Shape Representation and Modeling of Tendon-Driven Continuum Robots Using Euler Arc Splines

Due to the compliance of tendon-driven continuum robots, carrying a load or experiencing a tip force result in variations in backbone curvature. While the spatial robot configuration theoretically needs an infinite number of parameters for exact description, it can be well approximated using Euler A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 7; H. 3; S. 1 - 8
Hauptverfasser: Rao, Priyanka, Peyron, Quentin, Burgner-Kahrs, Jessica
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Due to the compliance of tendon-driven continuum robots, carrying a load or experiencing a tip force result in variations in backbone curvature. While the spatial robot configuration theoretically needs an infinite number of parameters for exact description, it can be well approximated using Euler Arc Splines which use only six of them. In this letter, we first show the accuracy of this representation by fitting the Euler Arc splines directly to experimentally measured robot shapes. Additionally, we propose a 3D static model that can account for gravity, friction and tip forces. We demonstrate the utility of using efficient parameterization by analyzing the computation time of the proposed model and then, using it to propose a hybrid model that combines physics-based model with observed data. The average tip error for the Euler arc spline representation is <inline-formula><tex-math notation="LaTeX">0.43</tex-math></inline-formula>% and the proposed static model is <inline-formula><tex-math notation="LaTeX">3.25</tex-math></inline-formula>% w.r.t. robot length. The average computation time is <inline-formula><tex-math notation="LaTeX">0.56 \,\mathrm{ms}</tex-math></inline-formula> for nonplanar deformations for a robot with ten disks. The hybrid model reduces the maximum error predicted by the static model from <inline-formula><tex-math notation="LaTeX">8.6</tex-math></inline-formula>% to <inline-formula><tex-math notation="LaTeX">5.1</tex-math></inline-formula>% w.r.t. robot length, while using 30 observations for training.
AbstractList Due to the compliance of tendon-driven continuum robots, carrying a load or experiencing a tip force result in variations in backbone curvature. While the spatial robot configuration theoretically needs an infinite number of parameters for exact description, it can be well approximated using Euler Arc Splines which use only six of them. In this letter, we first show the accuracy of this representation by fitting the Euler Arc splines directly to experimentally measured robot shapes. Additionally, we propose a 3D static model that can account for gravity, friction and tip forces. We demonstrate the utility of using efficient parameterization by analyzing the computation time of the proposed model and then, using it to propose a hybrid model that combines physics-based model with observed data. The average tip error for the Euler arc spline representation is <inline-formula><tex-math notation="LaTeX">0.43</tex-math></inline-formula>% and the proposed static model is <inline-formula><tex-math notation="LaTeX">3.25</tex-math></inline-formula>% w.r.t. robot length. The average computation time is <inline-formula><tex-math notation="LaTeX">0.56 \,\mathrm{ms}</tex-math></inline-formula> for nonplanar deformations for a robot with ten disks. The hybrid model reduces the maximum error predicted by the static model from <inline-formula><tex-math notation="LaTeX">8.6</tex-math></inline-formula>% to <inline-formula><tex-math notation="LaTeX">5.1</tex-math></inline-formula>% w.r.t. robot length, while using 30 observations for training.
Due to the compliance of tendon-driven continuum robots, carrying a load or experiencing a tip force result in variations in backbone curvature. While the spatial robot configuration theoretically needs an infinite number of parameters for exact description, it can be well approximated using Euler Arc Splines which use only six of them. In this letter, we first show the accuracy of this representation by fitting the Euler Arc splines directly to experimentally measured robot shapes. Additionally, we propose a 3D static model that can account for gravity, friction and tip forces. We demonstrate the utility of using efficient parameterization by analyzing the computation time of the proposed model and then, using it to propose a hybrid model that combines physics-based model with observed data. The average tip error for the Euler arc spline representation is [Formula Omitted]% and the proposed static model is [Formula Omitted]% w.r.t. robot length. The average computation time is [Formula Omitted] for nonplanar deformations for a robot with ten disks. The hybrid model reduces the maximum error predicted by the static model from [Formula Omitted]% to [Formula Omitted]% w.r.t. robot length, while using 30 observations for training.
Due to the compliance of tendon-driven continuum robots, carrying a load or experiencing a tip force result in variations in backbone curvature. While the spatial robot configuration theoretically needs an infinite number of parameters for exact description, it can be well approximated using Euler Arc Splines which use only six of them. In this letter, we first show the accuracy of this representation by fitting the Euler Arc splines directly to experimentally measured robot shapes. Additionally, we propose a 3D static model that can account for gravity, friction and tip forces. We demonstrate the utility of using efficient parameterization by analyzing the computation time of the proposed model and then, using it to propose a hybrid model that combines physics-based model with observed data. The average tip error for the Euler arc spline representation is 0.43% and the proposed static model is 3.25% w.r.t. robot length. The average computation time is 0.56 ms for nonplanar deformations for a robot with ten disks. The hybrid model reduces the maximum error predicted by the static model from 8.6% to 5.1% w.r.t. robot length, while using 30 observations for training.
Author Peyron, Quentin
Burgner-Kahrs, Jessica
Rao, Priyanka
Author_xml – sequence: 1
  givenname: Priyanka
  orcidid: 0000-0001-8188-9603
  surname: Rao
  fullname: Rao, Priyanka
  organization: Continuum Robotics Laboratory, Department of Mathematical & Computational Sciences, University of Toronto, Toronto, ON, Canada
– sequence: 2
  givenname: Quentin
  orcidid: 0000-0003-2628-1464
  surname: Peyron
  fullname: Peyron, Quentin
  organization: Continuum Robotics Laboratory, Department of Mathematical & Computational Sciences, University of Toronto, Toronto, ON, Canada
– sequence: 3
  givenname: Jessica
  orcidid: 0000-0001-9185-3970
  surname: Burgner-Kahrs
  fullname: Burgner-Kahrs, Jessica
  organization: Continuum Robotics Laboratory, Department of Mathematical & Computational Sciences, University of Toronto, Toronto, ON, Canada
BackLink https://hal.science/hal-03899902$$DView record in HAL
BookMark eNp9kMtKxDAUQIMo-NwLbgKuXHTMo02a5TCODxgRxpmVi5C2txqpSU1awb-3pSLiwtUN4ZybcA7RrvMOEDqlZEYpUZer9XzGCGMzTvOMS7mDDtgwEi6F2P113kcnMb4SQmjGJFfZAXp6fDEt4DW0ASK4znTWO2xche99BY11z9jXeAOu8i65CvYDHF5411nX92947QvfRbyNI7fsGwh4Hkr82A4ixGO0V5smwsn3PELb6-VmcZusHm7uFvNVUnIhu4Rzmaa8KKXIqqziiomUcpIWRa4EGCUEyU2uKikJVYbUKas5q0lZKmpSVSjKj9DFtPfFNLoN9s2ET-2N1bfzlR7vCM-VUoR9jOz5xLbBv_cQO_3q--CG72km8oxmeSrFQJGJKoOPMUD9s5YSPRbXQ3E9FtffxQdF_FFKO9XsgrHNf-LZJFoA-HlH5SSVUvEvZLmNAQ
CODEN IRALC6
CitedBy_id crossref_primary_10_1007_s43154_023_00105_z
crossref_primary_10_1109_LRA_2024_3363992
crossref_primary_10_1109_TMECH_2024_3378274
crossref_primary_10_1109_TRO_2022_3231360
crossref_primary_10_1017_S0263574724001188
crossref_primary_10_1007_s11431_024_2819_2
crossref_primary_10_1109_TIM_2024_3387497
crossref_primary_10_1109_LRA_2024_3363533
crossref_primary_10_34133_cbsystems_0339
crossref_primary_10_1109_LRA_2024_3383211
crossref_primary_10_1109_TMECH_2024_3375873
crossref_primary_10_1007_s00498_025_00414_y
crossref_primary_10_1016_j_apm_2024_06_013
crossref_primary_10_1016_j_actaastro_2023_06_019
crossref_primary_10_1109_LRA_2024_3469824
Cites_doi 10.1115/1.4007390
10.1109/TRO.2011.2160469
10.1115/1.4000519
10.1109/TRO.2013.2281564
10.1007/978-3-319-06698-1_40
10.1109/ACCESS.2020.2975087
10.1109/ICRA.2019.8794238
10.1016/j.mechmachtheory.2019.02.005
10.1109/IROS.2014.6943052
10.1109/TRO.2018.2881049
10.1109/TRO.2008.2002311
10.1109/IROS.2016.7759808
10.1089/soro.2017.0111
10.1109/IROS.2011.6094941
10.1109/ICRA48506.2021.9561700
10.1109/LRA.2020.3010738
10.1109/ICRA.2019.8793692
10.1109/ROBIO49542.2019.8961669
10.1109/TRO.2006.878933
10.3389/frobt.2020.630245
10.3390/s17020311
10.3389/frobt.2021.718033
10.1109/IROS40897.2019.8968526
10.3389/frobt.2021.732643
10.1016/j.cag.2012.04.001
10.1177/0278364910368147
10.1007/978-981-15-4477-4_27
10.1109/JSEN.2020.3028208
10.1109/ROBOT.1995.525679
10.1098/rsta.2019.0349
10.1007/s12555-018-0400-7
10.1109/JSEN.2015.2424228
10.1109/LRA.2020.2985620
10.1089/soro.2019.0095
10.1016/j.cam.2003.12.038
10.1109/RoboSoft48309.2020.9115981
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/LRA.2022.3185377
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 8
ExternalDocumentID oai:HAL:hal-03899902v1
10_1109_LRA_2022_3185377
9804779
Genre orig-research
GrantInformation_xml – fundername: NSERC CREATE Healthcare in Robotics fund
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c367t-337443bc765d5d392641304bb896ea96608a89d77019a0f42f32f0cc91a49b913
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000838441200043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Tue Oct 14 20:35:36 EDT 2025
Mon Jun 30 02:06:19 EDT 2025
Sat Nov 29 06:03:18 EST 2025
Tue Nov 18 21:39:27 EST 2025
Wed Aug 27 02:23:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Control
and Learning for Soft Robots
Flexible Robotics
Modeling Control and Learning for Soft Robots Flexible Robotics Kinematics
Modeling
Kinematics
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-337443bc765d5d392641304bb896ea96608a89d77019a0f42f32f0cc91a49b913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2628-1464
0000-0001-9185-3970
0000-0001-8188-9603
OpenAccessLink https://hal.science/hal-03899902
PQID 2685158476
PQPubID 4437225
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_03899902v1
crossref_primary_10_1109_LRA_2022_3185377
ieee_primary_9804779
crossref_citationtrail_10_1109_LRA_2022_3185377
proquest_journals_2685158476
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref33
  doi: 10.1115/1.4007390
– ident: ref2
  doi: 10.1109/TRO.2011.2160469
– ident: ref4
  doi: 10.1115/1.4000519
– ident: ref8
  doi: 10.1109/TRO.2013.2281564
– ident: ref16
  doi: 10.1007/978-3-319-06698-1_40
– ident: ref22
  doi: 10.1109/ACCESS.2020.2975087
– ident: ref25
  doi: 10.1109/ICRA.2019.8794238
– ident: ref7
  doi: 10.1016/j.mechmachtheory.2019.02.005
– ident: ref19
  doi: 10.1109/IROS.2014.6943052
– ident: ref21
  doi: 10.1109/TRO.2018.2881049
– ident: ref6
  doi: 10.1109/TRO.2008.2002311
– ident: ref3
  doi: 10.1109/IROS.2016.7759808
– ident: ref14
  doi: 10.1089/soro.2017.0111
– ident: ref36
  doi: 10.1109/IROS.2011.6094941
– ident: ref28
  doi: 10.1109/ICRA48506.2021.9561700
– ident: ref12
  doi: 10.1109/LRA.2020.3010738
– ident: ref23
  doi: 10.1109/ICRA.2019.8793692
– ident: ref18
  doi: 10.1109/ROBIO49542.2019.8961669
– ident: ref32
  doi: 10.1109/TRO.2006.878933
– ident: ref15
  doi: 10.3389/frobt.2020.630245
– ident: ref20
  doi: 10.3390/s17020311
– ident: ref27
  doi: 10.3389/frobt.2021.718033
– ident: ref10
  doi: 10.1109/IROS40897.2019.8968526
– ident: ref1
  doi: 10.3389/frobt.2021.732643
– ident: ref30
  doi: 10.1016/j.cag.2012.04.001
– ident: ref5
  doi: 10.1177/0278364910368147
– ident: ref9
  doi: 10.1007/978-981-15-4477-4_27
– ident: ref17
  doi: 10.1109/JSEN.2020.3028208
– ident: ref31
  doi: 10.1109/ROBOT.1995.525679
– ident: ref34
  doi: 10.1098/rsta.2019.0349
– ident: ref35
  doi: 10.1007/s12555-018-0400-7
– ident: ref13
  doi: 10.1109/JSEN.2015.2424228
– ident: ref11
  doi: 10.1109/LRA.2020.2985620
– ident: ref24
  doi: 10.1089/soro.2019.0095
– ident: ref29
  doi: 10.1016/j.cam.2003.12.038
– ident: ref26
  doi: 10.1109/RoboSoft48309.2020.9115981
SSID ssj0001527395
Score 2.326122
Snippet Due to the compliance of tendon-driven continuum robots, carrying a load or experiencing a tip force result in variations in backbone curvature. While the...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analytical models
and Learning for Soft Robots
Automatic
Computational modeling
Computing time
Control
Data models
Disks
Engineering Sciences
Flexible Robotics
Kinematics
Modeling
Parameterization
Representations
Robots
Shape
Splines (mathematics)
Static models
Three dimensional models
Three-dimensional displays
Title Shape Representation and Modeling of Tendon-Driven Continuum Robots Using Euler Arc Splines
URI https://ieeexplore.ieee.org/document/9804779
https://www.proquest.com/docview/2685158476
https://hal.science/hal-03899902
Volume 7
WOSCitedRecordID wos000838441200043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5RxGE5LG_R5SEL7QVpQ93Yie1jBUUcCkIFJCQOUfyIigQJahuO-9vX46ZdEAiJWxSNFStf4hl75vsG4LfV3gkbSiNLkyTi3cJGmmkbySTXqRGJoC7ozA7E1ZW8v1fXS_BnwYVxzoXiM3eClyGXbytT41FZR0nKhVAtaAmRzrha_89TUElMJfNMJFWdwbDn939xfIIEYSbEO8_TGmHdY2io8mEVDq7lfO17k1qHn00ISXozzDdgyZWbsPpGWHALHm5G-Ysjw1Dm2rCLSpKXlmDvM2Sgk6ogtw5beURnY1zxCOpUPZZ1_UyGla6mExKqCUi_fnJj_zBDbpC86ybbcHfevz29iJo2CpFhqZhGjAnOmTYiTWxifTyUouPiWkuVuhzVOWUulRUozJ7TgscFiwtqjOrmXGnVZTuwXFal2wWiTZFbKSR1knmIjfLRCzdCWcZ5bKVrQ2f-ijPTaIxjq4unLOw1qMo8KBmCkjWgtOF4MeJlpq_xhe2RR21hhsLYF71BhveCTKCi8Wu3DVuI0cKqgacN-3OQs-YvnWRx6uNNzBOnvz4ftQc_cAKz8tx9WJ6Oa3cAK-Z1-jgZH0Lr8m__MHyG_wCyItjx
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_abrD1YV_taPo1MfYymBvFki3pMWwtKfPCSDMo7EFYH6aF1i5J3L-_OsXJNjYGfTPmhIV_tu6ku_v9AD44E5ywpTRxNMsSPqhcYphxicxKk1uRCeojz2whxmN5eam-b8CndS-M9z4Wn_kTvIy5fNfYFo_K-kpSLoTahCeonNV1a_06UUEuMZWtcpFU9YvJMOwA0_QEW4SZEH_4ns0rrHyMkip_rcPRuZy9fNy0XsGLLogkwyXqr2HD129g-zdqwR34eXFV3nkyiYWuXX9RTcraEVQ_wx500lRk6lHMI_kywzWPIFPVdd22t2TSmGYxJ7GegJy2N34WHmbJBbbv-vku_Dg7nX4eJZ2QQmJZLhYJY4JzZqzIM5e5EBHl6Lq4MVLlvkR-TllK5QRSs5e04mnF0opaqwYlV0YN2FvYqpva7wExtiqdFJJ6yQLIVoX4hVuhHOM8ddL3oL96xdp2LOModnGj426DKh1A0QiK7kDpwcf1iLslw8Z_bN8H1NZmSI09GhYa70WiQEXT-0EPdhCjtVUHTw8OVyDr7j-d6zQPESdmivP9f496B89G02-FLs7HXw_gOU5mWax7CFuLWeuP4Km9X1zPZ8fxY3wABZPbCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+Representation+and+Modeling+of+Tendon-Driven+Continuum+Robots+Using+Euler+Arc+Splines&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Rao%2C+Priyanka&rft.au=Peyron%2C+Quentin&rft.au=Burgner-Kahrs%2C+Jessica&rft.date=2022-07-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=7&rft.issue=3&rft.spage=8114&rft.epage=8121&rft_id=info:doi/10.1109%2FLRA.2022.3185377&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2022_3185377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon