Hypersphere Fitting From Noisy Data Using an EM Algorithm

This letter studies a new expectation maximization (EM) algorithm to solve the problem of circle, sphere and more generally hypersphere fitting. This algorithm relies on the introduction of random latent vectors having a priori independent von Mises-Fisher distributions defined on the hypersphere. T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 28; s. 314 - 318
Hlavní autoři: Lesouple, Julien, Pilastre, Barbara, Altmann, Yoann, Tourneret, Jean-Yves
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This letter studies a new expectation maximization (EM) algorithm to solve the problem of circle, sphere and more generally hypersphere fitting. This algorithm relies on the introduction of random latent vectors having a priori independent von Mises-Fisher distributions defined on the hypersphere. This statistical model leads to a complete data likelihood whose expected value, conditioned on the observed data, has a Von Mises-Fisher distribution. As a result, the inference problem can be solved with a simple EM algorithm. The performance of the resulting hypersphere fitting algorithm is evaluated for circle and sphere fitting.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2021.3051851