An interval-based multi-objective artificial bee colony algorithm for solving the web service composition under uncertain QoS

Most of the existing works addressing the QoS-aware service composition problem (QoSSCP) are based on the assumption of fixed quality of service (QoS) characteristics of elementary web services. However, in the real world, some QoS criteria may be imprecise for many unexpected factors and conditions...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 75; no. 9; pp. 5622 - 5666
Main Authors: Seghir, Fateh, Khababa, Abdallah, Semchedine, Fouzi
Format: Journal Article
Language:English
Published: New York Springer US 01.09.2019
Springer Nature B.V
Subjects:
ISSN:0920-8542, 1573-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Most of the existing works addressing the QoS-aware service composition problem (QoSSCP) are based on the assumption of fixed quality of service (QoS) characteristics of elementary web services. However, in the real world, some QoS criteria may be imprecise for many unexpected factors and conditions. Therefore, when dealing with QoSSCP, we must consider the uncertain proprieties of QoS. Moreover, very few studies propose multi-objective solutions for solving the QoSSCP, and there is no multi-objective algorithm solving the QoSSCP under uncertain QoS, in which the non-deterministic values of the QoS attributes are expressed as interval numbers. To resolve this issue, we formulate an interval-constrained multi-objective optimization model to the QoSSCP, and we propose a novel interval-based multi-objective artificial bee colony algorithm (IM_ABC) to solve the suggested model. To deal with the interval-valued of objective functions, we define an uncertain constrained dominance relation for ordering solutions in which the performance and stability are simultaneously considered. As inspired by Deb’s feasibility handling constraints, a new interval-based feasibility technique is proposed to deal with interval constraints. In order to control the diversity of the non-dominated solutions obtained by IM_ABC, the original crowding distance of NSGA-II is extended and adopted to the uncertain QoSSCP by incorporating to it a new interval distance definition. Based on real-world and random datasets, the effectiveness of the proposed IM_ABC has been verified through multiple experiments, where the comparison results demonstrates the superiority of IM_ABC compared to the recently proposed interval-based multi-objective optimization algorithms IPMOPSO, IPMOEOA, and MIIGA as well as a recently introduced interval-based fuzzy ranking single-objective GAP approach.
AbstractList Most of the existing works addressing the QoS-aware service composition problem (QoSSCP) are based on the assumption of fixed quality of service (QoS) characteristics of elementary web services. However, in the real world, some QoS criteria may be imprecise for many unexpected factors and conditions. Therefore, when dealing with QoSSCP, we must consider the uncertain proprieties of QoS. Moreover, very few studies propose multi-objective solutions for solving the QoSSCP, and there is no multi-objective algorithm solving the QoSSCP under uncertain QoS, in which the non-deterministic values of the QoS attributes are expressed as interval numbers. To resolve this issue, we formulate an interval-constrained multi-objective optimization model to the QoSSCP, and we propose a novel interval-based multi-objective artificial bee colony algorithm (IM_ABC) to solve the suggested model. To deal with the interval-valued of objective functions, we define an uncertain constrained dominance relation for ordering solutions in which the performance and stability are simultaneously considered. As inspired by Deb’s feasibility handling constraints, a new interval-based feasibility technique is proposed to deal with interval constraints. In order to control the diversity of the non-dominated solutions obtained by IM_ABC, the original crowding distance of NSGA-II is extended and adopted to the uncertain QoSSCP by incorporating to it a new interval distance definition. Based on real-world and random datasets, the effectiveness of the proposed IM_ABC has been verified through multiple experiments, where the comparison results demonstrates the superiority of IM_ABC compared to the recently proposed interval-based multi-objective optimization algorithms IPMOPSO, IPMOEOA, and MIIGA as well as a recently introduced interval-based fuzzy ranking single-objective GAP approach.
Author Seghir, Fateh
Khababa, Abdallah
Semchedine, Fouzi
Author_xml – sequence: 1
  givenname: Fateh
  orcidid: 0000-0002-2579-9694
  surname: Seghir
  fullname: Seghir, Fateh
  email: seghir.fateh@gmail.com, fateh.seghir@univ-setif.dz
  organization: Department of Basic Studies in Technology, Faculty of Technology, University of Sétif 1
– sequence: 2
  givenname: Abdallah
  surname: Khababa
  fullname: Khababa, Abdallah
  organization: Department of Computer Science, Faculty of Science, University of Sétif 1
– sequence: 3
  givenname: Fouzi
  surname: Semchedine
  fullname: Semchedine, Fouzi
  organization: Institute of Optics and Precision Mechanics (IOMP), University of Sétif 1
BookMark eNp9kE1LAzEURYNUsFX_gKuA62i-ZjKzLMUvKIio65BkMm3KNKlJWunC_-7UEQQX3by3uee-x5mAkQ_eAnBF8A3BWNwmQigVCJMaYVoRjuoTMCaFYAjzio_AGNcUo6rg9AxMUlphjDkTbAy-ph46n23cqQ5plWwD19suOxT0yprsdhaqmF3rjFMd1NZCE7rg91B1ixBdXq5hGyJMods5v4B5aeGn1TD1hc4cwutNSC674OHWNzb209iYlfPwJbxegNNWdcle_u5z8H5_9zZ7RPPnh6fZdI4MK0VGtNGYG1opzUjDhFG0omVrC02FoFg3DWuJMm3BOFalKWpeFUZUimhBeUFbw87B9dC7ieFja1OWq7CNvj8pKa1LQUrBeZ-qhpSJIaVoW2lcVoffc1SukwTLg2w5yJa9bPkjW9Y9Sv-hm-jWKu6PQ2yAUh_2Cxv_vjpCfQMx4JYn
CitedBy_id crossref_primary_10_1002_cpe_6531
crossref_primary_10_1002_cpe_8317
crossref_primary_10_3390_axioms11120725
crossref_primary_10_3390_bdcc7030140
crossref_primary_10_1016_j_eswa_2020_114413
crossref_primary_10_1002_cpe_70147
crossref_primary_10_1007_s11277_023_10817_2
crossref_primary_10_1007_s10462_020_09940_4
crossref_primary_10_1016_j_asoc_2024_112266
crossref_primary_10_1093_comjnl_bxab187
crossref_primary_10_3390_jmse9030327
crossref_primary_10_1007_s11227_023_05777_0
crossref_primary_10_1016_j_comnet_2019_106982
crossref_primary_10_1109_ACCESS_2021_3133505
crossref_primary_10_3233_JIFS_212045
crossref_primary_10_1007_s12652_020_02879_y
crossref_primary_10_1049_trit_2019_0018
crossref_primary_10_1515_comp_2025_0028
crossref_primary_10_1016_j_swevo_2019_100578
crossref_primary_10_1007_s10586_022_03602_6
crossref_primary_10_1007_s12065_021_00571_4
Cites_doi 10.1007/s11036-012-0373-3
10.1007/s10898-007-9149-x
10.1016/j.neucom.2016.08.003
10.1016/j.cor.2016.03.002
10.1016/j.eswa.2016.10.047
10.1109/TSC.2016.2612663
10.1016/j.engappai.2017.10.004
10.1109/TSE.2004.11
10.1007/s10489-014-0617-y
10.1016/j.ejor.2015.03.005
10.1016/S1005-8885(11)60269-0
10.1007/978-981-10-2663-8_3
10.1109/BICTA.2010.5645160
10.1007/s10845-017-1372-9
10.1007/s10489-017-0996-y
10.1016/j.joems.2013.07.002
10.1287/serv.2015.0093
10.1007/s10845-013-0751-0
10.1287/opre.1030.0065
10.1016/S1005-8885(10)60089-1
10.1109/4235.797969
10.1016/j.cie.2015.12.018
10.1007/s10107-003-0396-4
10.1145/1655925.1655991
10.1016/j.jss.2013.11.1113
10.1109/4235.996017
10.1007/s00607-017-0547-8
10.1016/S0377-2217(99)00319-7
10.1007/978-3-642-17313-4_27
10.1109/TSE.2007.1011
10.1109/TSC.2012.34
10.1155/2016/9480769
10.1016/j.ress.2015.09.008
10.1109/CCGRID.2008.40
10.1016/j.cie.2014.05.014
10.1007/s12204-017-1860-2
10.1016/j.ijleo.2015.10.156
10.1016/j.future.2012.12.010
10.1109/CEC.2005.1554719
10.1145/1526709.1526828
10.1016/j.asoc.2015.11.012
10.1109/ICWS.2010.10
10.1016/j.ejor.2009.01.021
10.1145/1068009.1068189
10.1109/TSMC.2015.2396001
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-019-02814-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 5666
ExternalDocumentID 10_1007_s11227_019_02814_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c367t-2db04c28ab31d37ca2826fe5b27720bdd3f1acf5340a6c59485c78a1b72452fc3
IEDL.DBID RSV
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487643900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:47:58 EDT 2025
Sat Nov 29 04:27:37 EST 2025
Tue Nov 18 22:22:15 EST 2025
Fri Feb 21 02:27:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Artificial bee colony algorithm
QoS uncertainty
Multi-objective optimization
Web service composition
Interval number
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-2db04c28ab31d37ca2826fe5b27720bdd3f1acf5340a6c59485c78a1b72452fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2579-9694
PQID 2296716744
PQPubID 2043774
PageCount 45
ParticipantIDs proquest_journals_2296716744
crossref_citationtrail_10_1007_s11227_019_02814_9
crossref_primary_10_1007_s11227_019_02814_9
springer_journals_10_1007_s11227_019_02814_9
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChenFDouRLiMWuHA flexible QoS-aware web service composition method by multi-objective optimization in cloud manufacturingComput Ind Eng20169942343110.1016/j.cie.2015.12.018
WuQZhuQTransactional and QoS-aware dynamic service composition based on ant colony optimizationFuture Gener Comput Syst20132951112111910.1016/j.future.2012.12.010
Yao Y, Chen H (2009) QoS-aware service composition using NSGA-II. In: Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human. ACM, pp 358–363
HeinrichBKlierMLewerenzLZimmermannSQuality-of-Service-aware service selection: a novel approach considering potential service failures and nondeterministic service valuesServ Sci201571486910.1287/serv.2015.0093
BertsimasDSimMRobust discrete optimization and network flowsMath Program2003981–3497120193671082.9006710.1007/s10107-003-0396-4
WangSSunQZouHYangFParticle swarm optimization with skyline operator for fast cloud-based web service compositionMobile Netw Appl201318111612110.1007/s11036-012-0373-3
AlrifaiMRisseTNejdlWA hybrid approach for efficient web service composition with end-to-end QoS constraintsACM Trans Web (TWEB)2012627
LiaoJLiuYZhuXWangJAccurate sub-swarms particle swarm optimization algorithm for service compositionJ Syst Softw20149019120310.1016/j.jss.2013.11.1113
KarmakarSBhuniaAKA comparative study of different order relations of intervalsReliab Comput2012161387229133691353.90184
KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739345947123461781149.9018610.1007/s10898-007-9149-x
HuoYQiuPZhaiJFanDPengHMulti-objective service composition model based on cost-effective optimizationAppl Intell201848365166910.1007/s10489-017-0996-y
BehzadianMKazemzadehRBAlbadviAAghdasiMPROMETHEE: a comprehensive literature review on methodologies and applicationsEur J Oper Res201020011982151189.9007410.1016/j.ejor.2009.01.021
SenguptaAPalTKOn comparing interval numbersEur J Oper Res20001271284317824660991.9008010.1016/S0377-2217(99)00319-7
ZhangLLiCYuZDynamic web service selection group decision-making based on heterogeneous QoS modelsJ China Univ Posts Telecommun2012193809010.1016/S1005-8885(11)60269-0
DingZJLiuJJSunYQJiangCJZhouMCA transaction and QoS-aware service selection approach based on genetic algorithmIEEE Trans Syst Man Cybern Syst20154571035104610.1109/TSMC.2015.2396001
DahanFEl HindiKGhoneimAEnhanced artificial bee colony algorithm for QoS-aware web service selection problemComputing201799550751736406551369.6804210.1007/s00607-017-0547-8
WuQZhuQZhouMA correlation-driven optimal service selection approach for virtual enterprise establishmentJ Intell Manuf20142561441145310.1007/s10845-013-0751-0
HuoYZhuangYGuJNiSXueYDiscrete gbest-guided artificial bee colony algorithm for cloud service compositionAppl Intell201542466167810.1007/s10489-014-0617-y
Berkelaar M, Eikland K, Notebaert P (2004) Lp solve: open source (mixed-integer) linear programming system. http://lpsolve.sourceforge.net/5.5
ZhangEChenQMulti-objective reliability redundancy allocation in an interval environment using particle swarm optimizationReliab Eng Syst Saf2016145839210.1016/j.ress.2015.09.008
LinJLiuMHaoJJiangSA multi-objective optimization approach for integrated production planning under interval uncertainties in the steel industryComput Oper Res2016721892031349.9059210.1016/j.cor.2016.03.002
ArdagnaDPerniciBAdaptive service composition in flexible processesIEEE Trans Softw Eng200733636938410.1109/TSE.2007.1011
JianXZhuQXiaYAn interval-based fuzzy ranking approach for QoS uncertainty-aware service compositionOptik Int J Light Electron Optics201612742102211010.1016/j.ijleo.2015.10.156
Brans J-P, Mareschal B (2005) Promethee methods. In: Multiple criteria decision analysis: state of the art surveys. International series in operations research & management science, vol 78. Springer, New York, pp 163–186
Zheng Z, Zhang Y, Lyu MR (2010) Distributed QoS evaluation for real-world web services. In: 2010 IEEE International Conference on Web Services. IEEE, pp 83–90
WangXXuXShengQZWangZYaoLNovel artificial bee colony algorithms for QoS-aware service selectionIEEE Trans Serv Comput201610.1109/TSC.2016.2612663
LiuBinLiWei-minPanShuaiA Novel Adaptive Cooperative Artificial Bee Colony Algorithm for Solving Numerical Function OptimizationTheory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems2016SingaporeSpringer Singapore253610.1007/978-981-10-2663-8_3
ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969
Wiesemann W, Hochreiter R, Kuhn D (2008) A stochastic programming approach for QoS-aware service composition. In: 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID). IEEE, pp 226–233
Canfora G, Di Penta M, Esposito R, Villani ML (2005) An approach for qos-aware service composition based on genetic algorithms. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. ACM, pp 1069–1075
Alrifai M, Risse T (2009) Combining global optimization with local selection for efficient QoS-aware service composition. In: Proceedings of the 18th International Conference on World Wide Web. ACM, pp 881–890
SunJGongDSolving interval multi-objective optimization problems using evolutionary algorithms with lower limit of possibility degreeChin J Electron2013222269272
ZhangZWangXLuJMulti-objective immune genetic algorithm solving nonlinear interval-valued programmingEng Appl Artif Intell20186723524510.1016/j.engappai.2017.10.004
ZhengZYileiZhangLyu MichaelRInvestigating QoS of real-world web servicesIEEE Trans Serv Comput201471323910.1109/TSC.2012.34
Mahato SK, Bhunia AK (2006) Interval-arithmetic-oriented interval computing technique for global optimization. Appl Math Res Express 2006
Limbourg P, Aponte DES (2005) An optimization algorithm for imprecise multi-objective problem functions. In: 2005 IEEE Congress on Evolutionary Computation, vol 1. IEEE, pp 459–466
RamírezAParejoJARomeroJRSeguraSRuiz-CortésAEvolutionary composition of QoS-aware web services: a many-objective perspectiveExpert Syst Appl20177235737010.1016/j.eswa.2016.10.047
ChenYJiangLZhangJDongXA robust service selection method based on uncertain QoSMath Probl Eng20162016948076934705011400.9014610.1155/2016/9480769
HuangLZhangBYuanXZhangCGaoYSolving service selection problem based on a novel multi-objective artificial bees colony algorithmJ Shanghai Jiaotong Univ Sci201722447448010.1007/s12204-017-1860-2
ZhangShuaiXuYangbingZhangWenyuYuDejianA new fuzzy QoS-aware manufacture service composition method using extended flower pollination algorithmJournal of Intelligent Manufacturing20173052069208310.1007/s10845-017-1372-9
KarmakarSBhuniaAKAn alternative optimization technique for interval objective constrained optimization problems via multiobjective programmingJ Egypt Math Soc201422229230332261531298.9009410.1016/j.joems.2013.07.002
ZengLBenatallahBNguAHHDumasMKalagnanamJChangHQoS-aware middleware for web services compositionIEEE Trans Softw Eng200430531132710.1109/TSE.2004.11
CremeneMSuciuMPallezDDumitrescuDComparative analysis of multi-objective evolutionary algorithms for QoS-aware web service compositionAppl Soft Comput20163912413910.1016/j.asoc.2015.11.012
BertsimasDSimMThe price of robustnessOper Res2004521355320662391165.9056510.1287/opre.1030.0065
Li L, Cheng P, Ou L, Zhang Z (2010) Applying multi-objective evolutionary algorithms to QoS-aware web service composition. In: International Conference on Advanced Data Mining and Applications. Springer, pp 270–281
BhuniaAKSamantaSSA study of interval metric and its application in multi-objective optimization with interval objectivesComput Ind Eng20147416917810.1016/j.cie.2014.05.014
KalyanmoyDPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
XiangYZhouYLiuHAn elitism based multi-objective artificial bee colony algorithmEur J Oper Res2015245116819310.1016/j.ejor.2015.03.005
KishorASinghPKPrakashJNSABC: non-dominated sorting based multi-objective artificial bee colony algorithm and its application in data clusteringNeurocomputing201621651453310.1016/j.neucom.2016.08.003
Gong D, Qin N, Sun X (2010) Evolutionary algorithms for multi-objective optimization problems with interval parameters. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). IEEE, pp 411–420
ZhangL-CHuaZFang-ChunYWeb service composition algorithm based on TOPSISJ China Univ Posts Telecommun2011184899710.1016/S1005-8885(10)60089-1
2814_CR46
2814_CR44
Y Huo (2814_CR18) 2018; 48
L Zhang (2814_CR30) 2012; 19
J Liao (2814_CR9) 2014; 90
2814_CR49
S Wang (2814_CR10) 2013; 18
ZJ Ding (2814_CR8) 2015; 45
D Karaboga (2814_CR17) 2007; 39
X Jian (2814_CR28) 2016; 127
Y Chen (2814_CR31) 2016; 2016
L Huang (2814_CR19) 2017; 22
2814_CR50
Bin Liu (2814_CR40) 2016
2814_CR16
2814_CR15
2814_CR3
2814_CR1
A Ramírez (2814_CR27) 2017; 72
J Lin (2814_CR48) 2016; 72
Y Xiang (2814_CR38) 2015; 245
L Zeng (2814_CR22) 2004; 30
Q Wu (2814_CR11) 2013; 29
E Zhang (2814_CR42) 2016; 145
Shuai Zhang (2814_CR4) 2017; 30
L-C Zhang (2814_CR29) 2011; 18
Y Huo (2814_CR12) 2015; 42
2814_CR23
A Kishor (2814_CR39) 2016; 216
S Karmakar (2814_CR33) 2014; 22
Z Zhang (2814_CR43) 2018; 67
2814_CR26
F Dahan (2814_CR14) 2017; 99
E Zitzler (2814_CR51) 1999; 3
S Karmakar (2814_CR37) 2012; 16
D Bertsimas (2814_CR35) 2003; 98
X Wang (2814_CR13) 2016
Z Zheng (2814_CR45) 2014; 7
B Heinrich (2814_CR32) 2015; 7
A Sengupta (2814_CR5) 2000; 127
J Sun (2814_CR41) 2013; 22
M Cremene (2814_CR21) 2016; 39
D Bertsimas (2814_CR34) 2004; 52
M Behzadian (2814_CR47) 2010; 200
AK Bhunia (2814_CR6) 2014; 74
F Chen (2814_CR2) 2016; 99
2814_CR36
M Alrifai (2814_CR25) 2012; 6
D Ardagna (2814_CR24) 2007; 33
Q Wu (2814_CR7) 2014; 25
D Kalyanmoy (2814_CR20) 2002; 6
References_xml – reference: ZhangEChenQMulti-objective reliability redundancy allocation in an interval environment using particle swarm optimizationReliab Eng Syst Saf2016145839210.1016/j.ress.2015.09.008
– reference: Brans J-P, Mareschal B (2005) Promethee methods. In: Multiple criteria decision analysis: state of the art surveys. International series in operations research & management science, vol 78. Springer, New York, pp 163–186
– reference: WuQZhuQZhouMA correlation-driven optimal service selection approach for virtual enterprise establishmentJ Intell Manuf20142561441145310.1007/s10845-013-0751-0
– reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739345947123461781149.9018610.1007/s10898-007-9149-x
– reference: CremeneMSuciuMPallezDDumitrescuDComparative analysis of multi-objective evolutionary algorithms for QoS-aware web service compositionAppl Soft Comput20163912413910.1016/j.asoc.2015.11.012
– reference: BertsimasDSimMThe price of robustnessOper Res2004521355320662391165.9056510.1287/opre.1030.0065
– reference: ZengLBenatallahBNguAHHDumasMKalagnanamJChangHQoS-aware middleware for web services compositionIEEE Trans Softw Eng200430531132710.1109/TSE.2004.11
– reference: LiaoJLiuYZhuXWangJAccurate sub-swarms particle swarm optimization algorithm for service compositionJ Syst Softw20149019120310.1016/j.jss.2013.11.1113
– reference: Limbourg P, Aponte DES (2005) An optimization algorithm for imprecise multi-objective problem functions. In: 2005 IEEE Congress on Evolutionary Computation, vol 1. IEEE, pp 459–466
– reference: ZhangLLiCYuZDynamic web service selection group decision-making based on heterogeneous QoS modelsJ China Univ Posts Telecommun2012193809010.1016/S1005-8885(11)60269-0
– reference: Yao Y, Chen H (2009) QoS-aware service composition using NSGA-II. In: Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human. ACM, pp 358–363
– reference: SenguptaAPalTKOn comparing interval numbersEur J Oper Res20001271284317824660991.9008010.1016/S0377-2217(99)00319-7
– reference: BehzadianMKazemzadehRBAlbadviAAghdasiMPROMETHEE: a comprehensive literature review on methodologies and applicationsEur J Oper Res201020011982151189.9007410.1016/j.ejor.2009.01.021
– reference: ChenFDouRLiMWuHA flexible QoS-aware web service composition method by multi-objective optimization in cloud manufacturingComput Ind Eng20169942343110.1016/j.cie.2015.12.018
– reference: KarmakarSBhuniaAKA comparative study of different order relations of intervalsReliab Comput2012161387229133691353.90184
– reference: BertsimasDSimMRobust discrete optimization and network flowsMath Program2003981–3497120193671082.9006710.1007/s10107-003-0396-4
– reference: KarmakarSBhuniaAKAn alternative optimization technique for interval objective constrained optimization problems via multiobjective programmingJ Egypt Math Soc201422229230332261531298.9009410.1016/j.joems.2013.07.002
– reference: SunJGongDSolving interval multi-objective optimization problems using evolutionary algorithms with lower limit of possibility degreeChin J Electron2013222269272
– reference: HuoYQiuPZhaiJFanDPengHMulti-objective service composition model based on cost-effective optimizationAppl Intell201848365166910.1007/s10489-017-0996-y
– reference: WuQZhuQTransactional and QoS-aware dynamic service composition based on ant colony optimizationFuture Gener Comput Syst20132951112111910.1016/j.future.2012.12.010
– reference: WangXXuXShengQZWangZYaoLNovel artificial bee colony algorithms for QoS-aware service selectionIEEE Trans Serv Comput201610.1109/TSC.2016.2612663
– reference: XiangYZhouYLiuHAn elitism based multi-objective artificial bee colony algorithmEur J Oper Res2015245116819310.1016/j.ejor.2015.03.005
– reference: ZhangZWangXLuJMulti-objective immune genetic algorithm solving nonlinear interval-valued programmingEng Appl Artif Intell20186723524510.1016/j.engappai.2017.10.004
– reference: DahanFEl HindiKGhoneimAEnhanced artificial bee colony algorithm for QoS-aware web service selection problemComputing201799550751736406551369.6804210.1007/s00607-017-0547-8
– reference: Canfora G, Di Penta M, Esposito R, Villani ML (2005) An approach for qos-aware service composition based on genetic algorithms. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. ACM, pp 1069–1075
– reference: KalyanmoyDPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
– reference: JianXZhuQXiaYAn interval-based fuzzy ranking approach for QoS uncertainty-aware service compositionOptik Int J Light Electron Optics201612742102211010.1016/j.ijleo.2015.10.156
– reference: KishorASinghPKPrakashJNSABC: non-dominated sorting based multi-objective artificial bee colony algorithm and its application in data clusteringNeurocomputing201621651453310.1016/j.neucom.2016.08.003
– reference: DingZJLiuJJSunYQJiangCJZhouMCA transaction and QoS-aware service selection approach based on genetic algorithmIEEE Trans Syst Man Cybern Syst20154571035104610.1109/TSMC.2015.2396001
– reference: WangSSunQZouHYangFParticle swarm optimization with skyline operator for fast cloud-based web service compositionMobile Netw Appl201318111612110.1007/s11036-012-0373-3
– reference: HuoYZhuangYGuJNiSXueYDiscrete gbest-guided artificial bee colony algorithm for cloud service compositionAppl Intell201542466167810.1007/s10489-014-0617-y
– reference: ArdagnaDPerniciBAdaptive service composition in flexible processesIEEE Trans Softw Eng200733636938410.1109/TSE.2007.1011
– reference: ZhengZYileiZhangLyu MichaelRInvestigating QoS of real-world web servicesIEEE Trans Serv Comput201471323910.1109/TSC.2012.34
– reference: Li L, Cheng P, Ou L, Zhang Z (2010) Applying multi-objective evolutionary algorithms to QoS-aware web service composition. In: International Conference on Advanced Data Mining and Applications. Springer, pp 270–281
– reference: BhuniaAKSamantaSSA study of interval metric and its application in multi-objective optimization with interval objectivesComput Ind Eng20147416917810.1016/j.cie.2014.05.014
– reference: ChenYJiangLZhangJDongXA robust service selection method based on uncertain QoSMath Probl Eng20162016948076934705011400.9014610.1155/2016/9480769
– reference: Alrifai M, Risse T (2009) Combining global optimization with local selection for efficient QoS-aware service composition. In: Proceedings of the 18th International Conference on World Wide Web. ACM, pp 881–890
– reference: RamírezAParejoJARomeroJRSeguraSRuiz-CortésAEvolutionary composition of QoS-aware web services: a many-objective perspectiveExpert Syst Appl20177235737010.1016/j.eswa.2016.10.047
– reference: Berkelaar M, Eikland K, Notebaert P (2004) Lp solve: open source (mixed-integer) linear programming system. http://lpsolve.sourceforge.net/5.5/
– reference: ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969
– reference: AlrifaiMRisseTNejdlWA hybrid approach for efficient web service composition with end-to-end QoS constraintsACM Trans Web (TWEB)2012627
– reference: Wiesemann W, Hochreiter R, Kuhn D (2008) A stochastic programming approach for QoS-aware service composition. In: 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID). IEEE, pp 226–233
– reference: LiuBinLiWei-minPanShuaiA Novel Adaptive Cooperative Artificial Bee Colony Algorithm for Solving Numerical Function OptimizationTheory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems2016SingaporeSpringer Singapore253610.1007/978-981-10-2663-8_3
– reference: HuangLZhangBYuanXZhangCGaoYSolving service selection problem based on a novel multi-objective artificial bees colony algorithmJ Shanghai Jiaotong Univ Sci201722447448010.1007/s12204-017-1860-2
– reference: ZhangL-CHuaZFang-ChunYWeb service composition algorithm based on TOPSISJ China Univ Posts Telecommun2011184899710.1016/S1005-8885(10)60089-1
– reference: LinJLiuMHaoJJiangSA multi-objective optimization approach for integrated production planning under interval uncertainties in the steel industryComput Oper Res2016721892031349.9059210.1016/j.cor.2016.03.002
– reference: Gong D, Qin N, Sun X (2010) Evolutionary algorithms for multi-objective optimization problems with interval parameters. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). IEEE, pp 411–420
– reference: ZhangShuaiXuYangbingZhangWenyuYuDejianA new fuzzy QoS-aware manufacture service composition method using extended flower pollination algorithmJournal of Intelligent Manufacturing20173052069208310.1007/s10845-017-1372-9
– reference: Zheng Z, Zhang Y, Lyu MR (2010) Distributed QoS evaluation for real-world web services. In: 2010 IEEE International Conference on Web Services. IEEE, pp 83–90
– reference: HeinrichBKlierMLewerenzLZimmermannSQuality-of-Service-aware service selection: a novel approach considering potential service failures and nondeterministic service valuesServ Sci201571486910.1287/serv.2015.0093
– reference: Mahato SK, Bhunia AK (2006) Interval-arithmetic-oriented interval computing technique for global optimization. Appl Math Res Express 2006
– volume: 18
  start-page: 116
  issue: 1
  year: 2013
  ident: 2814_CR10
  publication-title: Mobile Netw Appl
  doi: 10.1007/s11036-012-0373-3
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 2814_CR17
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 216
  start-page: 514
  year: 2016
  ident: 2814_CR39
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.003
– volume: 72
  start-page: 189
  year: 2016
  ident: 2814_CR48
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2016.03.002
– volume: 72
  start-page: 357
  year: 2017
  ident: 2814_CR27
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.10.047
– ident: 2814_CR26
– year: 2016
  ident: 2814_CR13
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2016.2612663
– ident: 2814_CR36
– volume: 67
  start-page: 235
  year: 2018
  ident: 2814_CR43
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.10.004
– volume: 30
  start-page: 311
  issue: 5
  year: 2004
  ident: 2814_CR22
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2004.11
– volume: 42
  start-page: 661
  issue: 4
  year: 2015
  ident: 2814_CR12
  publication-title: Appl Intell
  doi: 10.1007/s10489-014-0617-y
– volume: 245
  start-page: 168
  issue: 1
  year: 2015
  ident: 2814_CR38
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.03.005
– volume: 19
  start-page: 80
  issue: 3
  year: 2012
  ident: 2814_CR30
  publication-title: J China Univ Posts Telecommun
  doi: 10.1016/S1005-8885(11)60269-0
– start-page: 25
  volume-title: Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems
  year: 2016
  ident: 2814_CR40
  doi: 10.1007/978-981-10-2663-8_3
– ident: 2814_CR50
  doi: 10.1109/BICTA.2010.5645160
– volume: 6
  start-page: 7
  issue: 2
  year: 2012
  ident: 2814_CR25
  publication-title: ACM Trans Web (TWEB)
– volume: 30
  start-page: 2069
  issue: 5
  year: 2017
  ident: 2814_CR4
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-017-1372-9
– volume: 48
  start-page: 651
  issue: 3
  year: 2018
  ident: 2814_CR18
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-0996-y
– volume: 22
  start-page: 292
  issue: 2
  year: 2014
  ident: 2814_CR33
  publication-title: J Egypt Math Soc
  doi: 10.1016/j.joems.2013.07.002
– ident: 2814_CR46
– volume: 7
  start-page: 48
  issue: 1
  year: 2015
  ident: 2814_CR32
  publication-title: Serv Sci
  doi: 10.1287/serv.2015.0093
– volume: 22
  start-page: 269
  issue: 2
  year: 2013
  ident: 2814_CR41
  publication-title: Chin J Electron
– volume: 25
  start-page: 1441
  issue: 6
  year: 2014
  ident: 2814_CR7
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0751-0
– volume: 52
  start-page: 35
  issue: 1
  year: 2004
  ident: 2814_CR34
  publication-title: Oper Res
  doi: 10.1287/opre.1030.0065
– volume: 18
  start-page: 89
  issue: 4
  year: 2011
  ident: 2814_CR29
  publication-title: J China Univ Posts Telecommun
  doi: 10.1016/S1005-8885(10)60089-1
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 2814_CR51
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797969
– volume: 99
  start-page: 423
  year: 2016
  ident: 2814_CR2
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2015.12.018
– volume: 98
  start-page: 49
  issue: 1–3
  year: 2003
  ident: 2814_CR35
  publication-title: Math Program
  doi: 10.1007/s10107-003-0396-4
– ident: 2814_CR15
  doi: 10.1145/1655925.1655991
– volume: 90
  start-page: 191
  year: 2014
  ident: 2814_CR9
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2013.11.1113
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 2814_CR20
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 99
  start-page: 507
  issue: 5
  year: 2017
  ident: 2814_CR14
  publication-title: Computing
  doi: 10.1007/s00607-017-0547-8
– volume: 127
  start-page: 28
  issue: 1
  year: 2000
  ident: 2814_CR5
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(99)00319-7
– ident: 2814_CR16
  doi: 10.1007/978-3-642-17313-4_27
– volume: 33
  start-page: 369
  issue: 6
  year: 2007
  ident: 2814_CR24
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2007.1011
– volume: 7
  start-page: 32
  issue: 1
  year: 2014
  ident: 2814_CR45
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2012.34
– volume: 2016
  start-page: 9480769
  year: 2016
  ident: 2814_CR31
  publication-title: Math Probl Eng
  doi: 10.1155/2016/9480769
– volume: 145
  start-page: 83
  year: 2016
  ident: 2814_CR42
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.09.008
– ident: 2814_CR3
  doi: 10.1109/CCGRID.2008.40
– volume: 74
  start-page: 169
  year: 2014
  ident: 2814_CR6
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2014.05.014
– volume: 22
  start-page: 474
  issue: 4
  year: 2017
  ident: 2814_CR19
  publication-title: J Shanghai Jiaotong Univ Sci
  doi: 10.1007/s12204-017-1860-2
– volume: 127
  start-page: 2102
  issue: 4
  year: 2016
  ident: 2814_CR28
  publication-title: Optik Int J Light Electron Optics
  doi: 10.1016/j.ijleo.2015.10.156
– volume: 29
  start-page: 1112
  issue: 5
  year: 2013
  ident: 2814_CR11
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2012.12.010
– ident: 2814_CR49
  doi: 10.1109/CEC.2005.1554719
– ident: 2814_CR23
  doi: 10.1145/1526709.1526828
– volume: 39
  start-page: 124
  year: 2016
  ident: 2814_CR21
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.11.012
– ident: 2814_CR44
  doi: 10.1109/ICWS.2010.10
– volume: 200
  start-page: 198
  issue: 1
  year: 2010
  ident: 2814_CR47
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2009.01.021
– ident: 2814_CR1
  doi: 10.1145/1068009.1068189
– volume: 45
  start-page: 1035
  issue: 7
  year: 2015
  ident: 2814_CR8
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2015.2396001
– volume: 16
  start-page: 38
  issue: 1
  year: 2012
  ident: 2814_CR37
  publication-title: Reliab Comput
SSID ssj0004373
Score 2.335702
Snippet Most of the existing works addressing the QoS-aware service composition problem (QoSSCP) are based on the assumption of fixed quality of service (QoS)...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5622
SubjectTerms Algorithms
Compilers
Composition
Computer Science
Constraints
Feasibility
Internet service providers
Interpreters
Multiple objective analysis
Optimization
Processor Architectures
Programming Languages
Quality of service
Search algorithms
Swarm intelligence
Web services
Title An interval-based multi-objective artificial bee colony algorithm for solving the web service composition under uncertain QoS
URI https://link.springer.com/article/10.1007/s11227-019-02814-9
https://www.proquest.com/docview/2296716744
Volume 75
WOSCitedRecordID wos000487643900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wELYo9NALW4t4ZdEceqOWHMeJ4yNCIE6IteIWeQt91SNBSajUA_-9nixERQWpveQSx4rs8Syeb74h5AtzqU9iH1GuGN5WhThFpymjUjBTeCVSbUXXbEKenWW3t-p8KAprRrT7mJLsNPVU7BZxjjBJRYNNjARV78hKMHcZNmy4vPo2VUPGfV5ZhcAoSwQfSmX-Psef5mjyMV-kRTtrc7L2f_-5TlYH7xIOe3HYIEu-3CRrY-cGGA7yR_J0WMK8QzvqBUVD5qBDFtLK_Og1IKBI9ewSYLwHJLcuf4Fe3FX1vP1-D8HZhSC3eB8BwYmEoI6h6RUPIE59AIMBFqnV4Wl77AFcVFefyM3J8fXRKR0aMVAbp7Kl3BkmLM-0iSMXS6tDnJYWPjE8-ObMOBcXkbZFEgumU4sEMImVmY6MxLxuYeMtslxWpd8mIIwSNnMGwxzhFNNOOSYL6bRD0ohkRqJxP3I7sJRjs4xFPvEr4_rmYX3zbn1zNSMHz9889Bwdb47eHbc5H85rk3OuUokFGWJGvo7bOr1-fbbP_zZ8h3zgnWQgSG2XLLf1o98j7-3Pdt7U-50c_wZbqO0i
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BqdReWkpbsaXAHLiBJcdx4vhYVVRFlBWlBfUW-RXYaslWuwtSD_3v9eRBRAWV4JJLHCuyx_PwfPMNwCvu85ClIWFCc7qtinGKyXPOlOS2Clrmxsmm2YQaj4uLC_2xKwpb9Gj3PiXZaOqh2C0RgmCSmkWbmEimH8IjGS0WMeZ_OvsyVEOmbV5Zx8CoyKToSmX-PMfv5mjwMe-kRRtrc7T5f__5GDY67xIPWnHYggehfgKbfecG7A7yNtwc1Dhp0I5mysiQeWyQhWxmL1sNiCRSLbsE2hCQyK3razTTr7P5ZPntO0ZnF6Pc0n0ERicSozrGRat4kHDqHRgMqUhtHp-uxR7g6exsBz4fvT0_PGZdIwbm0lwtmfCWSycKY9PEp8qZGKflVcisiL45t96nVWJclaWSm9wRAUzmVGESqyivW7l0F1bqWR2eAkqrpSu8pTBHes2N156rSnnjiTQiG0HS70fpOpZyapYxLQd-ZVrfMq5v2axvqUfw-tc3Vy1Hx72j9_ttLrvzuiiF0Lmiggw5gjf9tg6v_z7b3r8Nfwlrx-cfTsqTd-P3z2BdNFJCgLV9WFnOf4TnsOp-LieL-YtGpm8BgKLwBg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VglAvlKe6pZQ5cAOrjuPE8bECVlRFq6IC6i3yK2XRkq1200o98N_x5EEAARLikkscK_KMPTOeb74BeMZ9HrI0JExoTrdVMU4xec6ZktxWQcvcONk2m1CzWXF2pk9-qOJv0e5DSrKraSCWpro5uPDVwVj4lghBkEnNon1MJNM34KYkID3F66cfx8rItMsx6xgkFZkUfdnM7-f42TSN_uYvKdLW8ky3__-f78Kd3uvEw05N7sFGqO_D9tDRAfsN_gC-HtY4b1GQZsHIwHlsEYdsaT93JyOSqnWsE2hDQCK9rq_RLM6Xq3nz6QtGJxijPtM9BUbnEuMxjevuQELCr_cgMaTitVV8ug6TgO-Wpw_hw_T1-5dvWN-ggbk0Vw0T3nLpRGFsmvhUORPjt7wKmRXRZ-fW-7RKjKuyVHKTOyKGyZwqTGIV5Xsrlz6CzXpZhx1AabV0hbcU_kivufHac1UpbzyRSWQTSAbZlK5nL6cmGoty5F2m9S3j-pbt-pZ6As-_f3PRcXf8dfTeIPKy38frUgidKyrUkBN4MYh4fP3n2Xb_bfhTuH3yalq-PZodP4Yt0SoJ4dj2YLNZXYYncMtdNfP1ar9V729ut_jq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interval-based+multi-objective+artificial+bee+colony+algorithm+for+solving+the+web+service+composition+under+uncertain+QoS&rft.jtitle=The+Journal+of+supercomputing&rft.au=Seghir%2C+Fateh&rft.au=Khababa%2C+Abdallah&rft.au=Semchedine%2C+Fouzi&rft.date=2019-09-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=75&rft.issue=9&rft.spage=5622&rft.epage=5666&rft_id=info:doi/10.1007%2Fs11227-019-02814-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_019_02814_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon