Unmatched Preconditioning of the Proximal Gradient Algorithm

This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, leading t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE signal processing letters Ročník 29; s. 1122 - 1126
Hlavní autori: Savanier, Marion, Chouzenoux, Emilie, Pesquet, Jean-Christophe, Riddell, Cyril
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:1070-9908, 1558-2361
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, leading to increased complexity in the computation of the proximity step. To relax these requirements, we propose an unmatched preconditioning approach where two metrics are used in the gradient step and the proximity step. We provide convergence conditions for this new iterative scheme and characterize its limit point. Simulations for tomographic image reconstruction from undersampled measurements show the benefits of our approach for various simple choices of metrics.
AbstractList This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, leading to increased complexity in the computation of the proximity step. To relax these requirements, we propose an unmatched preconditioning approach where two metrics are used in the gradient step and the proximity step. We provide convergence conditions for this new iterative scheme and characterize its limit point. Simulations for tomographic image reconstruction from undersampled measurements show the benefits of our approach for various simple choices of metrics.
Author Chouzenoux, Emilie
Pesquet, Jean-Christophe
Riddell, Cyril
Savanier, Marion
Author_xml – sequence: 1
  givenname: Marion
  orcidid: 0000-0001-6051-962X
  surname: Savanier
  fullname: Savanier, Marion
  email: marion.savanier@centralesupelec.fr
  organization: CentraleSupélec, CVN, Inria, University Paris-Saclay, Gif-sur-Yvette, France
– sequence: 2
  givenname: Emilie
  orcidid: 0000-0003-3631-6093
  surname: Chouzenoux
  fullname: Chouzenoux, Emilie
  email: emilie.chouzenoux@centralesupelec.fr
  organization: Centrale- Supélec, CVN, Inria, University Paris-Saclay, Gif-sur-Yvette, France
– sequence: 3
  givenname: Jean-Christophe
  surname: Pesquet
  fullname: Pesquet, Jean-Christophe
  email: jean-christophe.pesquet@centralesupelec.fr
  organization: Centrale- Supélec, CVN, Inria, University Paris-Saclay, Gif-sur-Yvette, France
– sequence: 4
  givenname: Cyril
  surname: Riddell
  fullname: Riddell, Cyril
  email: cyril.riddell@med.ge.com
  organization: GE Healthcare, Buc, France
BackLink https://hal.science/hal-03654146$$DView record in HAL
BookMark eNp9kEFLAzEQhYNUsK3eBS8LnjxsnWw22Sx4KUVboWBBew5JNtumbDc1m4r-e1NaevDgaYaZ92Ye3wD1WtcahG4xjDCG8nH-vhhlkGUjglkJnF-gPqaUpxlhuBd7KCAt4-IKDbpuAwAcc9pHT8t2K4NemypZeKNdW9lgXWvbVeLqJKxNHLtvu5VNMvWysqYNybhZOW_DenuNLmvZdObmVIdo-fL8MZml87fp62Q8TzVhRUhJnnOlTS6VoiSnimdM8VorTSTGtVKFxkoZKmsghQatVEkZripWSywJLSgZoofj3bVsxM7HNP5HOGnFbDwXhxkQRnOcsy8ctfdH7c67z73pgti4vW9jPJExBphyDjyq4KjS3nWdN_X5LAZx4CkiT3HgKU48o4X9sWgb5AFW8NI2_xnvjkZrjDn_KQuWAS3IL6bHg8M
CODEN ISPLEM
CitedBy_id crossref_primary_10_1137_23M1609166
crossref_primary_10_1109_TCI_2023_3279053
crossref_primary_10_1137_22M1530355
crossref_primary_10_1109_LSP_2024_3438118
Cites_doi 10.1007/s10957-013-0465-7
10.1016/j.jsb.2011.07.017
10.1088/0266-5611/29/7/075016
10.1007/978-3-662-02796-7
10.1109/TSP.2020.2983150
10.1080/02331934.2012.733883
10.1137/16M1075247
10.1109/TSP.2021.3069677
10.1137/080716542
10.1088/1361-6420/abd85c
10.1137/060669498
10.1007/s10851-010-0251-1
10.1007/BF01585756
10.1109/TMI.2011.2175233
10.1117/12.2007484
10.1137/050626090
10.1364/OE.24.025129
10.1017/CBO9780511543258
10.1016/j.cam.2020.113192
10.1137/s1052623495290179
10.1007/978-1-4419-9569-8_10
10.1109/83.760336
10.1109/TIP.2004.832922
10.1002/cpa.20042
10.1137/18M1167152
10.1117/12.910903
10.48550/arXiv.2010.01371
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/LSP.2022.3169088
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 1126
ExternalDocumentID oai:HAL:hal-03654146v1
10_1109_LSP_2022_3169088
9762057
Genre orig-research
GrantInformation_xml – fundername: ANRT CIFRE Convention
  grantid: 2018/1587
– fundername: European Research Council Starting
  grantid: MAJORIS ERC-2019-STG-850925
– fundername: ANR Research and Teaching Chair in Artificial Intelligence BRIDGEABLE
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c367t-3448bce4abb5345b826b8fcbc3a11fbb7c1bbe5af037c0cbb9561dd6fa1a35753
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000791755000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Tue Oct 28 06:34:20 EDT 2025
Mon Jun 30 02:14:29 EDT 2025
Sat Nov 29 03:38:53 EST 2025
Tue Nov 18 19:37:57 EST 2025
Wed Aug 27 02:36:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Matrix approximation
Computed tomography
Proximal methods
Image reconstruction
Convergence analysis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-3448bce4abb5345b826b8fcbc3a11fbb7c1bbe5af037c0cbb9561dd6fa1a35753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3631-6093
0000-0001-6051-962X
0000-0002-5943-8061
OpenAccessLink https://hal.science/hal-03654146
PQID 2660158808
PQPubID 75747
PageCount 5
ParticipantIDs crossref_primary_10_1109_LSP_2022_3169088
crossref_citationtrail_10_1109_LSP_2022_3169088
ieee_primary_9762057
proquest_journals_2660158808
hal_primary_oai_HAL_hal_03654146v1
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
Becker (ref2) 2012
Moreau (ref22) 1962; 93
ref1
ref17
ref16
ref19
ref18
Schmidt (ref28) 2011; 24
Guo (ref20) 2017
Nesterov (ref25) 1983; 269
Nocedal (ref26) 2006
ref24
Hiriart-Urruty (ref21) 1993
ref23
ref27
ref29
ref8
ref7
ref9
ref4
ref6
ref5
Bauschke (ref3) 2019
References_xml – ident: ref8
  doi: 10.1007/s10957-013-0465-7
– ident: ref31
  doi: 10.1016/j.jsb.2011.07.017
– ident: ref23
  doi: 10.1088/0266-5611/29/7/075016
– volume-title: Numerical Optimization
  year: 2006
  ident: ref26
– volume-title: Proc. 14th Int. Meeting Fully 3D Image Reconstruction Radiol. Nucl. Med.
  year: 2017
  ident: ref20
  article-title: Block-tridiagonal shift-variant preconditioner for iterative cone beam CT reconstruction
– volume-title: Convex Analysis and Minimization Algorithms
  year: 1993
  ident: ref21
  doi: 10.1007/978-3-662-02796-7
– ident: ref24
  doi: 10.1109/TSP.2020.2983150
– ident: ref15
  doi: 10.1080/02331934.2012.733883
– ident: ref33
  doi: 10.1137/16M1075247
– volume: 24
  start-page: 1458
  volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst.
  year: 2011
  ident: ref28
  article-title: Convergence rates of inexact proximal-gradient methods for convex optimization
– ident: ref14
  doi: 10.1109/TSP.2021.3069677
– volume: 269
  start-page: 543
  year: 1983
  ident: ref25
  article-title: A method for solving the convex programming problem with convergence rate $o(1/k^{2})$
  publication-title: Proc. Dokl. Akad. Nauk SSSR
– ident: ref1
  doi: 10.1137/080716542
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces Corrected
  year: 2019
  ident: ref3
– ident: ref9
  doi: 10.1088/1361-6420/abd85c
– start-page: 2618
  volume-title: Proc. Conf. Workshop Neural Info. Process. Syst.
  year: 2012
  ident: ref2
  article-title: A quasi-Newton proximal splitting method
– ident: ref11
  doi: 10.1137/060669498
– volume: 93
  start-page: 273
  year: 1962
  ident: ref22
  article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien
  publication-title: C. R. Acad. Sci. Paris Sr. A. Math.
– ident: ref34
  doi: 10.1007/s10851-010-0251-1
– ident: ref5
  doi: 10.1007/BF01585756
– ident: ref27
  doi: 10.1109/TMI.2011.2175233
– ident: ref30
  doi: 10.1117/12.2007484
– ident: ref16
  doi: 10.1137/050626090
– ident: ref32
  doi: 10.1364/OE.24.025129
– ident: ref7
  doi: 10.1017/CBO9780511543258
– ident: ref4
  doi: 10.1016/j.cam.2020.113192
– ident: ref6
  doi: 10.1137/s1052623495290179
– ident: ref13
  doi: 10.1007/978-1-4419-9569-8_10
– ident: ref18
  doi: 10.1109/83.760336
– ident: ref10
  doi: 10.1109/TIP.2004.832922
– ident: ref17
  doi: 10.1002/cpa.20042
– ident: ref12
  doi: 10.1137/18M1167152
– ident: ref19
  doi: 10.1117/12.910903
– ident: ref29
  doi: 10.48550/arXiv.2010.01371
SSID ssj0008185
Score 2.412977
Snippet This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1122
SubjectTerms Algorithms
Computed tomography
Convergence
convergence analysis
Electronics packaging
Engineering Sciences
Image reconstruction
Iterative methods
Linear programming
matrix approximation
Measurement
Preconditioning
proximal methods
Signal and Image processing
Signal processing algorithms
Title Unmatched Preconditioning of the Proximal Gradient Algorithm
URI https://ieeexplore.ieee.org/document/9762057
https://www.proquest.com/docview/2660158808
https://hal.science/hal-03654146
Volume 29
WOSCitedRecordID wos000791755000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM--C3WL4r4IljXNm3Sgi9D1D2MMVDBt5KkiRa2VWod_vle2q4oiuBLKSEp4S69-_2Syx3AWUq0pFz4jqQ-EpRAcIdHInR8tIYx0VEYsrrYBBuPo6eneNKBi_YujFKqCj5Tl-a1OstPc_lutsr66Dp9xBdd6DJG67tardU1jqeOL3QdtLDR8kjSjfuj-wkSQd9HfkpNWM83F9R9MQGQVWWVH-a48jG3G_-b3SasN1jSHtTK34KOmm_D2pcMgztw9ThHSIqKSe1JxX3TrNmBtXNtI_jD5vwjm-Fn7ooq-qu0B9PnvMjKl9kuPN7ePFwPnaZggiMJZaVDkGsJqQIuREiCUCB1EJGWQhLueVoIJj0hVMi1S5h0pRDmVmuaUs09ThC3kT3ozfO52gc7pmlI0SgjgYoDrvEpBVE8YMzThDBiQX8pw0Q22cRNUYtpUrEKN05Q6omRetJI3YLzdsRrnUnjj76nqJa2m0mBPRyMEtOGHtdULqcLz4Ido4S2VyN_C46WWkya__EtQRiCuAdtVXTw-6hDWDUTqDdXjqBXFu_qGFbkoszeipNqqX0C96zPyQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfk2xOrWIL4J1bdNP8GWIOrGOgQp7C0ma6EBX2Trxz_fSdkVRBF9KCUkJd-nd75dc7gCOU6JEwLhricBFguJxZrGI-5aL1jAmKvL9sCw2EfZ60WAQ9xtwWt-FkVIWwWfyTL8WZ_lpJqZ6q6yNrtNFfDEHC77nuXZ5W6u2u9r1lBGGtoU2NpodStpxO7nvIxV0XWSogQ7s-eaE5p51CGRRW-WHQS68zNXa_-a3DqsVmjQ7pfo3oCFHm7DyJcdgE84fRwhKUTWp2S_Ybzqs9mDNTJkI_7A5-xi-4meux0X8V252Xp6y8TB_ft2Cx6vLh4uuVZVMsAQJwtwiyLa4kB7j3Ceez5E88EgJLghzHMV5KBzOpc-UTUJhC871vdY0DRRzGEHkRrZhfpSN5A6YcZD6AZplpFCxxxQ-BSeSeWHoKEJCYkB7JkMqqnziuqzFCy14hR1TlDrVUqeV1A04qUe8lbk0_uh7hGqpu-kk2N1OQnUb-lxduzx4dwxoaiXUvSr5G9CaaZFWf-SEIhBB5IPWKtr9fdQhLHUf7hKa3PRu92BZT6bcamnBfD6eyn1YFO_5cDI-KJbdJ_Cw0xA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unmatched+Preconditioning+of+the+Proximal+Gradient+Algorithm&rft.jtitle=IEEE+signal+processing+letters&rft.au=Savanier%2C+Marion&rft.au=Chouzenoux%2C+Emilie&rft.au=Pesquet%2C+Jean-Christophe&rft.au=Riddell%2C+Cyril&rft.date=2022&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=29&rft.spage=1122&rft.epage=1126&rft_id=info:doi/10.1109%2FLSP.2022.3169088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2022_3169088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon