Research on the optimization method of integrated energy system operation with multi-subject game
The construction of integrated energy system can effectively improve energy efficiency and reduce carbon emission, which is of great significance to energy sustainable development. This paper proposes an integrated energy system operation optimization method based on cooperative game, which can effe...
Gespeichert in:
| Veröffentlicht in: | Energy (Oxford) Jg. 245; S. 123305 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Elsevier Ltd
15.04.2022
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0360-5442, 1873-6785 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The construction of integrated energy system can effectively improve energy efficiency and reduce carbon emission, which is of great significance to energy sustainable development. This paper proposes an integrated energy system operation optimization method based on cooperative game, which can effectively reduce the energy cost and carbon emissions of the system, and encourage different subjects to participate in the overall coordinated and optimized operation of the system. Firstly, combined with cooperative game theory, a cooperative game model of integrated energy system with cost and carbon emission as objectives is established. Secondly, a profit distribution method combining improved Shapley value and nucleolus method is proposed. Finally, an improved Non-dominated Sorting Genetic Algorithm is proposed to solve the cooperative game model, which greatly improves the solving efficiency. The example shows that the cooperative mode saves 26.86% of the cost and reduces 39.42% of the carbon emission compared with the independent operation. At the same time, the scientific and effective benefit distribution method proposed in this paper is verified from the overall, individual and alliance perspectives.
•Analyzed the energy architecture of different operation modes of integrated energy system.•Constructed a cooperative game model of integrated energy system.•Proposed a benefit distribution model based on the improved Shapley value and nucleolus method.•Study the influence of system cost and carbon emission by energy price fluctuation under different models. |
|---|---|
| AbstractList | The construction of integrated energy system can effectively improve energy efficiency and reduce carbon emission, which is of great significance to energy sustainable development. This paper proposes an integrated energy system operation optimization method based on cooperative game, which can effectively reduce the energy cost and carbon emissions of the system, and encourage different subjects to participate in the overall coordinated and optimized operation of the system. Firstly, combined with cooperative game theory, a cooperative game model of integrated energy system with cost and carbon emission as objectives is established. Secondly, a profit distribution method combining improved Shapley value and nucleolus method is proposed. Finally, an improved Non-dominated Sorting Genetic Algorithm is proposed to solve the cooperative game model, which greatly improves the solving efficiency. The example shows that the cooperative mode saves 26.86% of the cost and reduces 39.42% of the carbon emission compared with the independent operation. At the same time, the scientific and effective benefit distribution method proposed in this paper is verified from the overall, individual and alliance perspectives. The construction of integrated energy system can effectively improve energy efficiency and reduce carbon emission, which is of great significance to energy sustainable development. This paper proposes an integrated energy system operation optimization method based on cooperative game, which can effectively reduce the energy cost and carbon emissions of the system, and encourage different subjects to participate in the overall coordinated and optimized operation of the system. Firstly, combined with cooperative game theory, a cooperative game model of integrated energy system with cost and carbon emission as objectives is established. Secondly, a profit distribution method combining improved Shapley value and nucleolus method is proposed. Finally, an improved Non-dominated Sorting Genetic Algorithm is proposed to solve the cooperative game model, which greatly improves the solving efficiency. The example shows that the cooperative mode saves 26.86% of the cost and reduces 39.42% of the carbon emission compared with the independent operation. At the same time, the scientific and effective benefit distribution method proposed in this paper is verified from the overall, individual and alliance perspectives. •Analyzed the energy architecture of different operation modes of integrated energy system.•Constructed a cooperative game model of integrated energy system.•Proposed a benefit distribution model based on the improved Shapley value and nucleolus method.•Study the influence of system cost and carbon emission by energy price fluctuation under different models. |
| ArticleNumber | 123305 |
| Author | Ma, Yang Chen, Xin Shen, Hekun Xue, Lu Wang, Yongli Liu, Zhen Cai, Chengcong Liu, Lin |
| Author_xml | – sequence: 1 givenname: Yongli surname: Wang fullname: Wang, Yongli – sequence: 2 givenname: Zhen surname: Liu fullname: Liu, Zhen email: 120202206113@ncepu.edu.cn – sequence: 3 givenname: Chengcong surname: Cai fullname: Cai, Chengcong – sequence: 4 givenname: Lu surname: Xue fullname: Xue, Lu – sequence: 5 givenname: Yang surname: Ma fullname: Ma, Yang – sequence: 6 givenname: Hekun surname: Shen fullname: Shen, Hekun – sequence: 7 givenname: Xin surname: Chen fullname: Chen, Xin – sequence: 8 givenname: Lin surname: Liu fullname: Liu, Lin |
| BookMark | eNqFkE1r3DAQhkVJoJuk_6AHQS-5eCtZH5ZyCJSQpIVAICRnIcuzuzK2tZHklu2vj7buKYf2NDA87zvDc4ZOpjABQp8pWVNC5dd-DRPE7WFdk7pe05oxIj6gFVUNq2SjxAlaESZJJTivP6KzlHpCiFBar5B9ggQ2uh0OE847wGGf_eh_2-zLYoS8Cx0OG-ynDNtoM3R4uYXTIWUYCw9xgX_5vMPjPGRfpbntwWW8tSNcoNONHRJ8-jvP0cvd7fPN9-rh8f7HzbeHyjHZ5IqxjjHHnKbQdqSloJQgDLRUUijVAqF8o51WXFOhgICTlNeacN52Wkim2Tm6XHr3MbzOkLIZfXIwDHaCMCdTy0YIWTOpCvrlHdqHOU7lu0JxJUkjZVMovlAuhpQibMw--tHGg6HEHL2b3iwuzNG7WbyX2NW7mPP5j6EcrR_-F75ewlBM_fQQTXIeJgedj0Wo6YL_d8EbqDiiwQ |
| CitedBy_id | crossref_primary_10_3390_su15076278 crossref_primary_10_1016_j_jclepro_2024_141697 crossref_primary_10_3389_fenrg_2024_1534825 crossref_primary_10_1016_j_energy_2023_129025 crossref_primary_10_1016_j_gloei_2023_08_002 crossref_primary_10_1109_ACCESS_2022_3185737 crossref_primary_10_1016_j_est_2025_116800 crossref_primary_10_1016_j_apenergy_2023_121732 crossref_primary_10_1093_ce_zkad011 crossref_primary_10_1016_j_ijepes_2024_110325 crossref_primary_10_1155_etep_3382601 crossref_primary_10_1063_5_0217570 crossref_primary_10_1016_j_applthermaleng_2022_118423 crossref_primary_10_1016_j_ijhydene_2024_07_432 crossref_primary_10_1016_j_renene_2024_120971 crossref_primary_10_3390_su142416337 crossref_primary_10_1016_j_energy_2023_129806 crossref_primary_10_1016_j_energy_2022_124379 crossref_primary_10_1038_s41598_025_17032_y crossref_primary_10_3389_fenrg_2024_1394312 crossref_primary_10_1016_j_apenergy_2025_125825 crossref_primary_10_1109_TSG_2024_3440315 crossref_primary_10_3389_fmech_2024_1390413 crossref_primary_10_1016_j_jobe_2025_112572 crossref_primary_10_1016_j_energy_2025_137983 crossref_primary_10_3390_en17215468 crossref_primary_10_1016_j_apenergy_2023_121701 crossref_primary_10_1109_TIA_2024_3429068 crossref_primary_10_3390_en17246386 crossref_primary_10_1016_j_ijepes_2023_109507 crossref_primary_10_1016_j_energy_2025_135885 crossref_primary_10_23919_PCMP_2024_000297 crossref_primary_10_3390_en17071570 crossref_primary_10_1016_j_energy_2024_132650 crossref_primary_10_1016_j_energy_2025_134795 crossref_primary_10_1016_j_apenergy_2023_121871 crossref_primary_10_1016_j_apenergy_2023_121279 crossref_primary_10_1016_j_scs_2023_105088 crossref_primary_10_1016_j_est_2023_108156 crossref_primary_10_1108_JBIM_04_2023_0215 crossref_primary_10_3390_electronics13244997 crossref_primary_10_3390_su17104270 crossref_primary_10_2478_amns_2023_1_00202 crossref_primary_10_1016_j_energy_2024_134162 crossref_primary_10_1016_j_ijhydene_2025_151252 crossref_primary_10_3390_su15107888 crossref_primary_10_3390_en15186601 crossref_primary_10_1016_j_epsr_2025_111946 crossref_primary_10_1109_OJPEL_2025_3604475 crossref_primary_10_1016_j_rinp_2023_106685 crossref_primary_10_1109_ACCESS_2023_3290160 crossref_primary_10_1061_JLEED9_EYENG_5747 crossref_primary_10_1016_j_ijhydene_2023_03_056 crossref_primary_10_3390_fi15100338 crossref_primary_10_1049_ses2_70007 crossref_primary_10_3390_buildings15142441 crossref_primary_10_1016_j_procs_2025_05_126 crossref_primary_10_3390_su151813960 crossref_primary_10_1016_j_scs_2024_105791 crossref_primary_10_1016_j_rser_2022_112911 crossref_primary_10_3390_app12136487 crossref_primary_10_1016_j_asoc_2024_112426 crossref_primary_10_3389_fenrg_2023_1265924 crossref_primary_10_3390_en17194788 crossref_primary_10_1016_j_renene_2023_119100 crossref_primary_10_3390_en16247945 crossref_primary_10_1016_j_gloei_2025_01_007 crossref_primary_10_1016_j_energy_2023_129868 crossref_primary_10_1016_j_energy_2022_124318 crossref_primary_10_1016_j_epsr_2025_111908 |
| Cites_doi | 10.1016/j.epsr.2014.11.025 10.1016/j.apenergy.2021.117224 10.1007/s40565-019-0534-5 10.1109/MIS.2012.47 10.1016/j.ijepes.2020.106735 10.1016/j.ijepes.2021.106959 10.1109/ACCESS.2018.2839108 10.1016/j.applthermaleng.2020.115834 10.1016/j.jclepro.2019.05.243 10.1016/j.energy.2020.118805 10.1016/j.eswa.2012.05.056 10.1016/j.ijepes.2021.106826 10.1016/j.apenergy.2017.05.001 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Apr 15, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Apr 15, 2022 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.123305 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2022_123305 S0360544222002080 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-33d33c3c91ebd0b1e88503e9686588be014f9c9849158e0ec61429044bd956393 |
| ISICitedReferencesCount | 77 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792591800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sat Sep 27 18:18:07 EDT 2025 Wed Aug 13 10:35:24 EDT 2025 Sat Nov 29 07:21:21 EST 2025 Tue Nov 18 22:43:55 EST 2025 Fri Feb 23 02:40:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Integrated energy system Nucleolus method Shapley value Operation optimization Cooperative game |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-33d33c3c91ebd0b1e88503e9686588be014f9c9849158e0ec61429044bd956393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2648607667 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2675562368 proquest_journals_2648607667 crossref_primary_10_1016_j_energy_2022_123305 crossref_citationtrail_10_1016_j_energy_2022_123305 elsevier_sciencedirect_doi_10_1016_j_energy_2022_123305 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-15 |
| PublicationDateYYYYMMDD | 2022-04-15 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Ma, Chen, Hu, Sun, Li, Wang (bib15) 2021 Yang, Wang, Jia (bib8) 2021; 300 Cong, Wang, Jiang (bib24) 2019; 13 Wu, Zhan, Zhu, Zhang, Lin, Xie, Meng, Cao, Wang, Shah, Zheng, Zhao (bib10) 2020 Deng, Cai, Gao, Zhou, He, Liu, Zhang (bib14) 2017 Wang, Li, Dong, Ma, Yang, Zhang, Zhu, Li (bib5) 2019 Mu, Chen, Yu, Jia, Hou, Wang, Meng (bib7) 2020 Ma, Yun (bib41) 2012; 29 Fei, Zhang, Lu, Lu, Jiang, Gu, Yu, Gan (bib13) 2021 Wang, Qi, Dong (bib32) 2020 Mohammad Reza Sheibani, Gholam Reza, Amin Latify (bib1) 2019; 7 Jia, Mu, Yu (bib33) 2015; 36 Peng, Wang, Wang, Yang, Guo, Yin (bib12) 2021 Behzadian, Otaghsara, Yazdani, Ignatius (bib42) 2012; 39 Fan, Li, Wang (bib27) 2018; 6 Calleja, Llerena (bib38) 2020 Dabbagh, Sheikh-El_Eslami (bib30) 2015; 121 Zhou, Zheng, Jing (bib35) 2018; 42 Chalkiadakis, Elkind, Wooldridge (bib34) 2012; 27 Mohammadreza, Ehsan, Mehdi, Amirreza (bib2) 2020 Singh Patwal, Narang (bib19) 2020 Guo, Lei, Hu (bib26) 2019; 52 Sun, Nuermaimaiti, Zhang, Shi, Shen (bib6) 2020 Mu, Ding, Qu, Zhou, Li, Mohammad (bib16) 2020 Wei, Jing, Wu (bib23) 2017; 200 Li, Gao, Liu, Liu, Ren, Liu (bib22) 2020; 40 Wang, Song, Ma (bib9) 2020; 180 Yu, Xu, Chen, Wu, Jia (bib3) 2016; 31 Abdullah, Coit, Smith (bib40) 2005; 91 Li (bib37) 2018 Peng, Wang, Wang (bib17) 2021; 128 Wang, Huang, Wang, Zeng, Yu, Li, Zhang (bib36) 2018 Wang, Yu, Jing, He, Chen, Li (bib20) 2020 Parlar, Sharafali, Goh (bib39) 2019; 233 Li, Che, Zhang, Sun (bib4) 2021 Qi, Hu, He (bib25) 2020; 41 Yang, Wang, Li, Wang, Zhao, Chen (bib21) 2020 Yang, Tana, Zhou (bib29) 2021; 130 Yang, Wang, Jia, Chen, Li, Song, Li (bib11) 2020 Yang, Wang (bib18) 2021; 129 Jun HE, Yi LI, Huangqiang LI, et al. Application of game theory in integrated energy system systems: a review. Fang, Yu, Liu (bib31) 2020; 213 Wang (10.1016/j.energy.2022.123305_bib5) 2019 Chalkiadakis (10.1016/j.energy.2022.123305_bib34) 2012; 27 Wu (10.1016/j.energy.2022.123305_bib10) 2020 Yang (10.1016/j.energy.2022.123305_bib18) 2021; 129 Singh Patwal (10.1016/j.energy.2022.123305_bib19) 2020 Fan (10.1016/j.energy.2022.123305_bib27) 2018; 6 Peng (10.1016/j.energy.2022.123305_bib17) 2021; 128 Qi (10.1016/j.energy.2022.123305_bib25) 2020; 41 Parlar (10.1016/j.energy.2022.123305_bib39) 2019; 233 Sun (10.1016/j.energy.2022.123305_bib6) 2020 Li (10.1016/j.energy.2022.123305_bib37) 2018 Guo (10.1016/j.energy.2022.123305_bib26) 2019; 52 10.1016/j.energy.2022.123305_bib28 Yang (10.1016/j.energy.2022.123305_bib29) 2021; 130 Behzadian (10.1016/j.energy.2022.123305_bib42) 2012; 39 Peng (10.1016/j.energy.2022.123305_bib12) 2021 Yu (10.1016/j.energy.2022.123305_bib3) 2016; 31 Wang (10.1016/j.energy.2022.123305_bib20) 2020 Mohammad Reza Sheibani (10.1016/j.energy.2022.123305_bib1) 2019; 7 Wang (10.1016/j.energy.2022.123305_bib9) 2020; 180 Dabbagh (10.1016/j.energy.2022.123305_bib30) 2015; 121 Ma (10.1016/j.energy.2022.123305_bib41) 2012; 29 Abdullah (10.1016/j.energy.2022.123305_bib40) 2005; 91 Wang (10.1016/j.energy.2022.123305_bib32) 2020 Mohammadreza (10.1016/j.energy.2022.123305_bib2) 2020 Mu (10.1016/j.energy.2022.123305_bib7) 2020 Yang (10.1016/j.energy.2022.123305_bib8) 2021; 300 Wei (10.1016/j.energy.2022.123305_bib23) 2017; 200 Jia (10.1016/j.energy.2022.123305_bib33) 2015; 36 Yang (10.1016/j.energy.2022.123305_bib11) 2020 Cong (10.1016/j.energy.2022.123305_bib24) 2019; 13 Ma (10.1016/j.energy.2022.123305_bib15) 2021 Li (10.1016/j.energy.2022.123305_bib4) 2021 Fang (10.1016/j.energy.2022.123305_bib31) 2020; 213 Calleja (10.1016/j.energy.2022.123305_bib38) 2020 Wang (10.1016/j.energy.2022.123305_bib36) 2018 Yang (10.1016/j.energy.2022.123305_bib21) 2020 Deng (10.1016/j.energy.2022.123305_bib14) 2017 Li (10.1016/j.energy.2022.123305_bib22) 2020; 40 Zhou (10.1016/j.energy.2022.123305_bib35) 2018; 42 Mu (10.1016/j.energy.2022.123305_bib16) 2020 Fei (10.1016/j.energy.2022.123305_bib13) 2021 |
| References_xml | – volume: 52 start-page: 28 year: 2019 end-page: 34 ident: bib26 article-title: Etc. Research on competition strategy of integrated energy service provider under the pool-based market mechanism [J] publication-title: Electr power – start-page: 219 year: 2021 ident: bib13 article-title: Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations publication-title: J Energy – reference: Jun HE, Yi LI, Huangqiang LI, et al. Application of game theory in integrated energy system systems: a review. – start-page: 118537 year: 2020 ident: bib32 article-title: Optimal design of integrated energy system considering different battery operation strategy [J] – year: 2020 ident: bib38 article-title: Consistency, weak fairness, and the Shapley value [J] – volume: 13 year: 2019 ident: bib24 article-title: Robust coalitional game theoretic optimisation for cooperative energy hubs with correlated wind power [J] publication-title: IET Renew Power Gener, – volume: 121 start-page: 368 year: 2015 end-page: 378 ident: bib30 article-title: Risk-based profit allocation ti DERs integrated with a virtual power plant using cooperative Game theory publication-title: J Electr Power Syst Res – volume: 31 start-page: 1e13 year: 2016 ident: bib3 article-title: A brief review to integrated energy system and energy internet publication-title: Trans China Electrotech Soc – volume: 41 start-page: 114 year: 2020 end-page: 125 ident: bib25 article-title: Etc. Optimal operation of integrated community energy system based on Nash bargaining [J] publication-title: Electr Power Construct – volume: 7 start-page: 1020 year: 2019 end-page: 1032 ident: bib1 article-title: Stochastic price based coordinated operation planning of energy storage system and conventional power plant[J] publication-title: J Modern Power Syst Clean Energy – start-page: 156 year: 2020 ident: bib19 article-title: Multi-objective generation scheduling of integrated energy system using fuzzy based surrogate worth trade-off approach [J] – volume: 180 start-page: 115834 year: 2020 ident: bib9 article-title: Research on capacity planning and optimization of regional integrated energy system based on hybrid energy storage system[J] publication-title: Appl Therm Eng – volume: 29 start-page: 1201 year: 2012 end-page: 1206+1210 ident: bib41 article-title: Research progress of genetic algorithm [J] publication-title: Appl Res Comput – start-page: 189 year: 2019 ident: bib5 article-title: Capacity planning and optimization of business park-level integrated energy system based on investment constraints [J] – start-page: 219 year: 2021 ident: bib4 article-title: A partition optimization design method for a regional integrated energy system based on a clustering algorithm publication-title: J Energy – volume: 130 start-page: 106959 year: 2021 ident: bib29 article-title: A two-level game optimal dispatching model for the park integrated energy system considering Stackelberg and cooperative games[J] publication-title: Int J Electr Power Energy Syst – year: 2020 ident: bib6 article-title: Capacity planning and optimization for integrated energy system in industrial park considering environmental externalities [J] – start-page: 271 year: 2020 ident: bib10 article-title: Analysis of biomass polygeneration integrated energy system based on a mixed-integer nonlinear programming optimization method [J] publication-title: J Clean Prod – start-page: 225 year: 2021 ident: bib12 article-title: Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response [J] publication-title: Energy – start-page: 285 year: 2021 ident: bib15 article-title: A compact model to coordinate flexibility and efficiency for decomposed scheduling of integrated energy system [J] – volume: 128 start-page: 106735 year: 2021 ident: bib17 article-title: Stochastic robust optimal operation of community integrated energy system based on integrated demand response[J] publication-title: Int J Electr Power Energy Syst – start-page: 208 year: 2020 ident: bib20 article-title: Combined multi-objective optimization and robustness analysis framework for building integrated energy system under uncertainty [J] – volume: 6 start-page: 27777 year: 2018 end-page: 27789 ident: bib27 article-title: Cooperative economic scheduling for multiple energy hubs: a bargaining game theoretic perspective[J] publication-title: IEEE Access – start-page: 141 year: 2017 ident: bib14 article-title: A MINLP model of optimal scheduling for a district heating and cooling system: a case study of an energy station in Tianjin [J] – start-page: 164 year: 2018 ident: bib36 article-title: Optimal scheduling of the RIES considering time-based demand response programs with energy price [J] – volume: 213 start-page: 118805 year: 2020 ident: bib31 article-title: An improved Shapley value-based profit allocation method for CHP-VPP[J] publication-title: Energy – volume: 42 start-page: 1687 year: 2018 end-page: 1696 ident: bib35 article-title: Etc. Multi-objective optimal design of integrated energy system for park-level microgrid [J] publication-title: Power Syst Technol – volume: 91 year: 2005 ident: bib40 article-title: Multi-objective optimization using genetic algorithms: a tutorial [J] publication-title: Reliab Eng Syst Saf – volume: 200 start-page: 315 year: 2017 end-page: 329 ident: bib23 article-title: A Stackelberg game approach for multiple energies trading in integrated energy systems [J] publication-title: Appl Energy – volume: 27 start-page: 86 year: 2012 end-page: 90 ident: bib34 article-title: Cooperative game theory: basic concepts and computational challenges [J] publication-title: IEEE Intell Syst – volume: 233 start-page: 731 year: 2019 end-page: 742 ident: bib39 article-title: Optimal control and cooperative game theory based analysis of a by-product synergy system [J] publication-title: J Clean Prod – volume: 36 start-page: 16 year: 2015 end-page: 25 ident: bib33 article-title: Thought about the integrated energy system in China [J] publication-title: Electr Power Construct – start-page: 276 year: 2020 ident: bib11 article-title: Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy[J] – volume: 40 start-page: 29 year: 2020 end-page: 36 ident: bib22 article-title: Optimal sharing operation strategy for multi park-level microgrid [J] publication-title: Electr Power Automat Equip – volume: 129 start-page: 106826 year: 2021 ident: bib18 article-title: Optimal operation of an integrated energy system by considering the multi energy coupling, AC-DC topology and demand responses[J] publication-title: Int J Electr Power Energy Syst – start-page: 280 year: 2020 ident: bib16 article-title: Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization [J] – year: 2020 ident: bib2 article-title: Energy and exergy analysis of biogas fired regenerative gas turbine cycle with CO – start-page: 279 year: 2020 ident: bib7 article-title: A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies [J] – volume: 300 start-page: 117224 year: 2021 ident: bib8 article-title: Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties[J] publication-title: Appl Energy – volume: 39 year: 2012 ident: bib42 article-title: A state-of the-art survey of TOPSIS applications [J] publication-title: Expert Syst Appl – start-page: 207 year: 2020 ident: bib21 article-title: Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings [J] – year: 2018 ident: bib37 article-title: A study on stability of coalition in supply chain based on cooperative game theory [D] – start-page: 276 year: 2020 ident: 10.1016/j.energy.2022.123305_bib11 – volume: 121 start-page: 368 issue: 4 year: 2015 ident: 10.1016/j.energy.2022.123305_bib30 article-title: Risk-based profit allocation ti DERs integrated with a virtual power plant using cooperative Game theory publication-title: J Electr Power Syst Res doi: 10.1016/j.epsr.2014.11.025 – volume: 300 start-page: 117224 year: 2021 ident: 10.1016/j.energy.2022.123305_bib8 article-title: Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties[J] publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117224 – volume: 7 start-page: 1020 year: 2019 ident: 10.1016/j.energy.2022.123305_bib1 article-title: Stochastic price based coordinated operation planning of energy storage system and conventional power plant[J] publication-title: J Modern Power Syst Clean Energy doi: 10.1007/s40565-019-0534-5 – start-page: 279 year: 2020 ident: 10.1016/j.energy.2022.123305_bib7 – volume: 27 start-page: 86 issue: 3 year: 2012 ident: 10.1016/j.energy.2022.123305_bib34 article-title: Cooperative game theory: basic concepts and computational challenges [J] publication-title: IEEE Intell Syst doi: 10.1109/MIS.2012.47 – year: 2020 ident: 10.1016/j.energy.2022.123305_bib2 – year: 2020 ident: 10.1016/j.energy.2022.123305_bib6 – start-page: 219 year: 2021 ident: 10.1016/j.energy.2022.123305_bib13 article-title: Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations publication-title: J Energy – volume: 128 start-page: 106735 year: 2021 ident: 10.1016/j.energy.2022.123305_bib17 article-title: Stochastic robust optimal operation of community integrated energy system based on integrated demand response[J] publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2020.106735 – start-page: 164 year: 2018 ident: 10.1016/j.energy.2022.123305_bib36 – start-page: 225 year: 2021 ident: 10.1016/j.energy.2022.123305_bib12 article-title: Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response [J] publication-title: Energy – start-page: 208 year: 2020 ident: 10.1016/j.energy.2022.123305_bib20 – volume: 130 start-page: 106959 year: 2021 ident: 10.1016/j.energy.2022.123305_bib29 article-title: A two-level game optimal dispatching model for the park integrated energy system considering Stackelberg and cooperative games[J] publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.106959 – volume: 6 start-page: 27777 year: 2018 ident: 10.1016/j.energy.2022.123305_bib27 article-title: Cooperative economic scheduling for multiple energy hubs: a bargaining game theoretic perspective[J] publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2839108 – volume: 41 start-page: 114 issue: 1 year: 2020 ident: 10.1016/j.energy.2022.123305_bib25 article-title: Etc. Optimal operation of integrated community energy system based on Nash bargaining [J] publication-title: Electr Power Construct – volume: 52 start-page: 28 issue: 11 year: 2019 ident: 10.1016/j.energy.2022.123305_bib26 article-title: Etc. Research on competition strategy of integrated energy service provider under the pool-based market mechanism [J] publication-title: Electr power – ident: 10.1016/j.energy.2022.123305_bib28 – start-page: 141 year: 2017 ident: 10.1016/j.energy.2022.123305_bib14 – volume: 13 year: 2019 ident: 10.1016/j.energy.2022.123305_bib24 article-title: Robust coalitional game theoretic optimisation for cooperative energy hubs with correlated wind power [J] – volume: 91 issue: 9 year: 2005 ident: 10.1016/j.energy.2022.123305_bib40 article-title: Multi-objective optimization using genetic algorithms: a tutorial [J] publication-title: Reliab Eng Syst Saf – volume: 180 start-page: 115834 year: 2020 ident: 10.1016/j.energy.2022.123305_bib9 article-title: Research on capacity planning and optimization of regional integrated energy system based on hybrid energy storage system[J] publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115834 – year: 2020 ident: 10.1016/j.energy.2022.123305_bib38 – volume: 40 start-page: 29 year: 2020 ident: 10.1016/j.energy.2022.123305_bib22 article-title: Optimal sharing operation strategy for multi park-level microgrid [J] publication-title: Electr Power Automat Equip – volume: 233 start-page: 731 year: 2019 ident: 10.1016/j.energy.2022.123305_bib39 article-title: Optimal control and cooperative game theory based analysis of a by-product synergy system [J] publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.05.243 – start-page: 118537 year: 2020 ident: 10.1016/j.energy.2022.123305_bib32 – start-page: 219 year: 2021 ident: 10.1016/j.energy.2022.123305_bib4 article-title: A partition optimization design method for a regional integrated energy system based on a clustering algorithm publication-title: J Energy – volume: 213 start-page: 118805 year: 2020 ident: 10.1016/j.energy.2022.123305_bib31 article-title: An improved Shapley value-based profit allocation method for CHP-VPP[J] publication-title: Energy doi: 10.1016/j.energy.2020.118805 – start-page: 271 year: 2020 ident: 10.1016/j.energy.2022.123305_bib10 article-title: Analysis of biomass polygeneration integrated energy system based on a mixed-integer nonlinear programming optimization method [J] publication-title: J Clean Prod – volume: 36 start-page: 16 issue: 1 year: 2015 ident: 10.1016/j.energy.2022.123305_bib33 article-title: Thought about the integrated energy system in China [J] publication-title: Electr Power Construct – start-page: 285 year: 2021 ident: 10.1016/j.energy.2022.123305_bib15 – volume: 31 start-page: 1e13 year: 2016 ident: 10.1016/j.energy.2022.123305_bib3 article-title: A brief review to integrated energy system and energy internet publication-title: Trans China Electrotech Soc – start-page: 207 year: 2020 ident: 10.1016/j.energy.2022.123305_bib21 – start-page: 280 year: 2020 ident: 10.1016/j.energy.2022.123305_bib16 – start-page: 156 year: 2020 ident: 10.1016/j.energy.2022.123305_bib19 – start-page: 189 year: 2019 ident: 10.1016/j.energy.2022.123305_bib5 – volume: 29 start-page: 1201 year: 2012 ident: 10.1016/j.energy.2022.123305_bib41 article-title: Research progress of genetic algorithm [J] publication-title: Appl Res Comput – volume: 39 issue: 17 year: 2012 ident: 10.1016/j.energy.2022.123305_bib42 article-title: A state-of the-art survey of TOPSIS applications [J] publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.05.056 – year: 2018 ident: 10.1016/j.energy.2022.123305_bib37 – volume: 42 start-page: 1687 issue: 6 year: 2018 ident: 10.1016/j.energy.2022.123305_bib35 article-title: Etc. Multi-objective optimal design of integrated energy system for park-level microgrid [J] publication-title: Power Syst Technol – volume: 129 start-page: 106826 year: 2021 ident: 10.1016/j.energy.2022.123305_bib18 article-title: Optimal operation of an integrated energy system by considering the multi energy coupling, AC-DC topology and demand responses[J] publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.106826 – volume: 200 start-page: 315 issue: aug.15 year: 2017 ident: 10.1016/j.energy.2022.123305_bib23 article-title: A Stackelberg game approach for multiple energies trading in integrated energy systems [J] publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.05.001 |
| SSID | ssj0005899 |
| Score | 2.6333685 |
| Snippet | The construction of integrated energy system can effectively improve energy efficiency and reduce carbon emission, which is of great significance to energy... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 123305 |
| SubjectTerms | algorithms Carbon cell nucleolus Cooperative game Emissions Emissions control Energy Energy costs Energy efficiency Game theory Genetic algorithms Integrated energy system Integrated energy systems Nucleoli Nucleolus method Operation optimization Optimization Shapley value Sorting algorithms Sustainable development system optimization |
| Title | Research on the optimization method of integrated energy system operation with multi-subject game |
| URI | https://dx.doi.org/10.1016/j.energy.2022.123305 https://www.proquest.com/docview/2648607667 https://www.proquest.com/docview/2675562368 |
| Volume | 245 |
| WOSCitedRecordID | wos000792591800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKhgQXBIOJwkBGQlwqV0mdxPZxqjoBqgqHbpSTlQ-n2zSSsjRTj_zpPMd20vI1OHCJKtdO3bxfnt_3Q-i1R-NIS7ok07GDQRwkJI6VT-KQMXib4sRvEmnPpmw244uF-NjrfXO5MDdXrCj4ZiNW_5XUMAbE1qmz_0Du9qYwAJ-B6HAFssP1rwjvYumsG2BQAlP4YrMtbcPonToR2UCZ_D9T1BnmK4uKxkbbRBySqk60wWawjHeLG0zMUl2zdGPC5FvDwidrif5c6kzhNvDnom78IeddCtrYdMQew9AStPOlG1_Upgl0vW2ZAKVWl0AMO3NZmzJztsXUaOSRMDAVtYbKMF3OKIFDM9zmyqMg3OKr_i-5vTE8XA7NYxrqPQzhJKZe2J1uzqM_-yBPTqdTOZ8s5m9WX4nuO6b987YJyx20P2KhAL64f_xusnjfhQnxpgdpu2-XftnECP78w78Tb3446BvpZf4QPbBqBz42cHmEeqo4QPdcVnp1gA4nXcYjTLQsv3qMYocnXBYY8IS38YQNnnCZ4w5P2OwXGzzhFk9Y4wnv4AlrPD1BpyeT-fgtsX05SEojtiaUZpSmNBW-SjIv8RXnoUeViDiIszxRoHXnIhU8EH7IladSEAFHwguCJANtnAp6iPaKslBPEQZ5PhF8lOXKzwNGc-GPckGVCgRPWZJkfUTd45SpLVqve6dcSRedeCnNn5KaCNIQoY9Iu2plirbcMp85SkkreBqBUgLSbll55AgrLQ-opA4ajTwWRayPXrVfA9vWvri4UGWt57BQqx4Rf_bnWzxH97t36wjtra9r9QLdTW_WF9X1S4vW779bum0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+optimization+method+of+integrated+energy+system+operation+with+multi-subject+game&rft.jtitle=Energy+%28Oxford%29&rft.au=Wang%2C+Yongli&rft.au=Liu%2C+Zhen&rft.au=Cai%2C+Chengcong&rft.au=Xue%2C+Lu&rft.date=2022-04-15&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=245&rft.spage=1&rft_id=info:doi/10.1016%2Fj.energy.2022.123305&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |