An interval-based multi-objective artificial bee colony algorithm for solving the web service composition under uncertain QoS
Most of the existing works addressing the QoS-aware service composition problem (QoSSCP) are based on the assumption of fixed quality of service (QoS) characteristics of elementary web services. However, in the real world, some QoS criteria may be imprecise for many unexpected factors and conditions...
Gespeichert in:
| Veröffentlicht in: | The Journal of supercomputing Jg. 75; H. 9; S. 5622 - 5666 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.09.2019
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Most of the existing works addressing the QoS-aware service composition problem (QoSSCP) are based on the assumption of fixed quality of service (QoS) characteristics of elementary web services. However, in the real world, some QoS criteria may be imprecise for many unexpected factors and conditions. Therefore, when dealing with QoSSCP, we must consider the uncertain proprieties of QoS. Moreover, very few studies propose multi-objective solutions for solving the QoSSCP, and there is no multi-objective algorithm solving the QoSSCP under uncertain QoS, in which the non-deterministic values of the QoS attributes are expressed as interval numbers. To resolve this issue, we formulate an interval-constrained multi-objective optimization model to the QoSSCP, and we propose a novel interval-based multi-objective artificial bee colony algorithm (IM_ABC) to solve the suggested model. To deal with the interval-valued of objective functions, we define an uncertain constrained dominance relation for ordering solutions in which the performance and stability are simultaneously considered. As inspired by Deb’s feasibility handling constraints, a new interval-based feasibility technique is proposed to deal with interval constraints. In order to control the diversity of the non-dominated solutions obtained by IM_ABC, the original crowding distance of NSGA-II is extended and adopted to the uncertain QoSSCP by incorporating to it a new interval distance definition. Based on real-world and random datasets, the effectiveness of the proposed IM_ABC has been verified through multiple experiments, where the comparison results demonstrates the superiority of IM_ABC compared to the recently proposed interval-based multi-objective optimization algorithms IPMOPSO, IPMOEOA, and MIIGA as well as a recently introduced interval-based fuzzy ranking single-objective GAP approach. |
|---|---|
| AbstractList | Most of the existing works addressing the QoS-aware service composition problem (QoSSCP) are based on the assumption of fixed quality of service (QoS) characteristics of elementary web services. However, in the real world, some QoS criteria may be imprecise for many unexpected factors and conditions. Therefore, when dealing with QoSSCP, we must consider the uncertain proprieties of QoS. Moreover, very few studies propose multi-objective solutions for solving the QoSSCP, and there is no multi-objective algorithm solving the QoSSCP under uncertain QoS, in which the non-deterministic values of the QoS attributes are expressed as interval numbers. To resolve this issue, we formulate an interval-constrained multi-objective optimization model to the QoSSCP, and we propose a novel interval-based multi-objective artificial bee colony algorithm (IM_ABC) to solve the suggested model. To deal with the interval-valued of objective functions, we define an uncertain constrained dominance relation for ordering solutions in which the performance and stability are simultaneously considered. As inspired by Deb’s feasibility handling constraints, a new interval-based feasibility technique is proposed to deal with interval constraints. In order to control the diversity of the non-dominated solutions obtained by IM_ABC, the original crowding distance of NSGA-II is extended and adopted to the uncertain QoSSCP by incorporating to it a new interval distance definition. Based on real-world and random datasets, the effectiveness of the proposed IM_ABC has been verified through multiple experiments, where the comparison results demonstrates the superiority of IM_ABC compared to the recently proposed interval-based multi-objective optimization algorithms IPMOPSO, IPMOEOA, and MIIGA as well as a recently introduced interval-based fuzzy ranking single-objective GAP approach. |
| Author | Seghir, Fateh Khababa, Abdallah Semchedine, Fouzi |
| Author_xml | – sequence: 1 givenname: Fateh orcidid: 0000-0002-2579-9694 surname: Seghir fullname: Seghir, Fateh email: seghir.fateh@gmail.com, fateh.seghir@univ-setif.dz organization: Department of Basic Studies in Technology, Faculty of Technology, University of Sétif 1 – sequence: 2 givenname: Abdallah surname: Khababa fullname: Khababa, Abdallah organization: Department of Computer Science, Faculty of Science, University of Sétif 1 – sequence: 3 givenname: Fouzi surname: Semchedine fullname: Semchedine, Fouzi organization: Institute of Optics and Precision Mechanics (IOMP), University of Sétif 1 |
| BookMark | eNp9kE1LAzEURYNUsFX_gKuA62i-ZjKzLMUvKIio65BkMm3KNKlJWunC_-7UEQQX3by3uee-x5mAkQ_eAnBF8A3BWNwmQigVCJMaYVoRjuoTMCaFYAjzio_AGNcUo6rg9AxMUlphjDkTbAy-ph46n23cqQ5plWwD19suOxT0yprsdhaqmF3rjFMd1NZCE7rg91B1ixBdXq5hGyJMods5v4B5aeGn1TD1hc4cwutNSC674OHWNzb209iYlfPwJbxegNNWdcle_u5z8H5_9zZ7RPPnh6fZdI4MK0VGtNGYG1opzUjDhFG0omVrC02FoFg3DWuJMm3BOFalKWpeFUZUimhBeUFbw87B9dC7ieFja1OWq7CNvj8pKa1LQUrBeZ-qhpSJIaVoW2lcVoffc1SukwTLg2w5yJa9bPkjW9Y9Sv-hm-jWKu6PQ2yAUh_2Cxv_vjpCfQMx4JYn |
| CitedBy_id | crossref_primary_10_1002_cpe_6531 crossref_primary_10_1002_cpe_8317 crossref_primary_10_3390_axioms11120725 crossref_primary_10_3390_bdcc7030140 crossref_primary_10_1016_j_eswa_2020_114413 crossref_primary_10_1002_cpe_70147 crossref_primary_10_1007_s11277_023_10817_2 crossref_primary_10_1007_s10462_020_09940_4 crossref_primary_10_1016_j_asoc_2024_112266 crossref_primary_10_1093_comjnl_bxab187 crossref_primary_10_3390_jmse9030327 crossref_primary_10_1007_s11227_023_05777_0 crossref_primary_10_1016_j_comnet_2019_106982 crossref_primary_10_1109_ACCESS_2021_3133505 crossref_primary_10_3233_JIFS_212045 crossref_primary_10_1007_s12652_020_02879_y crossref_primary_10_1049_trit_2019_0018 crossref_primary_10_1515_comp_2025_0028 crossref_primary_10_1016_j_swevo_2019_100578 crossref_primary_10_1007_s10586_022_03602_6 crossref_primary_10_1007_s12065_021_00571_4 |
| Cites_doi | 10.1007/s11036-012-0373-3 10.1007/s10898-007-9149-x 10.1016/j.neucom.2016.08.003 10.1016/j.cor.2016.03.002 10.1016/j.eswa.2016.10.047 10.1109/TSC.2016.2612663 10.1016/j.engappai.2017.10.004 10.1109/TSE.2004.11 10.1007/s10489-014-0617-y 10.1016/j.ejor.2015.03.005 10.1016/S1005-8885(11)60269-0 10.1007/978-981-10-2663-8_3 10.1109/BICTA.2010.5645160 10.1007/s10845-017-1372-9 10.1007/s10489-017-0996-y 10.1016/j.joems.2013.07.002 10.1287/serv.2015.0093 10.1007/s10845-013-0751-0 10.1287/opre.1030.0065 10.1016/S1005-8885(10)60089-1 10.1109/4235.797969 10.1016/j.cie.2015.12.018 10.1007/s10107-003-0396-4 10.1145/1655925.1655991 10.1016/j.jss.2013.11.1113 10.1109/4235.996017 10.1007/s00607-017-0547-8 10.1016/S0377-2217(99)00319-7 10.1007/978-3-642-17313-4_27 10.1109/TSE.2007.1011 10.1109/TSC.2012.34 10.1155/2016/9480769 10.1016/j.ress.2015.09.008 10.1109/CCGRID.2008.40 10.1016/j.cie.2014.05.014 10.1007/s12204-017-1860-2 10.1016/j.ijleo.2015.10.156 10.1016/j.future.2012.12.010 10.1109/CEC.2005.1554719 10.1145/1526709.1526828 10.1016/j.asoc.2015.11.012 10.1109/ICWS.2010.10 10.1016/j.ejor.2009.01.021 10.1145/1068009.1068189 10.1109/TSMC.2015.2396001 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-019-02814-9 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 5666 |
| ExternalDocumentID | 10_1007_s11227_019_02814_9 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c367t-2db04c28ab31d37ca2826fe5b27720bdd3f1acf5340a6c59485c78a1b72452fc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487643900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:47:58 EDT 2025 Sat Nov 29 04:27:37 EST 2025 Tue Nov 18 22:22:15 EST 2025 Fri Feb 21 02:27:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Artificial bee colony algorithm QoS uncertainty Multi-objective optimization Web service composition Interval number |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-2db04c28ab31d37ca2826fe5b27720bdd3f1acf5340a6c59485c78a1b72452fc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2579-9694 |
| PQID | 2296716744 |
| PQPubID | 2043774 |
| PageCount | 45 |
| ParticipantIDs | proquest_journals_2296716744 crossref_citationtrail_10_1007_s11227_019_02814_9 crossref_primary_10_1007_s11227_019_02814_9 springer_journals_10_1007_s11227_019_02814_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | ChenFDouRLiMWuHA flexible QoS-aware web service composition method by multi-objective optimization in cloud manufacturingComput Ind Eng20169942343110.1016/j.cie.2015.12.018 WuQZhuQTransactional and QoS-aware dynamic service composition based on ant colony optimizationFuture Gener Comput Syst20132951112111910.1016/j.future.2012.12.010 Yao Y, Chen H (2009) QoS-aware service composition using NSGA-II. In: Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human. ACM, pp 358–363 HeinrichBKlierMLewerenzLZimmermannSQuality-of-Service-aware service selection: a novel approach considering potential service failures and nondeterministic service valuesServ Sci201571486910.1287/serv.2015.0093 BertsimasDSimMRobust discrete optimization and network flowsMath Program2003981–3497120193671082.9006710.1007/s10107-003-0396-4 WangSSunQZouHYangFParticle swarm optimization with skyline operator for fast cloud-based web service compositionMobile Netw Appl201318111612110.1007/s11036-012-0373-3 AlrifaiMRisseTNejdlWA hybrid approach for efficient web service composition with end-to-end QoS constraintsACM Trans Web (TWEB)2012627 LiaoJLiuYZhuXWangJAccurate sub-swarms particle swarm optimization algorithm for service compositionJ Syst Softw20149019120310.1016/j.jss.2013.11.1113 KarmakarSBhuniaAKA comparative study of different order relations of intervalsReliab Comput2012161387229133691353.90184 KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739345947123461781149.9018610.1007/s10898-007-9149-x HuoYQiuPZhaiJFanDPengHMulti-objective service composition model based on cost-effective optimizationAppl Intell201848365166910.1007/s10489-017-0996-y BehzadianMKazemzadehRBAlbadviAAghdasiMPROMETHEE: a comprehensive literature review on methodologies and applicationsEur J Oper Res201020011982151189.9007410.1016/j.ejor.2009.01.021 SenguptaAPalTKOn comparing interval numbersEur J Oper Res20001271284317824660991.9008010.1016/S0377-2217(99)00319-7 ZhangLLiCYuZDynamic web service selection group decision-making based on heterogeneous QoS modelsJ China Univ Posts Telecommun2012193809010.1016/S1005-8885(11)60269-0 DingZJLiuJJSunYQJiangCJZhouMCA transaction and QoS-aware service selection approach based on genetic algorithmIEEE Trans Syst Man Cybern Syst20154571035104610.1109/TSMC.2015.2396001 DahanFEl HindiKGhoneimAEnhanced artificial bee colony algorithm for QoS-aware web service selection problemComputing201799550751736406551369.6804210.1007/s00607-017-0547-8 WuQZhuQZhouMA correlation-driven optimal service selection approach for virtual enterprise establishmentJ Intell Manuf20142561441145310.1007/s10845-013-0751-0 HuoYZhuangYGuJNiSXueYDiscrete gbest-guided artificial bee colony algorithm for cloud service compositionAppl Intell201542466167810.1007/s10489-014-0617-y Berkelaar M, Eikland K, Notebaert P (2004) Lp solve: open source (mixed-integer) linear programming system. http://lpsolve.sourceforge.net/5.5 ZhangEChenQMulti-objective reliability redundancy allocation in an interval environment using particle swarm optimizationReliab Eng Syst Saf2016145839210.1016/j.ress.2015.09.008 LinJLiuMHaoJJiangSA multi-objective optimization approach for integrated production planning under interval uncertainties in the steel industryComput Oper Res2016721892031349.9059210.1016/j.cor.2016.03.002 ArdagnaDPerniciBAdaptive service composition in flexible processesIEEE Trans Softw Eng200733636938410.1109/TSE.2007.1011 JianXZhuQXiaYAn interval-based fuzzy ranking approach for QoS uncertainty-aware service compositionOptik Int J Light Electron Optics201612742102211010.1016/j.ijleo.2015.10.156 Brans J-P, Mareschal B (2005) Promethee methods. In: Multiple criteria decision analysis: state of the art surveys. International series in operations research & management science, vol 78. Springer, New York, pp 163–186 Zheng Z, Zhang Y, Lyu MR (2010) Distributed QoS evaluation for real-world web services. In: 2010 IEEE International Conference on Web Services. IEEE, pp 83–90 WangXXuXShengQZWangZYaoLNovel artificial bee colony algorithms for QoS-aware service selectionIEEE Trans Serv Comput201610.1109/TSC.2016.2612663 LiuBinLiWei-minPanShuaiA Novel Adaptive Cooperative Artificial Bee Colony Algorithm for Solving Numerical Function OptimizationTheory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems2016SingaporeSpringer Singapore253610.1007/978-981-10-2663-8_3 ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969 Wiesemann W, Hochreiter R, Kuhn D (2008) A stochastic programming approach for QoS-aware service composition. In: 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID). IEEE, pp 226–233 Canfora G, Di Penta M, Esposito R, Villani ML (2005) An approach for qos-aware service composition based on genetic algorithms. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. ACM, pp 1069–1075 Alrifai M, Risse T (2009) Combining global optimization with local selection for efficient QoS-aware service composition. In: Proceedings of the 18th International Conference on World Wide Web. ACM, pp 881–890 SunJGongDSolving interval multi-objective optimization problems using evolutionary algorithms with lower limit of possibility degreeChin J Electron2013222269272 ZhangZWangXLuJMulti-objective immune genetic algorithm solving nonlinear interval-valued programmingEng Appl Artif Intell20186723524510.1016/j.engappai.2017.10.004 ZhengZYileiZhangLyu MichaelRInvestigating QoS of real-world web servicesIEEE Trans Serv Comput201471323910.1109/TSC.2012.34 Mahato SK, Bhunia AK (2006) Interval-arithmetic-oriented interval computing technique for global optimization. Appl Math Res Express 2006 Limbourg P, Aponte DES (2005) An optimization algorithm for imprecise multi-objective problem functions. In: 2005 IEEE Congress on Evolutionary Computation, vol 1. IEEE, pp 459–466 RamírezAParejoJARomeroJRSeguraSRuiz-CortésAEvolutionary composition of QoS-aware web services: a many-objective perspectiveExpert Syst Appl20177235737010.1016/j.eswa.2016.10.047 ChenYJiangLZhangJDongXA robust service selection method based on uncertain QoSMath Probl Eng20162016948076934705011400.9014610.1155/2016/9480769 HuangLZhangBYuanXZhangCGaoYSolving service selection problem based on a novel multi-objective artificial bees colony algorithmJ Shanghai Jiaotong Univ Sci201722447448010.1007/s12204-017-1860-2 ZhangShuaiXuYangbingZhangWenyuYuDejianA new fuzzy QoS-aware manufacture service composition method using extended flower pollination algorithmJournal of Intelligent Manufacturing20173052069208310.1007/s10845-017-1372-9 KarmakarSBhuniaAKAn alternative optimization technique for interval objective constrained optimization problems via multiobjective programmingJ Egypt Math Soc201422229230332261531298.9009410.1016/j.joems.2013.07.002 ZengLBenatallahBNguAHHDumasMKalagnanamJChangHQoS-aware middleware for web services compositionIEEE Trans Softw Eng200430531132710.1109/TSE.2004.11 CremeneMSuciuMPallezDDumitrescuDComparative analysis of multi-objective evolutionary algorithms for QoS-aware web service compositionAppl Soft Comput20163912413910.1016/j.asoc.2015.11.012 BertsimasDSimMThe price of robustnessOper Res2004521355320662391165.9056510.1287/opre.1030.0065 Li L, Cheng P, Ou L, Zhang Z (2010) Applying multi-objective evolutionary algorithms to QoS-aware web service composition. In: International Conference on Advanced Data Mining and Applications. Springer, pp 270–281 BhuniaAKSamantaSSA study of interval metric and its application in multi-objective optimization with interval objectivesComput Ind Eng20147416917810.1016/j.cie.2014.05.014 KalyanmoyDPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 XiangYZhouYLiuHAn elitism based multi-objective artificial bee colony algorithmEur J Oper Res2015245116819310.1016/j.ejor.2015.03.005 KishorASinghPKPrakashJNSABC: non-dominated sorting based multi-objective artificial bee colony algorithm and its application in data clusteringNeurocomputing201621651453310.1016/j.neucom.2016.08.003 Gong D, Qin N, Sun X (2010) Evolutionary algorithms for multi-objective optimization problems with interval parameters. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). IEEE, pp 411–420 ZhangL-CHuaZFang-ChunYWeb service composition algorithm based on TOPSISJ China Univ Posts Telecommun2011184899710.1016/S1005-8885(10)60089-1 2814_CR46 2814_CR44 Y Huo (2814_CR18) 2018; 48 L Zhang (2814_CR30) 2012; 19 J Liao (2814_CR9) 2014; 90 2814_CR49 S Wang (2814_CR10) 2013; 18 ZJ Ding (2814_CR8) 2015; 45 D Karaboga (2814_CR17) 2007; 39 X Jian (2814_CR28) 2016; 127 Y Chen (2814_CR31) 2016; 2016 L Huang (2814_CR19) 2017; 22 2814_CR50 Bin Liu (2814_CR40) 2016 2814_CR16 2814_CR15 2814_CR3 2814_CR1 A Ramírez (2814_CR27) 2017; 72 J Lin (2814_CR48) 2016; 72 Y Xiang (2814_CR38) 2015; 245 L Zeng (2814_CR22) 2004; 30 Q Wu (2814_CR11) 2013; 29 E Zhang (2814_CR42) 2016; 145 Shuai Zhang (2814_CR4) 2017; 30 L-C Zhang (2814_CR29) 2011; 18 Y Huo (2814_CR12) 2015; 42 2814_CR23 A Kishor (2814_CR39) 2016; 216 S Karmakar (2814_CR33) 2014; 22 Z Zhang (2814_CR43) 2018; 67 2814_CR26 F Dahan (2814_CR14) 2017; 99 E Zitzler (2814_CR51) 1999; 3 S Karmakar (2814_CR37) 2012; 16 D Bertsimas (2814_CR35) 2003; 98 X Wang (2814_CR13) 2016 Z Zheng (2814_CR45) 2014; 7 B Heinrich (2814_CR32) 2015; 7 A Sengupta (2814_CR5) 2000; 127 J Sun (2814_CR41) 2013; 22 M Cremene (2814_CR21) 2016; 39 D Bertsimas (2814_CR34) 2004; 52 M Behzadian (2814_CR47) 2010; 200 AK Bhunia (2814_CR6) 2014; 74 F Chen (2814_CR2) 2016; 99 2814_CR36 M Alrifai (2814_CR25) 2012; 6 D Ardagna (2814_CR24) 2007; 33 Q Wu (2814_CR7) 2014; 25 D Kalyanmoy (2814_CR20) 2002; 6 |
| References_xml | – reference: ZhangEChenQMulti-objective reliability redundancy allocation in an interval environment using particle swarm optimizationReliab Eng Syst Saf2016145839210.1016/j.ress.2015.09.008 – reference: Brans J-P, Mareschal B (2005) Promethee methods. In: Multiple criteria decision analysis: state of the art surveys. International series in operations research & management science, vol 78. Springer, New York, pp 163–186 – reference: WuQZhuQZhouMA correlation-driven optimal service selection approach for virtual enterprise establishmentJ Intell Manuf20142561441145310.1007/s10845-013-0751-0 – reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739345947123461781149.9018610.1007/s10898-007-9149-x – reference: CremeneMSuciuMPallezDDumitrescuDComparative analysis of multi-objective evolutionary algorithms for QoS-aware web service compositionAppl Soft Comput20163912413910.1016/j.asoc.2015.11.012 – reference: BertsimasDSimMThe price of robustnessOper Res2004521355320662391165.9056510.1287/opre.1030.0065 – reference: ZengLBenatallahBNguAHHDumasMKalagnanamJChangHQoS-aware middleware for web services compositionIEEE Trans Softw Eng200430531132710.1109/TSE.2004.11 – reference: LiaoJLiuYZhuXWangJAccurate sub-swarms particle swarm optimization algorithm for service compositionJ Syst Softw20149019120310.1016/j.jss.2013.11.1113 – reference: Limbourg P, Aponte DES (2005) An optimization algorithm for imprecise multi-objective problem functions. In: 2005 IEEE Congress on Evolutionary Computation, vol 1. IEEE, pp 459–466 – reference: ZhangLLiCYuZDynamic web service selection group decision-making based on heterogeneous QoS modelsJ China Univ Posts Telecommun2012193809010.1016/S1005-8885(11)60269-0 – reference: Yao Y, Chen H (2009) QoS-aware service composition using NSGA-II. In: Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human. ACM, pp 358–363 – reference: SenguptaAPalTKOn comparing interval numbersEur J Oper Res20001271284317824660991.9008010.1016/S0377-2217(99)00319-7 – reference: BehzadianMKazemzadehRBAlbadviAAghdasiMPROMETHEE: a comprehensive literature review on methodologies and applicationsEur J Oper Res201020011982151189.9007410.1016/j.ejor.2009.01.021 – reference: ChenFDouRLiMWuHA flexible QoS-aware web service composition method by multi-objective optimization in cloud manufacturingComput Ind Eng20169942343110.1016/j.cie.2015.12.018 – reference: KarmakarSBhuniaAKA comparative study of different order relations of intervalsReliab Comput2012161387229133691353.90184 – reference: BertsimasDSimMRobust discrete optimization and network flowsMath Program2003981–3497120193671082.9006710.1007/s10107-003-0396-4 – reference: KarmakarSBhuniaAKAn alternative optimization technique for interval objective constrained optimization problems via multiobjective programmingJ Egypt Math Soc201422229230332261531298.9009410.1016/j.joems.2013.07.002 – reference: SunJGongDSolving interval multi-objective optimization problems using evolutionary algorithms with lower limit of possibility degreeChin J Electron2013222269272 – reference: HuoYQiuPZhaiJFanDPengHMulti-objective service composition model based on cost-effective optimizationAppl Intell201848365166910.1007/s10489-017-0996-y – reference: WuQZhuQTransactional and QoS-aware dynamic service composition based on ant colony optimizationFuture Gener Comput Syst20132951112111910.1016/j.future.2012.12.010 – reference: WangXXuXShengQZWangZYaoLNovel artificial bee colony algorithms for QoS-aware service selectionIEEE Trans Serv Comput201610.1109/TSC.2016.2612663 – reference: XiangYZhouYLiuHAn elitism based multi-objective artificial bee colony algorithmEur J Oper Res2015245116819310.1016/j.ejor.2015.03.005 – reference: ZhangZWangXLuJMulti-objective immune genetic algorithm solving nonlinear interval-valued programmingEng Appl Artif Intell20186723524510.1016/j.engappai.2017.10.004 – reference: DahanFEl HindiKGhoneimAEnhanced artificial bee colony algorithm for QoS-aware web service selection problemComputing201799550751736406551369.6804210.1007/s00607-017-0547-8 – reference: Canfora G, Di Penta M, Esposito R, Villani ML (2005) An approach for qos-aware service composition based on genetic algorithms. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. ACM, pp 1069–1075 – reference: KalyanmoyDPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 – reference: JianXZhuQXiaYAn interval-based fuzzy ranking approach for QoS uncertainty-aware service compositionOptik Int J Light Electron Optics201612742102211010.1016/j.ijleo.2015.10.156 – reference: KishorASinghPKPrakashJNSABC: non-dominated sorting based multi-objective artificial bee colony algorithm and its application in data clusteringNeurocomputing201621651453310.1016/j.neucom.2016.08.003 – reference: DingZJLiuJJSunYQJiangCJZhouMCA transaction and QoS-aware service selection approach based on genetic algorithmIEEE Trans Syst Man Cybern Syst20154571035104610.1109/TSMC.2015.2396001 – reference: WangSSunQZouHYangFParticle swarm optimization with skyline operator for fast cloud-based web service compositionMobile Netw Appl201318111612110.1007/s11036-012-0373-3 – reference: HuoYZhuangYGuJNiSXueYDiscrete gbest-guided artificial bee colony algorithm for cloud service compositionAppl Intell201542466167810.1007/s10489-014-0617-y – reference: ArdagnaDPerniciBAdaptive service composition in flexible processesIEEE Trans Softw Eng200733636938410.1109/TSE.2007.1011 – reference: ZhengZYileiZhangLyu MichaelRInvestigating QoS of real-world web servicesIEEE Trans Serv Comput201471323910.1109/TSC.2012.34 – reference: Li L, Cheng P, Ou L, Zhang Z (2010) Applying multi-objective evolutionary algorithms to QoS-aware web service composition. In: International Conference on Advanced Data Mining and Applications. Springer, pp 270–281 – reference: BhuniaAKSamantaSSA study of interval metric and its application in multi-objective optimization with interval objectivesComput Ind Eng20147416917810.1016/j.cie.2014.05.014 – reference: ChenYJiangLZhangJDongXA robust service selection method based on uncertain QoSMath Probl Eng20162016948076934705011400.9014610.1155/2016/9480769 – reference: Alrifai M, Risse T (2009) Combining global optimization with local selection for efficient QoS-aware service composition. In: Proceedings of the 18th International Conference on World Wide Web. ACM, pp 881–890 – reference: RamírezAParejoJARomeroJRSeguraSRuiz-CortésAEvolutionary composition of QoS-aware web services: a many-objective perspectiveExpert Syst Appl20177235737010.1016/j.eswa.2016.10.047 – reference: Berkelaar M, Eikland K, Notebaert P (2004) Lp solve: open source (mixed-integer) linear programming system. http://lpsolve.sourceforge.net/5.5/ – reference: ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969 – reference: AlrifaiMRisseTNejdlWA hybrid approach for efficient web service composition with end-to-end QoS constraintsACM Trans Web (TWEB)2012627 – reference: Wiesemann W, Hochreiter R, Kuhn D (2008) A stochastic programming approach for QoS-aware service composition. In: 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID). IEEE, pp 226–233 – reference: LiuBinLiWei-minPanShuaiA Novel Adaptive Cooperative Artificial Bee Colony Algorithm for Solving Numerical Function OptimizationTheory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems2016SingaporeSpringer Singapore253610.1007/978-981-10-2663-8_3 – reference: HuangLZhangBYuanXZhangCGaoYSolving service selection problem based on a novel multi-objective artificial bees colony algorithmJ Shanghai Jiaotong Univ Sci201722447448010.1007/s12204-017-1860-2 – reference: ZhangL-CHuaZFang-ChunYWeb service composition algorithm based on TOPSISJ China Univ Posts Telecommun2011184899710.1016/S1005-8885(10)60089-1 – reference: LinJLiuMHaoJJiangSA multi-objective optimization approach for integrated production planning under interval uncertainties in the steel industryComput Oper Res2016721892031349.9059210.1016/j.cor.2016.03.002 – reference: Gong D, Qin N, Sun X (2010) Evolutionary algorithms for multi-objective optimization problems with interval parameters. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). IEEE, pp 411–420 – reference: ZhangShuaiXuYangbingZhangWenyuYuDejianA new fuzzy QoS-aware manufacture service composition method using extended flower pollination algorithmJournal of Intelligent Manufacturing20173052069208310.1007/s10845-017-1372-9 – reference: Zheng Z, Zhang Y, Lyu MR (2010) Distributed QoS evaluation for real-world web services. In: 2010 IEEE International Conference on Web Services. IEEE, pp 83–90 – reference: HeinrichBKlierMLewerenzLZimmermannSQuality-of-Service-aware service selection: a novel approach considering potential service failures and nondeterministic service valuesServ Sci201571486910.1287/serv.2015.0093 – reference: Mahato SK, Bhunia AK (2006) Interval-arithmetic-oriented interval computing technique for global optimization. Appl Math Res Express 2006 – volume: 18 start-page: 116 issue: 1 year: 2013 ident: 2814_CR10 publication-title: Mobile Netw Appl doi: 10.1007/s11036-012-0373-3 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 2814_CR17 publication-title: J Glob Optim doi: 10.1007/s10898-007-9149-x – volume: 216 start-page: 514 year: 2016 ident: 2814_CR39 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.003 – volume: 72 start-page: 189 year: 2016 ident: 2814_CR48 publication-title: Comput Oper Res doi: 10.1016/j.cor.2016.03.002 – volume: 72 start-page: 357 year: 2017 ident: 2814_CR27 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.047 – ident: 2814_CR26 – year: 2016 ident: 2814_CR13 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2016.2612663 – ident: 2814_CR36 – volume: 67 start-page: 235 year: 2018 ident: 2814_CR43 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.10.004 – volume: 30 start-page: 311 issue: 5 year: 2004 ident: 2814_CR22 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2004.11 – volume: 42 start-page: 661 issue: 4 year: 2015 ident: 2814_CR12 publication-title: Appl Intell doi: 10.1007/s10489-014-0617-y – volume: 245 start-page: 168 issue: 1 year: 2015 ident: 2814_CR38 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.03.005 – volume: 19 start-page: 80 issue: 3 year: 2012 ident: 2814_CR30 publication-title: J China Univ Posts Telecommun doi: 10.1016/S1005-8885(11)60269-0 – start-page: 25 volume-title: Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems year: 2016 ident: 2814_CR40 doi: 10.1007/978-981-10-2663-8_3 – ident: 2814_CR50 doi: 10.1109/BICTA.2010.5645160 – volume: 6 start-page: 7 issue: 2 year: 2012 ident: 2814_CR25 publication-title: ACM Trans Web (TWEB) – volume: 30 start-page: 2069 issue: 5 year: 2017 ident: 2814_CR4 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-017-1372-9 – volume: 48 start-page: 651 issue: 3 year: 2018 ident: 2814_CR18 publication-title: Appl Intell doi: 10.1007/s10489-017-0996-y – volume: 22 start-page: 292 issue: 2 year: 2014 ident: 2814_CR33 publication-title: J Egypt Math Soc doi: 10.1016/j.joems.2013.07.002 – ident: 2814_CR46 – volume: 7 start-page: 48 issue: 1 year: 2015 ident: 2814_CR32 publication-title: Serv Sci doi: 10.1287/serv.2015.0093 – volume: 22 start-page: 269 issue: 2 year: 2013 ident: 2814_CR41 publication-title: Chin J Electron – volume: 25 start-page: 1441 issue: 6 year: 2014 ident: 2814_CR7 publication-title: J Intell Manuf doi: 10.1007/s10845-013-0751-0 – volume: 52 start-page: 35 issue: 1 year: 2004 ident: 2814_CR34 publication-title: Oper Res doi: 10.1287/opre.1030.0065 – volume: 18 start-page: 89 issue: 4 year: 2011 ident: 2814_CR29 publication-title: J China Univ Posts Telecommun doi: 10.1016/S1005-8885(10)60089-1 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 2814_CR51 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797969 – volume: 99 start-page: 423 year: 2016 ident: 2814_CR2 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2015.12.018 – volume: 98 start-page: 49 issue: 1–3 year: 2003 ident: 2814_CR35 publication-title: Math Program doi: 10.1007/s10107-003-0396-4 – ident: 2814_CR15 doi: 10.1145/1655925.1655991 – volume: 90 start-page: 191 year: 2014 ident: 2814_CR9 publication-title: J Syst Softw doi: 10.1016/j.jss.2013.11.1113 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 2814_CR20 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 99 start-page: 507 issue: 5 year: 2017 ident: 2814_CR14 publication-title: Computing doi: 10.1007/s00607-017-0547-8 – volume: 127 start-page: 28 issue: 1 year: 2000 ident: 2814_CR5 publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(99)00319-7 – ident: 2814_CR16 doi: 10.1007/978-3-642-17313-4_27 – volume: 33 start-page: 369 issue: 6 year: 2007 ident: 2814_CR24 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2007.1011 – volume: 7 start-page: 32 issue: 1 year: 2014 ident: 2814_CR45 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2012.34 – volume: 2016 start-page: 9480769 year: 2016 ident: 2814_CR31 publication-title: Math Probl Eng doi: 10.1155/2016/9480769 – volume: 145 start-page: 83 year: 2016 ident: 2814_CR42 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.09.008 – ident: 2814_CR3 doi: 10.1109/CCGRID.2008.40 – volume: 74 start-page: 169 year: 2014 ident: 2814_CR6 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2014.05.014 – volume: 22 start-page: 474 issue: 4 year: 2017 ident: 2814_CR19 publication-title: J Shanghai Jiaotong Univ Sci doi: 10.1007/s12204-017-1860-2 – volume: 127 start-page: 2102 issue: 4 year: 2016 ident: 2814_CR28 publication-title: Optik Int J Light Electron Optics doi: 10.1016/j.ijleo.2015.10.156 – volume: 29 start-page: 1112 issue: 5 year: 2013 ident: 2814_CR11 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2012.12.010 – ident: 2814_CR49 doi: 10.1109/CEC.2005.1554719 – ident: 2814_CR23 doi: 10.1145/1526709.1526828 – volume: 39 start-page: 124 year: 2016 ident: 2814_CR21 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.11.012 – ident: 2814_CR44 doi: 10.1109/ICWS.2010.10 – volume: 200 start-page: 198 issue: 1 year: 2010 ident: 2814_CR47 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2009.01.021 – ident: 2814_CR1 doi: 10.1145/1068009.1068189 – volume: 45 start-page: 1035 issue: 7 year: 2015 ident: 2814_CR8 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2015.2396001 – volume: 16 start-page: 38 issue: 1 year: 2012 ident: 2814_CR37 publication-title: Reliab Comput |
| SSID | ssj0004373 |
| Score | 2.3357942 |
| Snippet | Most of the existing works addressing the QoS-aware service composition problem (QoSSCP) are based on the assumption of fixed quality of service (QoS)... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5622 |
| SubjectTerms | Algorithms Compilers Composition Computer Science Constraints Feasibility Internet service providers Interpreters Multiple objective analysis Optimization Processor Architectures Programming Languages Quality of service Search algorithms Swarm intelligence Web services |
| Title | An interval-based multi-objective artificial bee colony algorithm for solving the web service composition under uncertain QoS |
| URI | https://link.springer.com/article/10.1007/s11227-019-02814-9 https://www.proquest.com/docview/2296716744 |
| Volume | 75 |
| WOSCitedRecordID | wos000487643900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQ0A1sYCmxndgZK0TFhIAC6hbZjgNFJUFtQGLgv2PnQQQCJFiyxLYi3_nuc-67O4QOiTCCGxFgLliCLaTWWIqIWSDHPMlSGVCjy2YT_PxcjMfRRZ0UNm_Y7k1IsrTUbbKbT4ijSUbY-kSf4WgRLVl3J1zDhqvRbZsNSau4cmQvRiJgpE6V-X6Nz-6oxZhfwqKltxl2__eda2i1RpcwqNRhHS2YbAN1m84NUB_kTfQ2yGBSsh3lFDtHlkDJLMS5eqgsIDiVqqpLgDIGXHHr7BXk9C6fTYr7R7BgF6zeuv8RYEEkWHMM88rwgOOp12QwcElqM_vUFfcALvPRFroZnl6fnOG6EQPWNOQFJonymCZCKuonlGtp72lhagJFLDb3VJLQ1Jc6DaiVb6hdAZhAcyF9xV1cN9V0G3WyPDM7CLQMk1ApobXiTChPEivARFDJtPWMwu8hv5FHrOsq5a5ZxjRu6yu7_Y3t_sbl_sZRDx19zHmqanT8OrrfiDmuz-s8JiQKuUvIYD103Ii1ff3zart_G76HVkipGY6k1kedYvZs9tGyfikm89lBqcfvblTtjA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4xmDReVsY20VHYPfDGLCW2EzuPaKIqAqqNFsRbZDvO1qmkKC1Ie9j_Pjs_iJjYJPaSl9hW5Dvffc59dwdwQKWVwsqICMkz4iC1IUom3AE5Hiieq4hZUzWbEOOxvL5OvjRJYcuW7d6GJCtL3SW7hZR6mmRCnE8MOUlewAZ3HstXzL-YXHXZkKyOKyfuYiQjTptUmafXeOyOOoz5R1i08jbD3v995xa8btAlHtXq8AbWbLENvbZzAzYH-S38OipwVrEd1Zx4R5ZhxSwkC_2jtoDoVaquLoHaWvTFrYufqObfFuVs9f0GHdhFp7f-fwQ6EInOHOOyNjzoeeoNGQx9klrpnqbmHuDXxeQdXA6Pp59HpGnEQAyLxYrQTAfcUKk0CzMmjHL3tDi3kaYOmwc6y1geKpNHzMk3Nr4ATGSEVKEWPq6bG_Ye1otFYXcAjYqzWGtpjBZc6kDRRAaZZIob5xll2IewlUdqmirlvlnGPO3qK_v9Td3-ptX-pkkfDh_m3NY1Ov45etCKOW3O6zKlNImFT8jgffjUirV7_ffVPjxv-Ed4NZqen6VnJ-PTXdiklZZ4wtoA1lflnd2Dl-Z-NVuW-5VO_waYRvBw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VBaFeWp7qtqXMgRtYTWwndo4VdEVVtCpaQHuL_ErZaptd7aaVeuh_r50HoQiQEJdckliRZ-z5nPnmG4A3VDopnEyIkNwSD6kNUTLjHsjxSPFCJcyZutmEGI_ldJqd_VTFX7Pdu5RkU9MQVJrK6nBpi8O-8C2mNFAmM-LjY8xJ9gAe8kCkD-f1ybe-MpI1OebMH5JkwmlbNvP7Me6Hph5v_pIirSPPaPv_v_kJbLWoE48aN3kKG658BttdRwdsF_hzuD0qcVazINWchABnsWYckoW-aHZGDK7WqE6gdg6D6HV5g2p-vljNqu-X6EEwen8O_ynQg0v02zSumw0JA3-9JYlhKF5b-atpOAn4eTF5AV9Hx1_efyRtgwZiWCoqQq2OuKFSaRZbJozy57e0cImmHrNH2lpWxMoUCfN2T00QhkmMkCrWIuR7C8NewqBclG4H0KjUplpLY7TgUkeKZjKykilufMSU8RDizja5adXLQxONed7rLof5zf385vX85tkQ3v54Z9lod_z16f3O5Hm7jtc5pVkqQqEGH8K7zsT97T-Ptvtvj7-Gx2cfRvmnk_HpHmzS2kkCj20fBtXqyr2CR-a6mq1XB7V73wGMyflU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interval-based+multi-objective+artificial+bee+colony+algorithm+for+solving+the+web+service+composition+under+uncertain+QoS&rft.jtitle=The+Journal+of+supercomputing&rft.au=Seghir%2C+Fateh&rft.au=Khababa%2C+Abdallah&rft.au=Semchedine%2C+Fouzi&rft.date=2019-09-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=75&rft.issue=9&rft.spage=5622&rft.epage=5666&rft_id=info:doi/10.1007%2Fs11227-019-02814-9&rft.externalDocID=10_1007_s11227_019_02814_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |