Existence of stationary points for pseudo-linear regression identification algorithms

The authors prove the existence of a stable transfer function satisfying the nonlinear equations characterizing an asymptotic stationary point, in undermodeled cases, for a class of pseudo-linear regression algorithms, including Landau's algorithm, the Feintuch algorithm, and (S)HARF. The proof...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 44; číslo 5; s. 994 - 998
Hlavní autoři: Regalia, P.A., Mboup, M., Ashari, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.05.1999
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0018-9286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The authors prove the existence of a stable transfer function satisfying the nonlinear equations characterizing an asymptotic stationary point, in undermodeled cases, for a class of pseudo-linear regression algorithms, including Landau's algorithm, the Feintuch algorithm, and (S)HARF. The proof applies to all degrees of undermodeling and assumes only that the input power spectral density function is bounded and nonzero for all frequencies, and that the compensation filter is strictly minimum phase. Some connections to previous stability analyses for reduced-order identification in this algorithm class are brought out.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
DOI:10.1109/9.763215