Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle

In this study, the authors consider the parameter estimation problem of the response signal from a highly non-linear dynamical system. The step response experiment is taken for generating the measured data. Considering the stochastic disturbance in the industrial process and using the gradient searc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET signal processing Ročník 11; číslo 2; s. 228 - 237
Hlavní autori: Xu, Ling, Ding, Feng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: The Institution of Engineering and Technology 01.04.2017
Predmet:
ISSN:1751-9675, 1751-9683, 1751-9683
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this study, the authors consider the parameter estimation problem of the response signal from a highly non-linear dynamical system. The step response experiment is taken for generating the measured data. Considering the stochastic disturbance in the industrial process and using the gradient search, a multi-innovation stochastic gradient algorithm is proposed through expanding the scalar innovation into an innovation vector in order to obtain more accurate parameter estimates. Furthermore, a hierarchical identification algorithm is derived by means of the decomposition technique and interaction estimation theory. Regarding to the coupled parameter problem between subsystems, the authors put forward the scheme of replacing the unknown parameters with their previous parameter estimates to realise the parameter estimation algorithm. Finally, several examples are provided to access and compare the behaviour of the proposed identification techniques.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-9675
1751-9683
1751-9683
DOI:10.1049/iet-spr.2016.0220