Unmatched Preconditioning of the Proximal Gradient Algorithm
This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, leading t...
Uložené v:
| Vydané v: | IEEE signal processing letters Ročník 29; s. 1122 - 1126 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Predmet: | |
| ISSN: | 1070-9908, 1558-2361 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, leading to increased complexity in the computation of the proximity step. To relax these requirements, we propose an unmatched preconditioning approach where two metrics are used in the gradient step and the proximity step. We provide convergence conditions for this new iterative scheme and characterize its limit point. Simulations for tomographic image reconstruction from undersampled measurements show the benefits of our approach for various simple choices of metrics. |
|---|---|
| AbstractList | This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, leading to increased complexity in the computation of the proximity step. To relax these requirements, we propose an unmatched preconditioning approach where two metrics are used in the gradient step and the proximity step. We provide convergence conditions for this new iterative scheme and characterize its limit point. Simulations for tomographic image reconstruction from undersampled measurements show the benefits of our approach for various simple choices of metrics. |
| Author | Chouzenoux, Emilie Pesquet, Jean-Christophe Riddell, Cyril Savanier, Marion |
| Author_xml | – sequence: 1 givenname: Marion orcidid: 0000-0001-6051-962X surname: Savanier fullname: Savanier, Marion email: marion.savanier@centralesupelec.fr organization: CentraleSupélec, CVN, Inria, University Paris-Saclay, Gif-sur-Yvette, France – sequence: 2 givenname: Emilie orcidid: 0000-0003-3631-6093 surname: Chouzenoux fullname: Chouzenoux, Emilie email: emilie.chouzenoux@centralesupelec.fr organization: Centrale- Supélec, CVN, Inria, University Paris-Saclay, Gif-sur-Yvette, France – sequence: 3 givenname: Jean-Christophe surname: Pesquet fullname: Pesquet, Jean-Christophe email: jean-christophe.pesquet@centralesupelec.fr organization: Centrale- Supélec, CVN, Inria, University Paris-Saclay, Gif-sur-Yvette, France – sequence: 4 givenname: Cyril surname: Riddell fullname: Riddell, Cyril email: cyril.riddell@med.ge.com organization: GE Healthcare, Buc, France |
| BackLink | https://hal.science/hal-03654146$$DView record in HAL |
| BookMark | eNp9kEFLAzEQhYNUsK3eBS8LnjxsnWw22Sx4KUVboWBBew5JNtumbDc1m4r-e1NaevDgaYaZ92Ye3wD1WtcahG4xjDCG8nH-vhhlkGUjglkJnF-gPqaUpxlhuBd7KCAt4-IKDbpuAwAcc9pHT8t2K4NemypZeKNdW9lgXWvbVeLqJKxNHLtvu5VNMvWysqYNybhZOW_DenuNLmvZdObmVIdo-fL8MZml87fp62Q8TzVhRUhJnnOlTS6VoiSnimdM8VorTSTGtVKFxkoZKmsghQatVEkZripWSywJLSgZoofj3bVsxM7HNP5HOGnFbDwXhxkQRnOcsy8ctfdH7c67z73pgti4vW9jPJExBphyDjyq4KjS3nWdN_X5LAZx4CkiT3HgKU48o4X9sWgb5AFW8NI2_xnvjkZrjDn_KQuWAS3IL6bHg8M |
| CODEN | ISPLEM |
| CitedBy_id | crossref_primary_10_1137_23M1609166 crossref_primary_10_1109_TCI_2023_3279053 crossref_primary_10_1137_22M1530355 crossref_primary_10_1109_LSP_2024_3438118 |
| Cites_doi | 10.1007/s10957-013-0465-7 10.1016/j.jsb.2011.07.017 10.1088/0266-5611/29/7/075016 10.1007/978-3-662-02796-7 10.1109/TSP.2020.2983150 10.1080/02331934.2012.733883 10.1137/16M1075247 10.1109/TSP.2021.3069677 10.1137/080716542 10.1088/1361-6420/abd85c 10.1137/060669498 10.1007/s10851-010-0251-1 10.1007/BF01585756 10.1109/TMI.2011.2175233 10.1117/12.2007484 10.1137/050626090 10.1364/OE.24.025129 10.1017/CBO9780511543258 10.1016/j.cam.2020.113192 10.1137/s1052623495290179 10.1007/978-1-4419-9569-8_10 10.1109/83.760336 10.1109/TIP.2004.832922 10.1002/cpa.20042 10.1137/18M1167152 10.1117/12.910903 10.48550/arXiv.2010.01371 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1109/LSP.2022.3169088 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2361 |
| EndPage | 1126 |
| ExternalDocumentID | oai:HAL:hal-03654146v1 10_1109_LSP_2022_3169088 9762057 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: ANRT CIFRE Convention grantid: 2018/1587 – fundername: European Research Council Starting grantid: MAJORIS ERC-2019-STG-850925 – fundername: ANR Research and Teaching Chair in Artificial Intelligence BRIDGEABLE |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c367t-3448bce4abb5345b826b8fcbc3a11fbb7c1bbe5af037c0cbb9561dd6fa1a35753 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000791755000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1070-9908 |
| IngestDate | Tue Oct 28 06:34:20 EDT 2025 Mon Jun 30 02:14:29 EDT 2025 Sat Nov 29 03:38:53 EST 2025 Tue Nov 18 19:37:57 EST 2025 Wed Aug 27 02:36:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Matrix approximation Computed tomography Proximal methods Image reconstruction Convergence analysis |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-3448bce4abb5345b826b8fcbc3a11fbb7c1bbe5af037c0cbb9561dd6fa1a35753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3631-6093 0000-0001-6051-962X 0000-0002-5943-8061 |
| OpenAccessLink | https://hal.science/hal-03654146 |
| PQID | 2660158808 |
| PQPubID | 75747 |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_1109_LSP_2022_3169088 crossref_citationtrail_10_1109_LSP_2022_3169088 ieee_primary_9762057 proquest_journals_2660158808 hal_primary_oai_HAL_hal_03654146v1 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE signal processing letters |
| PublicationTitleAbbrev | LSP |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 Becker (ref2) 2012 Moreau (ref22) 1962; 93 ref1 ref17 ref16 ref19 ref18 Schmidt (ref28) 2011; 24 Guo (ref20) 2017 Nesterov (ref25) 1983; 269 Nocedal (ref26) 2006 ref24 Hiriart-Urruty (ref21) 1993 ref23 ref27 ref29 ref8 ref7 ref9 ref4 ref6 ref5 Bauschke (ref3) 2019 |
| References_xml | – ident: ref8 doi: 10.1007/s10957-013-0465-7 – ident: ref31 doi: 10.1016/j.jsb.2011.07.017 – ident: ref23 doi: 10.1088/0266-5611/29/7/075016 – volume-title: Numerical Optimization year: 2006 ident: ref26 – volume-title: Proc. 14th Int. Meeting Fully 3D Image Reconstruction Radiol. Nucl. Med. year: 2017 ident: ref20 article-title: Block-tridiagonal shift-variant preconditioner for iterative cone beam CT reconstruction – volume-title: Convex Analysis and Minimization Algorithms year: 1993 ident: ref21 doi: 10.1007/978-3-662-02796-7 – ident: ref24 doi: 10.1109/TSP.2020.2983150 – ident: ref15 doi: 10.1080/02331934.2012.733883 – ident: ref33 doi: 10.1137/16M1075247 – volume: 24 start-page: 1458 volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst. year: 2011 ident: ref28 article-title: Convergence rates of inexact proximal-gradient methods for convex optimization – ident: ref14 doi: 10.1109/TSP.2021.3069677 – volume: 269 start-page: 543 year: 1983 ident: ref25 article-title: A method for solving the convex programming problem with convergence rate $o(1/k^{2})$ publication-title: Proc. Dokl. Akad. Nauk SSSR – ident: ref1 doi: 10.1137/080716542 – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces Corrected year: 2019 ident: ref3 – ident: ref9 doi: 10.1088/1361-6420/abd85c – start-page: 2618 volume-title: Proc. Conf. Workshop Neural Info. Process. Syst. year: 2012 ident: ref2 article-title: A quasi-Newton proximal splitting method – ident: ref11 doi: 10.1137/060669498 – volume: 93 start-page: 273 year: 1962 ident: ref22 article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien publication-title: C. R. Acad. Sci. Paris Sr. A. Math. – ident: ref34 doi: 10.1007/s10851-010-0251-1 – ident: ref5 doi: 10.1007/BF01585756 – ident: ref27 doi: 10.1109/TMI.2011.2175233 – ident: ref30 doi: 10.1117/12.2007484 – ident: ref16 doi: 10.1137/050626090 – ident: ref32 doi: 10.1364/OE.24.025129 – ident: ref7 doi: 10.1017/CBO9780511543258 – ident: ref4 doi: 10.1016/j.cam.2020.113192 – ident: ref6 doi: 10.1137/s1052623495290179 – ident: ref13 doi: 10.1007/978-1-4419-9569-8_10 – ident: ref18 doi: 10.1109/83.760336 – ident: ref10 doi: 10.1109/TIP.2004.832922 – ident: ref17 doi: 10.1002/cpa.20042 – ident: ref12 doi: 10.1137/18M1167152 – ident: ref19 doi: 10.1117/12.910903 – ident: ref29 doi: 10.48550/arXiv.2010.01371 |
| SSID | ssj0008185 |
| Score | 2.412977 |
| Snippet | This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning... |
| SourceID | hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1122 |
| SubjectTerms | Algorithms Computed tomography Convergence convergence analysis Electronics packaging Engineering Sciences Image reconstruction Iterative methods Linear programming matrix approximation Measurement Preconditioning proximal methods Signal and Image processing Signal processing algorithms |
| Title | Unmatched Preconditioning of the Proximal Gradient Algorithm |
| URI | https://ieeexplore.ieee.org/document/9762057 https://www.proquest.com/docview/2660158808 https://hal.science/hal-03654146 |
| Volume | 29 |
| WOSCitedRecordID | wos000791755000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2361 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008185 issn: 1070-9908 databaseCode: RIE dateStart: 19940101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM--C3WL4r4IljXNm3Sgi9D1D2MMVDBt5KkiRa2VWod_vle2q4oiuBLKSEp4S69-_2Syx3AWUq0pFz4jqQ-EpRAcIdHInR8tIYx0VEYsrrYBBuPo6eneNKBi_YujFKqCj5Tl-a1OstPc_lutsr66Dp9xBdd6DJG67tardU1jqeOL3QdtLDR8kjSjfuj-wkSQd9HfkpNWM83F9R9MQGQVWWVH-a48jG3G_-b3SasN1jSHtTK34KOmm_D2pcMgztw9ThHSIqKSe1JxX3TrNmBtXNtI_jD5vwjm-Fn7ooq-qu0B9PnvMjKl9kuPN7ePFwPnaZggiMJZaVDkGsJqQIuREiCUCB1EJGWQhLueVoIJj0hVMi1S5h0pRDmVmuaUs09ThC3kT3ozfO52gc7pmlI0SgjgYoDrvEpBVE8YMzThDBiQX8pw0Q22cRNUYtpUrEKN05Q6omRetJI3YLzdsRrnUnjj76nqJa2m0mBPRyMEtOGHtdULqcLz4Ido4S2VyN_C46WWkya__EtQRiCuAdtVXTw-6hDWDUTqDdXjqBXFu_qGFbkoszeipNqqX0C96zPyQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfk2xOrWIL4J1bdNP8GWIOrGOgQp7C0ma6EBX2Trxz_fSdkVRBF9KCUkJd-nd75dc7gCOU6JEwLhricBFguJxZrGI-5aL1jAmKvL9sCw2EfZ60WAQ9xtwWt-FkVIWwWfyTL8WZ_lpJqZ6q6yNrtNFfDEHC77nuXZ5W6u2u9r1lBGGtoU2NpodStpxO7nvIxV0XWSogQ7s-eaE5p51CGRRW-WHQS68zNXa_-a3DqsVmjQ7pfo3oCFHm7DyJcdgE84fRwhKUTWp2S_Ybzqs9mDNTJkI_7A5-xi-4meux0X8V252Xp6y8TB_ft2Cx6vLh4uuVZVMsAQJwtwiyLa4kB7j3Ceez5E88EgJLghzHMV5KBzOpc-UTUJhC871vdY0DRRzGEHkRrZhfpSN5A6YcZD6AZplpFCxxxQ-BSeSeWHoKEJCYkB7JkMqqnziuqzFCy14hR1TlDrVUqeV1A04qUe8lbk0_uh7hGqpu-kk2N1OQnUb-lxduzx4dwxoaiXUvSr5G9CaaZFWf-SEIhBB5IPWKtr9fdQhLHUf7hKa3PRu92BZT6bcamnBfD6eyn1YFO_5cDI-KJbdJ_Cw0xA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unmatched+Preconditioning+of+the+Proximal+Gradient+Algorithm&rft.jtitle=IEEE+signal+processing+letters&rft.au=Savanier%2C+Marion&rft.au=Chouzenoux%2C+Emilie&rft.au=Pesquet%2C+Jean-Christophe&rft.au=Riddell%2C+Cyril&rft.date=2022&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=29&rft.spage=1122&rft.epage=1126&rft_id=info:doi/10.1109%2FLSP.2022.3169088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2022_3169088 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |