ces.2022.117482_b0240
  article-title: Suitability of cross-flow model for practical membrane gas separation processes
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.10.036
– volume: 36
  start-page: 2320
  year: 1997
  ident: 10.1016/j.ces.2022.117482_b0165
  article-title: Modeling of spiral-wound permeators for multicomponent gas separations
  publication-title: Industrial & engineering chemistry research
  doi: 10.1021/ie960701y
– volume: 498
  start-page: 291
  year: 2016
  ident: 10.1016/j.ces.2022.117482_b0125
  article-title: Optimization of membrane based nitrogen removal from natural gas
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.10.007
– volume: 566
  start-page: 346
  year: 2018
  ident: 10.1016/j.ces.2022.117482_b0175
  article-title: Optimization of multistage membrane gas separation processes. example of application to co2 capture from blast furnace gas
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.08.024
– volume: 83
  start-page: 195
  year: 2019
  ident: 10.1016/j.ces.2022.117482_b0055
  article-title: Optimizing membrane module for biogas separation
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2019.02.010
– year: 1984
  ident: 10.1016/j.ces.2022.117482_b0150
  article-title: A replacement for the logarithmic mean
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(84)80090-1
– volume: 97
  start-page: 109
  year: 2015
  ident: 10.1016/j.ces.2022.117482_b0015
  article-title: The optimal point within the robeson upper boundary
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2015.03.002
– year: 1996
  ident: 10.1016/j.ces.2022.117482_b0160
  article-title: Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (ptmsp), poly(1-phenyl-1-propyne) (ppp), and ptmsp/ppp blends
  publication-title: Journal of Polymer Science, Part B: Polymer Physics
  doi: 10.1002/(SICI)1099-0488(19961115)34:15<2613::AID-POLB9>3.0.CO;2-T
– volume: 58
  start-page: 2624
  year: 2012
  ident: 10.1016/j.ces.2022.117482_b0090
  article-title: Water and beyond: Expanding the spectrum of large-scale energy efficient separation processes
  publication-title: AIChE journal
  doi: 10.1002/aic.13888
– year: 2017
  ident: 10.1016/j.ces.2022.117482_b0195
  article-title: Automated process synthesis for optimal flowsheet design of a hybrid membrane cryogenic carbon capture process
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2017.02.151
– volume: 107
  start-page: 1
  year: 1995
  ident: 10.1016/j.ces.2022.117482_b0235
  article-title: The solution-diffusion model: a review
  publication-title: Journal of membrane science
  doi: 10.1016/0376-7388(95)00102-I
– volume: 24
  start-page: 2719
  year: 2000
  ident: 10.1016/j.ces.2022.117482_b0170
  article-title: Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(00)00625-6
– volume: 206
  start-page: 106464
  year: 2020
  ident: 10.1016/j.ces.2022.117482_b0075
  article-title: Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2020.106464
– start-page: 119514
  year: 2021
  ident: 10.1016/j.ces.2022.117482_b0225
  article-title: Optimal design of membrane cascades for gaseous and liquid mixtures via minlp
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119514
– year: 2014
  ident: 10.1016/j.ces.2022.117482_b0245
  article-title: Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.04.026
– volume: 19
  start-page: 211
  year: 1985
  ident: 10.1016/j.ces.2022.117482_b0180
  article-title: The separation of multicomponent mixtures by gas permeation
  publication-title: Chem. Eng. Process.
  doi: 10.1016/0255-2701(84)80024-0
– volume: 2
  start-page: 589
  year: 1995
  ident: 10.1016/j.ces.2022.117482_b0205
  article-title: Economics of gas separation membrane processes
  publication-title: Membrane Science and Technology
  doi: 10.1016/S0927-5193(06)80015-X
– year: 1996
  ident: 10.1016/j.ces.2022.117482_b0005
  article-title: Gas-separation membrane cascades utilizing limited numbers of compressors
  publication-title: AIChE J.
  doi: 10.1002/aic.690420806
– year: 2011
  ident: 10.1016/j.ces.2022.117482_b0040
  article-title: Azide-based cross-linking of polymers of intrinsic microporosity (pims) for condensable gas separation
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201000775
– year: 2007
  ident: 10.1016/j.ces.2022.117482_b0145
  article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions
  publication-title: Science
  doi: 10.1126/science.1146744
– volume: 280
  start-page: 832
  year: 2006
  ident: 10.1016/j.ces.2022.117482_b0220
  article-title: On the simultaneous optimization of pressure and layout for gas permeation membrane systems
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.03.004
– volume: 21
  start-page: 279
  year: 1950
  ident: 10.1016/j.ces.2022.117482_b0230
  article-title: Separation of gases by fractional permeation through membranes
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1699653
– volume: 526
  start-page: 118
  year: 2017
  ident: 10.1016/j.ces.2022.117482_b0045
  article-title: On the optimal design of membrane-based gas separation processes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.11.022
– year: 2020
  ident: 10.1016/j.ces.2022.117482_b0190
  article-title: A generalized superstructure-based framework for process synthesis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106653
SSID ssj0007710
Score 2.4839087
Snippet •Proposed superstructure-based optimization approach for membrane systems synthesis.•Developed new physics-based surrogate models describing permeation of...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 117482
SubjectTerms Global optimization
Membrane gas separation
Process synthesis
Title Generalized optimization-based synthesis of membrane systems for multicomponent gas mixture separation
URI https://dx.doi.org/10.1016/j.ces.2022.117482
https://www.osti.gov/biblio/1846695
Volume 252
WOSCitedRecordID wos000810111200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007710
  issn: 0009-2509
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ_tofRJ82jRoacuNn5IlnUMJemDEgLdwp5qZFkuDrvesLsJS399Zyxp7SY0tIVejDF6gObzaDSa-YaQN0wDCkQaB7pMqoAlog7KEv4rHSea8VLBHtux638WZ2f5bCbPR6NvPhfmei7aNt9u5eV_FTV8A2Fj6uxfiHs3KHyAdxA6PEHs8PwjwTsi6eYHmJJLUAgLl2kZ4IZVIUUB2HyOhmRhFnBaBjvTEjp33Aw2xhBDzZctBgp8V-vJotl2Nw1rY6nCnSw9w4EnHTA9ueHEba29Z6Cpra_1vVqtQGGF52HvDccaSPNGDekO1pNpOHRJwGk2Yj7Fu_OT-VyZPjDJ6l4ZgMFlFaSx6jYXacBYxIf6OLGUtrd0u3UzXISgP0OcFe-bma1cdIMy-wvOhVMlXSJSxu-RvURwCVpv7_jjyezTbq8WIo58rT3s4O-9uwjAGxP9znIZL0EZD4yS6WPyyJ0m6LFFwRMyMu1T8nDAMfmM1AM80Nt4oDs80GVNPR6owwMFPNBf8UABD9ThgfZ4eE6-np5M330IXHGNQKeZ2ASYgJ3FFau54alKSx2j90vLSCjDmDRKZRo2ADhQQ4uMCxPXZZqVTOclWJC1Tl-QcQvzviQUzhSVFLlRJq1YxbNS11rCGDLiXCdJvE8iv3CFdszzWABlXvgQw4sC1rrAtS7sWu-Tt7sul5Z25a7GzEujcOC29mAB0Lmr2yFKDrsgX7LGwDLoE4NFnkl-8G-DHpIH_R9xRMab1ZV5Re7r602zXr128PsJbpWe0Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+optimization-based+synthesis+of+membrane+systems+for+multicomponent+gas+mixture+separation&rft.jtitle=Chemical+engineering+science&rft.au=Taifan%2C+Garry+S.P.&rft.au=Maravelias%2C+Christos+T.&rft.date=2022-04-28&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.eissn=1873-4405&rft.volume=252&rft_id=info:doi/10.1016%2Fj.ces.2022.117482&rft.externalDocID=S0009250922000665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon