Binary Approaches of Quantum-Based Avian Navigation Optimizer to Select Effective Features from High-Dimensional Medical Data

Many metaheuristic approaches have been developed to select effective features from different medical datasets in a feasible time. However, most of them cannot scale well to large medical datasets, where they fail to maximize the classification accuracy and simultaneously minimize the number of sele...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 10; číslo 15; s. 2770
Hlavní autori: Nadimi-Shahraki, Mohammad H., Fatahi, Ali, Zamani, Hoda, Mirjalili, Seyedali
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.08.2022
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many metaheuristic approaches have been developed to select effective features from different medical datasets in a feasible time. However, most of them cannot scale well to large medical datasets, where they fail to maximize the classification accuracy and simultaneously minimize the number of selected features. Therefore, this paper is devoted to developing an efficient binary version of the quantum-based avian navigation optimizer algorithm (QANA) named BQANA, utilizing the scalability of the QANA to effectively select the optimal feature subset from high-dimensional medical datasets using two different approaches. In the first approach, several binary versions of the QANA are developed using S-shaped, V-shaped, U-shaped, Z-shaped, and quadratic transfer functions to map the continuous solutions of the canonical QANA to binary ones. In the second approach, the QANA is mapped to binary space by converting each variable to 0 or 1 using a threshold. To evaluate the proposed algorithm, first, all binary versions of the QANA are assessed on different medical datasets with varied feature sizes, including Pima, HeartEW, Lymphography, SPECT Heart, PenglungEW, Parkinson, Colon, SRBCT, Leukemia, and Prostate tumor. The results show that the BQANA developed by the second approach is superior to other binary versions of the QANA to find the optimal feature subset from the medical datasets. Then, the BQANA was compared with nine well-known binary metaheuristic algorithms, and the results were statistically assessed using the Friedman test. The experimental and statistical results demonstrate that the proposed BQANA has merit for feature selection from medical datasets.
AbstractList Many metaheuristic approaches have been developed to select effective features from different medical datasets in a feasible time. However, most of them cannot scale well to large medical datasets, where they fail to maximize the classification accuracy and simultaneously minimize the number of selected features. Therefore, this paper is devoted to developing an efficient binary version of the quantum-based avian navigation optimizer algorithm (QANA) named BQANA, utilizing the scalability of the QANA to effectively select the optimal feature subset from high-dimensional medical datasets using two different approaches. In the first approach, several binary versions of the QANA are developed using S-shaped, V-shaped, U-shaped, Z-shaped, and quadratic transfer functions to map the continuous solutions of the canonical QANA to binary ones. In the second approach, the QANA is mapped to binary space by converting each variable to 0 or 1 using a threshold. To evaluate the proposed algorithm, first, all binary versions of the QANA are assessed on different medical datasets with varied feature sizes, including Pima, HeartEW, Lymphography, SPECT Heart, PenglungEW, Parkinson, Colon, SRBCT, Leukemia, and Prostate tumor. The results show that the BQANA developed by the second approach is superior to other binary versions of the QANA to find the optimal feature subset from the medical datasets. Then, the BQANA was compared with nine well-known binary metaheuristic algorithms, and the results were statistically assessed using the Friedman test. The experimental and statistical results demonstrate that the proposed BQANA has merit for feature selection from medical datasets.
Author Fatahi, Ali
Nadimi-Shahraki, Mohammad H.
Mirjalili, Seyedali
Zamani, Hoda
Author_xml – sequence: 1
  givenname: Mohammad H.
  orcidid: 0000-0002-0135-1115
  surname: Nadimi-Shahraki
  fullname: Nadimi-Shahraki, Mohammad H.
– sequence: 2
  givenname: Ali
  orcidid: 0000-0002-7779-3470
  surname: Fatahi
  fullname: Fatahi, Ali
– sequence: 3
  givenname: Hoda
  orcidid: 0000-0003-0444-4509
  surname: Zamani
  fullname: Zamani, Hoda
– sequence: 4
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
BookMark eNptUU1r3DAQFSGFpmlu-QGCXOtWH5ZlHzffgaShtDmLkSztarGtrSQvpJD_XiUbSiiZyxtm3rzhzXxC-1OYLELHlHzlvCPfRsgrSqhgUpI9dMAYk5Usjf03-Ud0lNKalOgob-vuAD2d-gniI15sNjGAWdmEg8M_ZpjyPFankGyPF1sPE_4OW7-E7MOE7zfZj_6PjTgH_NMO1mR84VwBv7X40kKeYxFyMYz42i9X1bkf7ZTKKAz4zvbeFDyHDJ_RBwdDskeveIgeLi9-nV1Xt_dXN2eL28rwRuaKWqlrCU0tKO-oa03Ta91o3mnWu5YIwphra2mIAE4M1yCs6HvJqG5pLwnwQ3Sz0-0DrNUm-rF4VgG8eimEuFQQszeDVVR3wLg1jSOi1k5oLUnbNVQYJnTDaNE62WmVg_2ebcpqHeZYnCXFJCGNJJKxwvqyY5kYUorW_dtKiXr-l3r7r0Jn_9GNzy_HzhH88P7QX02vmwE
CitedBy_id crossref_primary_10_3390_app13010564
crossref_primary_10_1007_s00357_024_09468_0
crossref_primary_10_3390_bdcc6040104
crossref_primary_10_1016_j_knosys_2023_111108
crossref_primary_10_1007_s42235_023_00433_y
crossref_primary_10_3390_app13053179
crossref_primary_10_1371_journal_pone_0307288
crossref_primary_10_3390_sym15040894
crossref_primary_10_1007_s12530_023_09525_w
crossref_primary_10_1111_exsy_13458
crossref_primary_10_1007_s42235_022_00323_9
crossref_primary_10_1007_s11831_023_09928_7
crossref_primary_10_3390_math11092018
crossref_primary_10_1007_s10586_024_04328_3
crossref_primary_10_1371_journal_pone_0280512
crossref_primary_10_1016_j_bspc_2023_105879
crossref_primary_10_3390_systems11030144
crossref_primary_10_1007_s40745_024_00525_4
crossref_primary_10_1038_s41598_024_57518_9
crossref_primary_10_3390_app15126841
crossref_primary_10_1007_s11831_023_10037_8
crossref_primary_10_1007_s00500_023_08414_3
crossref_primary_10_1016_j_iot_2023_100952
crossref_primary_10_1007_s10586_024_04361_2
crossref_primary_10_1007_s10586_024_04408_4
crossref_primary_10_1142_S0217732325500191
crossref_primary_10_1371_journal_pone_0279438
crossref_primary_10_1016_j_eij_2025_100782
crossref_primary_10_1109_ACCESS_2025_3548529
crossref_primary_10_1007_s11128_025_04787_6
crossref_primary_10_3390_math11040862
crossref_primary_10_1038_s41598_024_51218_0
crossref_primary_10_1016_j_asoc_2023_110583
crossref_primary_10_1016_j_iot_2024_101135
crossref_primary_10_1007_s12065_024_00929_4
crossref_primary_10_3390_rs15133374
crossref_primary_10_1371_journal_pone_0274850
crossref_primary_10_3390_electronics12092042
crossref_primary_10_1007_s10586_024_04410_w
crossref_primary_10_3233_JIFS_230081
Cites_doi 10.1109/MCI.2006.329691
10.1007/s10462-021-10114-z
10.1007/s12065-021-00590-1
10.1038/89044
10.1016/j.neucom.2016.03.101
10.1016/j.knosys.2020.106560
10.1007/978-0-387-47509-7_7
10.1002/cpe.6310
10.1016/j.knosys.2022.108743
10.1109/ICPR.2014.251
10.3390/app9091776
10.1073/pnas.96.12.6745
10.3390/electronics11050831
10.1016/j.eswa.2014.01.011
10.1016/j.eswa.2021.116368
10.1016/j.cmpb.2013.10.007
10.3390/su14010541
10.1016/j.compbiomed.2019.103375
10.1109/ICECCT.2017.8118028
10.1016/j.eswa.2022.116895
10.1111/coin.12397
10.1016/j.swevo.2012.09.002
10.1007/s11831-021-09589-4
10.1061/(ASCE)CP.1943-5487.0000561
10.1007/s11047-009-9175-3
10.1016/j.eswa.2018.09.015
10.1016/j.swevo.2011.02.002
10.1016/j.aci.2018.12.004
10.1109/IDAP.2018.8620828
10.1016/j.engappai.2021.104314
10.1016/j.renene.2022.05.164
10.1007/s00521-017-2837-7
10.1007/978-3-540-70706-6_24
10.3390/pr9122276
10.1109/TKDE.2005.66
10.1007/s10916-017-0703-x
10.1007/978-3-030-10674-4
10.3390/e23091189
10.1080/09540091.2020.1741515
10.1016/j.asoc.2019.105576
10.1016/j.eswa.2014.08.014
10.1109/CISIS.2010.116
10.1016/j.eswa.2008.08.022
10.1007/s00500-016-2106-1
10.1016/j.eswa.2014.11.038
10.1016/j.compbiomed.2021.105027
10.1016/j.jnca.2011.01.002
10.3390/math10081303
10.1109/MIPRO.2015.7160458
10.1016/j.neucom.2017.01.126
10.3390/s90705339
10.3390/math10030361
10.1016/j.asej.2022.101809
10.1111/exsy.12553
10.1016/j.sigpro.2012.10.022
10.1126/science.286.5439.531
10.1109/TPWRS.2002.1007886
10.1080/13102818.2017.1364977
10.1016/j.compbiomed.2022.105858
10.1007/s10922-022-09653-9
10.1109/INISTA.2016.7571853
10.3390/electronics8101130
10.3390/electronics10141633
10.3390/e23121637
10.3390/s22030855
10.1016/S0142-0615(01)00067-9
10.1007/s10489-021-02233-5
10.3390/su131810419
10.1142/S0219622020500546
10.1109/SIBGRAPI.2012.47
10.1109/TEVC.2018.2869405
10.1016/j.enconman.2018.05.062
10.1016/j.procs.2013.10.003
10.1145/3321707.3321713
10.1109/CEC.2013.6557555
10.1016/j.cor.2005.11.017
10.1186/s40537-019-0241-0
10.1016/j.knosys.2014.03.015
10.1016/j.neucom.2015.06.083
10.1016/j.asoc.2019.03.002
10.1155/2020/6502807
10.1007/s00521-015-1920-1
10.1016/j.asoc.2019.105583
10.1007/s00202-021-01441-z
10.1016/j.patrec.2017.10.002
10.1007/s10710-019-09358-0
10.1016/j.cma.2022.114616
10.1007/978-981-15-3290-0_19
10.1007/s11227-021-04108-5
10.1109/ACCESS.2021.3097006
10.3390/en14123459
10.1002/dac.4434
10.3390/a14070200
10.1007/s12652-018-1031-9
10.1155/2022/6627409
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10152770
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_1b9a23ec6f054bf5bb7089615c25b621
10_3390_math10152770
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c367t-1e7b47a6451391f8c6dbb6b39b2df805022f847c05a30c3ba5e5dd721b81d70a3
IEDL.DBID K7-
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839715100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Fri Oct 03 12:51:15 EDT 2025
Fri Jul 25 12:06:17 EDT 2025
Sat Nov 29 07:08:39 EST 2025
Tue Nov 18 22:09:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-1e7b47a6451391f8c6dbb6b39b2df805022f847c05a30c3ba5e5dd721b81d70a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0444-4509
0000-0002-1443-9458
0000-0002-0135-1115
0000-0002-7779-3470
OpenAccessLink https://www.proquest.com/docview/2700670722?pq-origsite=%requestingapplication%
PQID 2700670722
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_1b9a23ec6f054bf5bb7089615c25b621
proquest_journals_2700670722
crossref_primary_10_3390_math10152770
crossref_citationtrail_10_3390_math10152770
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Radpour (ref_65) 2022; 5
ref_94
Abido (ref_61) 2002; 24
Gharehchopogh (ref_9) 2021; 15
Remeseiro (ref_1) 2019; 112
ref_10
Zamani (ref_101) 2022; 148
ref_96
Kar (ref_112) 2015; 42
ref_17
Gharehchopogh (ref_43) 2021; 33
Chou (ref_57) 2016; 30
Renuka (ref_93) 2015; 22
Amiri (ref_19) 2011; 34
Aslan (ref_97) 2019; 82
Chen (ref_91) 2013; 93
Abualigah (ref_66) 2022; 192
Elsheikh (ref_47) 2022; 29
Fayyad (ref_5) 1996; 17
Ayar (ref_15) 2022; 78
Inbarani (ref_12) 2014; 113
ref_23
Too (ref_88) 2020; 32
ref_20
Kaur (ref_107) 2020; 18
ref_29
ref_27
Lin (ref_99) 2017; 21
Mostafa (ref_68) 2022; 246
Chakraborty (ref_49) 2022; 55
Mafarja (ref_70) 2019; 117
ref_78
ref_76
Rashedi (ref_77) 2010; 9
Bakirtzis (ref_62) 2002; 17
ref_74
Jordehi (ref_81) 2019; 78
Mirjalili (ref_98) 2013; 9
Bharti (ref_16) 2015; 42
Sindhu (ref_71) 2017; 28
(ref_50) 2022; 2022
Aghdam (ref_92) 2016; 18
Tran (ref_103) 2018; 23
Mohammadzadeh (ref_25) 2021; 20
ref_83
Papa (ref_95) 2017; 100
ref_80
Izakian (ref_53) 2009; 9
Zamani (ref_75) 2022; 198
Mohammadzadeh (ref_22) 2021; 37
Oliva (ref_39) 2018; 171
Zamani (ref_11) 2016; 14
ref_85
ref_84
Zamani (ref_40) 2019; 85
Farhat (ref_60) 2021; 9
Guo (ref_79) 2020; 2020
ref_58
ref_56
ref_55
ref_54
ref_52
ref_51
ref_59
Aghdam (ref_90) 2009; 36
Dorigo (ref_89) 2006; 1
Sharda (ref_31) 2022; 13
Kalantari (ref_4) 2018; 276
Ibrahim (ref_8) 2019; 10
Mirjalili (ref_87) 2016; 27
Chen (ref_32) 2020; 37
ref_67
Chatterjee (ref_14) 2022; 141
ref_64
ref_63
Zhang (ref_24) 2014; 64
Golub (ref_111) 1999; 286
Dhiman (ref_72) 2021; 211
Derrac (ref_105) 2011; 1
Guyon (ref_6) 2003; 3
Emary (ref_86) 2016; 213
Emary (ref_69) 2016; 172
ref_36
ref_34
ref_33
Liao (ref_82) 2007; 34
Liu (ref_30) 2005; 17
Zamani (ref_48) 2022; 392
ref_38
ref_37
Zamani (ref_73) 2021; 104
Esfandiari (ref_2) 2014; 41
Abusamra (ref_26) 2013; 23
ref_104
ref_106
ref_108
Polat (ref_13) 2017; 41
ref_46
ref_45
ref_44
ref_100
ref_42
Khan (ref_110) 2001; 7
ref_41
ref_102
Hashemi (ref_3) 2018; 32
Qiu (ref_7) 2019; 20
Naseri (ref_18) 2022; 30
Agrawal (ref_35) 2022; 52
Alon (ref_109) 1999; 96
Ghaffari (ref_21) 2020; 33
Tadist (ref_28) 2019; 6
References_xml – ident: ref_74
– volume: 1
  start-page: 28
  year: 2006
  ident: ref_89
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– volume: 55
  start-page: 4605
  year: 2022
  ident: ref_49
  article-title: A novel improved whale optimization algorithm to solve numerical optimization and real-world applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10114-z
– volume: 15
  start-page: 1777
  year: 2021
  ident: ref_9
  article-title: Chaotic vortex search algorithm: Metaheuristic algorithm for feature selection
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-021-00590-1
– ident: ref_100
– volume: 7
  start-page: 673
  year: 2001
  ident: ref_110
  article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
  publication-title: Nat. Med.
  doi: 10.1038/89044
– volume: 213
  start-page: 54
  year: 2016
  ident: ref_86
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.101
– volume: 211
  start-page: 106560
  year: 2021
  ident: ref_72
  article-title: BEPO: A novel binary emperor penguin optimizer for automatic feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106560
– ident: ref_27
  doi: 10.1007/978-0-387-47509-7_7
– volume: 5
  start-page: 90
  year: 2022
  ident: ref_65
  article-title: A Novel Hybrid Binary Farmland Fertility Algorithm with Naïve Bayes for Diagnosis of Heart Disease
  publication-title: Sak. Univ. J. Comput. Inf. Sci.
– ident: ref_108
– volume: 33
  start-page: e6310
  year: 2021
  ident: ref_43
  article-title: A modified farmland fertility algorithm for solving constrained engineering problems
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.6310
– volume: 22
  start-page: 22
  year: 2015
  ident: ref_93
  article-title: Improving Email spam classification using ant colony optimization algorithm
  publication-title: Int. J. Comput. Appl.
– volume: 246
  start-page: 108743
  year: 2022
  ident: ref_68
  article-title: Boosting chameleon swarm algorithm with consumption AEO operator for global optimization and feature selection
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108743
– ident: ref_36
  doi: 10.1109/ICPR.2014.251
– ident: ref_52
  doi: 10.3390/app9091776
– volume: 96
  start-page: 6745
  year: 1999
  ident: ref_109
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.12.6745
– ident: ref_63
  doi: 10.3390/electronics11050831
– volume: 41
  start-page: 4434
  year: 2014
  ident: ref_2
  article-title: Knowledge discovery in medicine: Current issue and future trend
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.011
– ident: ref_10
– volume: 192
  start-page: 116368
  year: 2022
  ident: ref_66
  article-title: Chaotic binary group search optimizer for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116368
– ident: ref_83
– volume: 113
  start-page: 175
  year: 2014
  ident: ref_12
  article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.10.007
– ident: ref_54
  doi: 10.3390/su14010541
– volume: 112
  start-page: 103375
  year: 2019
  ident: ref_1
  article-title: A review of feature selection methods in medical applications
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103375
– ident: ref_64
  doi: 10.1109/ICECCT.2017.8118028
– volume: 198
  start-page: 116895
  year: 2022
  ident: ref_75
  article-title: DMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116895
– volume: 37
  start-page: 176
  year: 2021
  ident: ref_22
  article-title: A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study Email spam detection
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12397
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref_6
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 1
  year: 2013
  ident: ref_98
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– volume: 29
  start-page: 695
  year: 2022
  ident: ref_47
  article-title: Advanced metaheuristic techniques for mechanical design problems
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09589-4
– volume: 30
  start-page: 04016007
  year: 2016
  ident: ref_57
  article-title: Nature-inspired metaheuristic regression system: Programming and implementation for civil engineering applications
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000561
– volume: 9
  start-page: 727
  year: 2010
  ident: ref_77
  article-title: BGSA: Binary gravitational search algorithm
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-009-9175-3
– volume: 117
  start-page: 267
  year: 2019
  ident: ref_70
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.015
– volume: 1
  start-page: 3
  year: 2011
  ident: ref_105
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 18
  start-page: 90
  year: 2020
  ident: ref_107
  article-title: Predictive modelling and analytics for diabetes using a machine learning approach
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.12.004
– volume: 17
  start-page: 37
  year: 1996
  ident: ref_5
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI Mag.
– ident: ref_106
– ident: ref_94
  doi: 10.1109/IDAP.2018.8620828
– volume: 14
  start-page: 1243
  year: 2016
  ident: ref_11
  article-title: Feature selection based on whale optimization algorithm for diseases diagnosis
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 104
  start-page: 104314
  year: 2021
  ident: ref_73
  article-title: QANA: Quantum-based avian navigation optimizer algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104314
– ident: ref_44
  doi: 10.1016/j.renene.2022.05.164
– volume: 28
  start-page: 2947
  year: 2017
  ident: ref_71
  article-title: Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2837-7
– ident: ref_84
  doi: 10.1007/978-3-540-70706-6_24
– ident: ref_37
  doi: 10.3390/pr9122276
– volume: 17
  start-page: 491
  year: 2005
  ident: ref_30
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.66
– volume: 41
  start-page: 55
  year: 2017
  ident: ref_13
  article-title: Diagnosis of chronic kidney disease based on support vector machine by feature selection methods
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0703-x
– ident: ref_17
  doi: 10.1007/978-3-030-10674-4
– ident: ref_67
  doi: 10.3390/e23091189
– volume: 32
  start-page: 406
  year: 2020
  ident: ref_88
  article-title: Binary atom search optimisation approaches for feature selection
  publication-title: Connect. Sci.
  doi: 10.1080/09540091.2020.1741515
– volume: 82
  start-page: 105576
  year: 2019
  ident: ref_97
  article-title: JayaX: Jaya algorithm with xor operator for binary optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105576
– volume: 42
  start-page: 612
  year: 2015
  ident: ref_112
  article-title: Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.014
– ident: ref_23
  doi: 10.1109/CISIS.2010.116
– volume: 36
  start-page: 6843
  year: 2009
  ident: ref_90
  article-title: Text feature selection using ant colony optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.08.022
– volume: 21
  start-page: 5103
  year: 2017
  ident: ref_99
  article-title: A binary PSO approach to mine high-utility itemsets
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2106-1
– volume: 42
  start-page: 3105
  year: 2015
  ident: ref_16
  article-title: Hybrid dimension reduction by integrating feature selection with feature extraction method for text clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.11.038
– volume: 141
  start-page: 105027
  year: 2022
  ident: ref_14
  article-title: Breast cancer detection from thermal images using a Grunwald-Letnikov-aided Dragonfly algorithm-based deep feature selection method
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105027
– volume: 34
  start-page: 1184
  year: 2011
  ident: ref_19
  article-title: Mutual information-based feature selection for intrusion detection systems
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2011.01.002
– ident: ref_55
  doi: 10.3390/math10081303
– ident: ref_33
  doi: 10.1109/MIPRO.2015.7160458
– volume: 276
  start-page: 2
  year: 2018
  ident: ref_4
  article-title: Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.126
– volume: 9
  start-page: 5339
  year: 2009
  ident: ref_53
  article-title: Metaheuristic Based Scheduling Meta-Tasks in Distributed Heterogeneous Computing Systems
  publication-title: Sensors
  doi: 10.3390/s90705339
– ident: ref_59
  doi: 10.3390/math10030361
– volume: 13
  start-page: 101809
  year: 2022
  ident: ref_31
  article-title: A hybrid machine learning technique for feature optimization in object-based classification of debris-covered glaciers
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2022.101809
– volume: 37
  start-page: e12553
  year: 2020
  ident: ref_32
  article-title: Ensemble feature selection in medical datasets: Combining filter, wrapper, and embedded feature selection results
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12553
– volume: 93
  start-page: 1566
  year: 2013
  ident: ref_91
  article-title: Efficient ant colony optimization for image feature selection
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.10.022
– volume: 286
  start-page: 531
  year: 1999
  ident: ref_111
  article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– ident: ref_58
– volume: 17
  start-page: 229
  year: 2002
  ident: ref_62
  article-title: Optimal power flow by enhanced genetic algorithm
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2002.1007886
– volume: 32
  start-page: 10
  year: 2018
  ident: ref_3
  article-title: Intelligent mining of large-scale bio-data: Bioinformatics applications
  publication-title: Biotechnol. Biotechnol. Equip.
  doi: 10.1080/13102818.2017.1364977
– volume: 148
  start-page: 105858
  year: 2022
  ident: ref_101
  article-title: Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105858
– volume: 30
  start-page: 40
  year: 2022
  ident: ref_18
  article-title: A Feature Selection Based on the Farmland Fertility Algorithm for Improved Intrusion Detection Systems
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-022-09653-9
– ident: ref_102
  doi: 10.1109/INISTA.2016.7571853
– ident: ref_80
  doi: 10.3390/electronics8101130
– ident: ref_20
  doi: 10.3390/electronics10141633
– ident: ref_46
  doi: 10.3390/e23121637
– ident: ref_41
  doi: 10.3390/s22030855
– volume: 24
  start-page: 563
  year: 2002
  ident: ref_61
  article-title: Optimal power flow using particle swarm optimization
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/S0142-0615(01)00067-9
– volume: 52
  start-page: 81
  year: 2022
  ident: ref_35
  article-title: S-shaped and v-shaped gaining-sharing knowledge-based algorithm for feature selection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02233-5
– ident: ref_42
  doi: 10.3390/su131810419
– volume: 20
  start-page: 469
  year: 2021
  ident: ref_25
  article-title: Feature selection with binary symbiotic organisms search algorithm for email spam detection
  publication-title: Int. J. Inf. Technol. Decis. Mak.
  doi: 10.1142/S0219622020500546
– ident: ref_85
  doi: 10.1109/SIBGRAPI.2012.47
– volume: 23
  start-page: 473
  year: 2018
  ident: ref_103
  article-title: Variable-length particle swarm optimization for feature selection on high-dimensional classification
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2869405
– volume: 171
  start-page: 1843
  year: 2018
  ident: ref_39
  article-title: Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.05.062
– volume: 23
  start-page: 5
  year: 2013
  ident: ref_26
  article-title: A comparative study of feature selection and classification methods for gene expression data of glioma
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.10.003
– ident: ref_38
  doi: 10.1145/3321707.3321713
– ident: ref_76
– ident: ref_104
  doi: 10.1109/CEC.2013.6557555
– volume: 34
  start-page: 3099
  year: 2007
  ident: ref_82
  article-title: A discrete version of particle swarm optimization for flowshop scheduling problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2005.11.017
– volume: 6
  start-page: 79
  year: 2019
  ident: ref_28
  article-title: Feature selection methods and genomic big data: A systematic review
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0241-0
– ident: ref_34
– volume: 64
  start-page: 22
  year: 2014
  ident: ref_24
  article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.03.015
– volume: 172
  start-page: 371
  year: 2016
  ident: ref_69
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 78
  start-page: 465
  year: 2019
  ident: ref_81
  article-title: Binary particle swarm optimisation with quadratic transfer function: A new binary optimisation algorithm for optimal scheduling of appliances in smart homes
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.002
– volume: 2020
  start-page: 6502807
  year: 2020
  ident: ref_79
  article-title: Z-shaped transfer functions for binary particle swarm optimization algorithm
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/6502807
– volume: 27
  start-page: 1053
  year: 2016
  ident: ref_87
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 85
  start-page: 105583
  year: 2019
  ident: ref_40
  article-title: CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105583
– ident: ref_96
– ident: ref_45
  doi: 10.1007/s00202-021-01441-z
– volume: 100
  start-page: 59
  year: 2017
  ident: ref_95
  article-title: A binary-constrained Geometric Semantic Genetic Programming for feature selection purposes
  publication-title: Pattern Recog. Lett.
  doi: 10.1016/j.patrec.2017.10.002
– volume: 20
  start-page: 503
  year: 2019
  ident: ref_7
  article-title: A novel multi-swarm particle swarm optimization for feature selection
  publication-title: Genet. Program. Evolvable Mach.
  doi: 10.1007/s10710-019-09358-0
– ident: ref_29
– volume: 18
  start-page: 420
  year: 2016
  ident: ref_92
  article-title: Feature selection for intrusion detection system using ant colony optimization
  publication-title: Int. J. Netw. Secur.
– volume: 392
  start-page: 114616
  year: 2022
  ident: ref_48
  article-title: Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114616
– ident: ref_78
  doi: 10.1007/978-981-15-3290-0_19
– volume: 78
  start-page: 5856
  year: 2022
  ident: ref_15
  article-title: Chaotic-based divide-and-conquer feature selection method and its application in cardiac arrhythmia classification
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-04108-5
– volume: 9
  start-page: 100911
  year: 2021
  ident: ref_60
  article-title: Optimal power flow solution based on jellyfish search optimization considering uncertainty of renewable energy sources
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3097006
– ident: ref_56
  doi: 10.3390/en14123459
– volume: 33
  start-page: e4434
  year: 2020
  ident: ref_21
  article-title: A wrapper-based feature selection for improving performance of intrusion detection systems
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4434
– ident: ref_51
  doi: 10.3390/a14070200
– volume: 10
  start-page: 3155
  year: 2019
  ident: ref_8
  article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-1031-9
– volume: 2022
  start-page: 6627409
  year: 2022
  ident: ref_50
  article-title: Chaotic Fruit Fly Algorithm for Solving Engineering Design Problems
  publication-title: Complexity
  doi: 10.1155/2022/6627409
SSID ssj0000913849
Score 2.396392
Snippet Many metaheuristic approaches have been developed to select effective features from different medical datasets in a feasible time. However, most of them cannot...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2770
SubjectTerms Accuracy
Algorithms
binary metaheuristic algorithms
Boolean
Classification
Colon
Costs
Datasets
Feature selection
Heuristic methods
Intrusion detection systems
Leukemia
medical datasets
Medical research
Methods
Navigation
optimization
Optimization algorithms
swarm intelligence algorithms
Transfer functions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SPOhB_MT6RQ56ksVsskk2x1YtXqyKCt6WJJtgwbbSbnsQ_O9OsmspiHjxugQ2vExm3pCZNwidOrgysXVLGC6TzDGXKJ3SJE0tl56nzHobh03Ifj9_eVH3S6O-Qk1YLQ9cA3eRGqUpc1Z4IBfGc2MkyRXEYUu5EbGFnALrWUqmog9WKcszVVe6M8jrL4D_vYL5cSrDXOKlGBSl-n944hheeptoo-GFuFPvZwutuNE2Wr9diKpOd9BnN_bO4k4jA-6meOzxwwywmQ2TLoSjEnfmcNy4r-dROWM8wnfgEoaDDzfB1Rg_xqE3uFYsBjeHAwGcQcKNQ5cJDjUfyVWQ-6-lOnDzioOvdKV30XPv-unyJmmmJySWCVklqZMmk1pkALhKfW5FaYwwTBla-pxwCN4eQpMlXDNimdHc8bKEhNAAhZVEsz3UGo1Hbh9hY4kWuSkt8INMlArw94GnEM5daQhto_NvPAvbSIuHCRdvBaQYAf1iGf02Olusfq8lNX5Z1w1Hs1gThLDjBzCPojGP4i_zaKOj74Mtmts5LcJju5BEUnrwH_84RGs0NEXEssAj1KomM3eMVu28GkwnJ9EwvwCfheiX
  priority: 102
  providerName: Directory of Open Access Journals
Title Binary Approaches of Quantum-Based Avian Navigation Optimizer to Select Effective Features from High-Dimensional Medical Data
URI https://www.proquest.com/docview/2700670722
https://doaj.org/article/1b9a23ec6f054bf5bb7089615c25b621
Volume 10
WOSCitedRecordID wos000839715100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg48AOjE-tsFU-wAlZi53YTk6o3TqB0EphII1TZDsOTGLNaNIekOBv33uOWyYhuHDJIfHBynt-X37v9yPkuYcjE0a3lJWaZT71rDBcMM6d1LXkqatdIJvQ02l-fl7MYsGtjW2Va5sYDHXVOKyRH-IFqdKJFuLV1XeGrFF4uxopNG6TbS4ERz1_q9mmxoKYl3lW9P3uKWT3hxAFfgUllEIjO_ENTxQA-_-wx8HJnOz-7_buk3sxvKSjXh8ekFt-_pDsnG6wWdtH5Oc4jODSUUQT9y1tavp-Cb94ecnG4NUqOlqB1tCpWQUAjmZO34Flubz44Re0a-hZ4M6hPfAxWEuKceQS8naKwyoUW0fYMbIG9IgfNF4G0WPTmcfk08nk49FrFkkYmEuV7hj32mbaqAzkVvA6d6qyVtm0sKKq80RCDFCDh3OJNGniUmukl1UFeaWFSFgnJn1CtubN3O8Ral1iVG4rB2FGpqoiL1SN4U4ipa9sIgbk5VogpYsI5UiU8a2ETAXFV94U34C82Ky-6pE5_rJujLLdrEE87fCiWXwp4_EsuS2MSL1TNYSwtpbW6gS2x6UT0irBB2R_LfYyHvK2_C3zp__-_IzcFTg1EfoG98lWt1j6A3LHrbqLdjEk2-PJdPZhGMoBw6DBQ2xBPcPnrwl8n705nX2-BoKh_Qw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-EYsFPCBnlBUx47t5IDQLkvVqu0CapF6C7bjQCW6KUl2EUj8JX4jYydZKiG49cA1saJ8PL8ZxzPvATxzOGVC65Y0QkWJ4y7KdMyiOLZClSLmtrTBbELNZunxcfZ2DX4OvTC-rHLgxEDURWX9P_Itv0EqFVWMvTz7EnnXKL-7OlhodLDYc9--4pKtebE7xe-7ydj266NXO1HvKhBZLlUbxU6ZRGmZ4I1kcZlaWRgjDc8MK8qUCgxqJVK2pUJzarnRwomiwIWSwdROUc3xupfgcuLZP5QKHq7-6XiNzTTJuvp6zjO6hVnnJwS9YMq7IZ-LfMEg4A_-D0Ft--b_9jpuwY0-fSbjDu-3Yc3N78D1g5X2bHMXfkxCizEZ92rpriFVSd4tEEKL02iCUbsg4yXOCjLTyyAwUs3JG2TO05PvriZtRQ6DNxDphJ0xGhCfJy9qvJBvxiG-NCaaeleETtGE9JtdZKpbfQ_eX8jz34f1eTV3D4AYS7VMTWExjUpkkaWZLH06R4VwhaFsBM8HAOS2V2D3RiCfc1yJebjk5-Eygs3V6LNOeeQv4yYeS6sxXi88HKjqj3lPP3lsMs24s7LEFN2UwhhF8fZiYZkwksUj2Bhglvck1uS_Mfbw36efwtWdo4P9fH93tvcIrjHfIRJqJDdgva0X7jFcscv2pKmfhPlC4MNFI_IXFB9Tag
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKixAseCMGCnhBVygax47tZIHQDNMRVWEYXlJ3qe3YtFI7KUlmEEj8GF_HtZMMlRDsumCbWJaTnPtwfO85CD21YDKhdUtoLqPEMhtlKqZRHBsuHY-ZcSaITcjZLD04yOYb6GffC-PLKnufGBx1URr_j3zoD0iFJJLSoevKIuaT6YuzL5FXkPInrb2cRguRffvtK2zf6ud7E_jWO5ROdz--fBV1CgORYUI2UWylTqQSCSwqi11qRKG10CzTtHAp4RDgHLhvQ7hixDCtuOVFAZsmDWmeJIrBvJfQloQkA6xra7w7m79f_-HxjJtpkrXV9oxlZAg56BGYAKfSayOfi4NBLuCPaBBC3PTG__xybqLrXWKNR60l3EIbdnEbXXuzZqWt76Af49B8jEcdj7qtcenwuyWAa3kajSGeF3i0AnvBM7UK1CPlAr8Fn3p6_N1WuCnxh6AahFvKZ4gT2GfQywom8m062BfNRBOvl9ByneDuGAxPVKPuok8X8vz30OaiXNj7CGtDlEh1YSDBSkSRpZlwPtEjnNtCEzpAz3ow5KbjZvcSISc57NE8dPLz0BmgnfXos5aT5C_jxh5X6zGeSTxcKKvPeeeY8lhnijJrhIPkXTuutSSwvJgbyrWg8QBt95DLO_dW57_x9uDft5-gKwDE_PXebP8hukp960gontxGm021tI_QZbNqjuvqcWc8GB1eNCR_AfZbXXs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+Approaches+of+Quantum-Based+Avian+Navigation+Optimizer+to+Select+Effective+Features+from+High-Dimensional+Medical+Data&rft.jtitle=Mathematics+%28Basel%29&rft.au=Nadimi-Shahraki%2C+Mohammad+H&rft.au=Fatahi%2C+Ali&rft.au=Zamani%2C+Hoda&rft.au=Mirjalili%2C+Seyedali&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=15&rft.spage=2770&rft_id=info:doi/10.3390%2Fmath10152770&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon