A service‐agnostic method for predicting service metrics in real time
Summary We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we collect device and network statistics from a cloud testbed and apply regression methods to predict, in real‐time, client‐side service...
Uloženo v:
| Vydáno v: | International journal of network management Ročník 28; číslo 2 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester
Wiley Subscription Services, Inc
01.03.2018
|
| Témata: | |
| ISSN: | 1055-7148, 1099-1190, 1099-1190 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we collect device and network statistics from a cloud testbed and apply regression methods to predict, in real‐time, client‐side service metrics for video streaming and key‐value store services. Results from intensive evaluation on our testbed indicate that our method accurately predicts service metrics in real time (mean absolute error below 16% for video frame rate and read latency, for instance). Further, our method is service agnostic in the sense that it takes as input operating systems and network statistics instead of service‐specific metrics. We show that feature set reduction significantly improves the prediction accuracy in our case, while simultaneously reducing model computation time. We find that the prediction accuracy decreases when, instead of a single service, both services run on the same testbed simultaneously or when the network quality on the path between the server cluster and the client deteriorates. Finally, we discuss the design and implementation of a real‐time analytics engine, which processes streams of device statistics and service metrics from testbed sensors and produces model predictions through online learning.
We collect device and network statistics from a cloud testbed and use statistical learning to predict client‐side service metrics for video streaming and key‐value store services. Our method predicts service metrics in real time, with mean absolute error below 16% for video frame rate and read latency. The method is service agnostic as it does not rely on service‐specific metrics on the server side. We find that feature set reduction can improve prediction accuracy, while significantly reducing model computation time. |
|---|---|
| AbstractList | We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we collect device and network statistics from a cloud testbed and apply regression methods to predict, in real-time, client-side service metrics for video streaming and key-value store services. Results from intensive evaluation on our testbed indicate that our method accurately predicts service metrics in real time (mean absolute error below 16% for video frame rate and read latency, for instance). Further, our method is service agnostic in the sense that it takes as input operating systems and network statistics instead of service-specific metrics. We show that feature set reduction significantly improves the prediction accuracy in our case, while simultaneously reducing model computation time. We find that the prediction accuracy decreases when, instead of a single service, both services run on the same testbed simultaneously or when the network quality on the path between the server cluster and the client deteriorates. Finally, we discuss the design and implementation of a real-time analytics engine, which processes streams of device statistics and service metrics from testbed sensors and produces model predictions through online learning. We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we collect device and network statistics from a cloud testbed and apply regression methods to predict, in real-time, client-side service metrics for video streaming and key-value store services. Results from intensive evaluation on our testbed indicate that our method accurately predicts service metrics in real time (mean absolute error below 16% for video frame rate and read latency, for instance). Further, our method is service agnostic in the sense that it takes as input operating systems and network statistics instead of service-specific metrics. We show that feature set reduction significantly improves the prediction accuracy in our case, while simultaneously reducing model computation time. We find that the prediction accuracy decreases when, instead of a single service, both services run on the same testbed simultaneously or when the network quality on the path between the server cluster and the client deteriorates. Finally, we discuss the design and implementation of a real-time analytics engine, which processes streams of device statistics and service metrics from testbed sensors and produces model predictions through online learning. Summary We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we collect device and network statistics from a cloud testbed and apply regression methods to predict, in real‐time, client‐side service metrics for video streaming and key‐value store services. Results from intensive evaluation on our testbed indicate that our method accurately predicts service metrics in real time (mean absolute error below 16% for video frame rate and read latency, for instance). Further, our method is service agnostic in the sense that it takes as input operating systems and network statistics instead of service‐specific metrics. We show that feature set reduction significantly improves the prediction accuracy in our case, while simultaneously reducing model computation time. We find that the prediction accuracy decreases when, instead of a single service, both services run on the same testbed simultaneously or when the network quality on the path between the server cluster and the client deteriorates. Finally, we discuss the design and implementation of a real‐time analytics engine, which processes streams of device statistics and service metrics from testbed sensors and produces model predictions through online learning. We collect device and network statistics from a cloud testbed and use statistical learning to predict client‐side service metrics for video streaming and key‐value store services. Our method predicts service metrics in real time, with mean absolute error below 16% for video frame rate and read latency. The method is service agnostic as it does not rely on service‐specific metrics on the server side. We find that feature set reduction can improve prediction accuracy, while significantly reducing model computation time. |
| Author | Gillblad, Daniel Ahmed, Jawwad Flinta, Christofer Yanggratoke, Rerngvit Ardelius, John Johnsson, Andreas Stadler, Rolf |
| Author_xml | – sequence: 1 givenname: Rerngvit orcidid: 0000-0002-2680-9065 surname: Yanggratoke fullname: Yanggratoke, Rerngvit email: rerngvit@kth.se organization: KTH Royal Institute of Technology – sequence: 2 givenname: Jawwad surname: Ahmed fullname: Ahmed, Jawwad – sequence: 3 givenname: John surname: Ardelius fullname: Ardelius, John – sequence: 4 givenname: Christofer surname: Flinta fullname: Flinta, Christofer – sequence: 5 givenname: Andreas surname: Johnsson fullname: Johnsson, Andreas – sequence: 6 givenname: Daniel surname: Gillblad fullname: Gillblad, Daniel – sequence: 7 givenname: Rolf surname: Stadler fullname: Stadler, Rolf organization: KTH Royal Institute of Technology |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-225070$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33516$$DView record from Swedish Publication Index |
| BookMark | eNqF0UFLwzAUB_AgE9ym4EcoeBGkM2mbNjmOOacw9aJeQ5q-bplbM5PMsZsfwc_oJ7F120UUT3mQ33u8x7-DWpWpAKFTgnsE4-iygkWPcE4OUJtgzkNCOG41NaVhRhJ2hDrOzXBNCc_aaNQPHNg3reDz_UNOKuO8VsEC_NQUQWlssLRQaOV1NdnD5tdq5QJdBRbkPPB6AcfosJRzBye7t4ueroePg5tw_DC6HfTHoYrTjIRxSsokgzQpIKdRKSPFs5wxKbOyKGjCFOUJsJSztFQpVpjFRZQymisAokpK4y662M51a1iucrG0eiHtRhipxZV-7gtjJ8JqEceUpLUO_9cvfiqiiOIM1_5s65fWvK7AeTEzK1vVB4kIk4ixLIkb1dsqZY1zFkqhtJdem8pbqeeCYNFEIeooRBNF3XD-o2G_yC90t_Faz2HzpxP3w7tv_wVeZ5ri |
| CitedBy_id | crossref_primary_10_3103_S0278641925700165 crossref_primary_10_1007_s10922_017_9426_z crossref_primary_10_1134_S106423072570042X |
| Cites_doi | 10.1023/A:1010933404324 10.1109/QOMEX.2010.5517692 10.1111/j.2517-6161.1996.tb02080.x 10.1145/2365864.2151028 10.1109/CNSM.2013.6727810 10.1109/MASCOT.2003.1240667 10.1109/CNSM.2015.7367349 10.1109/CCGRID.2010.98 10.1145/2068816.2068836 10.1007/s10618-010-0201-y 10.1007/s10994-012-5320-9 10.1109/SVM.2011.6096464 10.1049/iet-com.2009.0649 10.1145/2523813 10.1109/TNET.2009.2037812 10.18637/jss.v033.i01 10.1109/MCOM.2008.4473087 10.1109/INM.2015.7140318 10.1007/s10619-013-7125-7 10.32614/CRAN.package.RMOA 10.1007/978-3-7908-2604-3_16 10.1145/1821748.1821766 10.1109/INM.2015.7140449 10.1109/ISSC.2015.7163768 10.1007/978-0-387-21606-5 10.1109/INM.2015.7140272 10.1145/2486001.2486025 10.1109/INM.2011.5990693 10.1145/1557019.1557060 10.1109/NOMS.2008.4575113 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2018 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTPV AOWAS D8V |
| DOI | 10.1002/nem.1991 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISSN | 1099-1190 |
| EndPage | n/a |
| ExternalDocumentID | oai_DiVA_org_ri_33516 oai_DiVA_org_kth_225070 10_1002_nem_1991 NEM1991 |
| Genre | article |
| GrantInformation_xml | – fundername: Swedish Governmental Agency for Innovation Systems, VINNOVA funderid: 2013-03895 |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5GY 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8US 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 UCJ V2E W8V W99 WBKPD WIH WIK WOHZO WWI WXSBR WYISQ WZISG XPP XV2 YZZ ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 7SP 8FD JQ2 L7M L~C L~D ADTPV AOWAS D8V |
| ID | FETCH-LOGICAL-c3671-361f47e64deb52fa2c97b88aa7fdd548c594e86986fc60c083d2685bcee1cf553 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000427120900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1055-7148 1099-1190 |
| IngestDate | Tue Nov 04 16:25:22 EST 2025 Tue Nov 04 16:36:10 EST 2025 Sun Nov 09 07:38:40 EST 2025 Tue Nov 18 21:10:17 EST 2025 Sat Nov 29 07:48:49 EST 2025 Wed Jan 22 16:19:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3671-361f47e64deb52fa2c97b88aa7fdd548c594e86986fc60c083d2685bcee1cf553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2680-9065 |
| PQID | 2012887430 |
| PQPubID | 2034908 |
| PageCount | 1 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_ri_33516 swepub_primary_oai_DiVA_org_kth_225070 proquest_journals_2012887430 crossref_citationtrail_10_1002_nem_1991 crossref_primary_10_1002_nem_1991 wiley_primary_10_1002_nem_1991_NEM1991 |
| PublicationCentury | 2000 |
| PublicationDate | March/April 2018 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: March/April 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | International journal of network management |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | October 2003 2010; 33 2012 2011 2010; 18 2010 2009 2008 2002; 2 2013; 90 2014; 46 2005 November 2015 2004 May 2015 1996; 58 2001; 45 2001 April 2015 2013; 31 June 2015 2017 2008; 46 2011; 23 2015 2014 2013 2010; 4 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 James G (e_1_2_10_9_1) 2014 e_1_2_10_40_1 Tibshirani R (e_1_2_10_14_1) 1996; 58 Liaw A (e_1_2_10_42_1) 2002; 2 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 4 start-page: 1389 issue: 12 year: 2010 end-page: 1403 article-title: Learning models for video quality prediction over wireless local area network and universal mobile telecommunication system networks publication-title: Commun IET – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 90 start-page: 317 issue: 3 year: 2013 end-page: 346 article-title: On evaluating stream learning algorithms publication-title: Mach Learn – start-page: 18 year: 2015 end-page: 26 – start-page: 495 year: 2010 end-page: 504 – start-page: 18 year: 2005 end-page: 23 – start-page: 25 year: 2008 end-page: 32 – start-page: 118 year: 2010 end-page: 123 – year: 2001 – start-page: 246 year: October 2003 end-page: 249 – volume: 2 start-page: 18 issue: 3 year: 2002 end-page: 22 article-title: Classification and regression by randomforest publication-title: R News – start-page: 52 year: 2009 end-page: 59 – volume: 31 start-page: 447 issue: 3 year: 2013 end-page: 470 article-title: Data‐driven and automated prediction of service level agreement violations in service compositions publication-title: Distrib Parallel Databases – start-page: 177 year: 2010 end-page: 186 – start-page: 209 year: 2011 end-page: 216 – volume: 46 start-page: 78 year: 2008 end-page: 84 article-title: Standardization activities in the itu for a qoe assessment of iptv publication-title: IEEE Commun Mag – start-page: 16 year: 2004 end-page: 16 – start-page: 414 year: April 2015 end-page: 422 – year: 2014 – volume: 18 start-page: 1026 issue: 4 year: 2010 end-page: 1039 article-title: A machine learning approach to tcp throughput prediction publication-title: IEEE/ACM Trans Networking – volume: 23 start-page: 128 issue: 1 year: 2011 end-page: 168 article-title: Learning model trees from evolving data streams publication-title: Data Min. Knowl Discov – start-page: 1 year: June 2015 end-page: 6 – start-page: 1 year: 2011 end-page: 10 – start-page: 339 year: 2013 end-page: 350 – volume: 33 start-page: 1 issue: 1 year: 2010 end-page: 22 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Stat Software – start-page: 135 year: November 2015 end-page: 143 – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc. Ser B (Methodological) – start-page: 12 year: 2009 end-page: 12 – start-page: 195 year: 2011 end-page: 208 – start-page: 1141 year: May 2015 end-page: 1142 – start-page: 3 year: 2012 end-page: 14 – start-page: 329 year: 2009 end-page: 338 – start-page: 59 year: 2013 end-page: 66 – year: 2017 – volume: 46 start-page: 37 issue: 4 year: 2014 article-title: A survey on concept drift adaptation publication-title: ACM Comput Surv (CSUR) – year: 2015 – ident: e_1_2_10_16_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_10_58_1 – ident: e_1_2_10_30_1 – ident: e_1_2_10_50_1 doi: 10.1109/QOMEX.2010.5517692 – volume: 58 start-page: 267 year: 1996 ident: e_1_2_10_14_1 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc. Ser B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_2_10_47_1 doi: 10.1145/2365864.2151028 – ident: e_1_2_10_36_1 – ident: e_1_2_10_2_1 doi: 10.1109/CNSM.2013.6727810 – ident: e_1_2_10_28_1 doi: 10.1109/MASCOT.2003.1240667 – ident: e_1_2_10_35_1 – ident: e_1_2_10_8_1 doi: 10.1109/CNSM.2015.7367349 – ident: e_1_2_10_46_1 doi: 10.1109/CCGRID.2010.98 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: e_1_2_10_42_1 article-title: Classification and regression by randomforest publication-title: R News – ident: e_1_2_10_21_1 – ident: e_1_2_10_27_1 – ident: e_1_2_10_48_1 doi: 10.1145/2068816.2068836 – ident: e_1_2_10_19_1 – ident: e_1_2_10_23_1 – ident: e_1_2_10_26_1 – ident: e_1_2_10_20_1 – ident: e_1_2_10_17_1 doi: 10.1007/s10618-010-0201-y – ident: e_1_2_10_29_1 – ident: e_1_2_10_34_1 – ident: e_1_2_10_18_1 – ident: e_1_2_10_31_1 – ident: e_1_2_10_43_1 doi: 10.1007/s10994-012-5320-9 – ident: e_1_2_10_7_1 – ident: e_1_2_10_45_1 – ident: e_1_2_10_5_1 doi: 10.1109/SVM.2011.6096464 – ident: e_1_2_10_33_1 – ident: e_1_2_10_51_1 doi: 10.1049/iet-com.2009.0649 – ident: e_1_2_10_11_1 doi: 10.1145/2523813 – volume-title: An Introduction to Statistical Learning with Applications in R year: 2014 ident: e_1_2_10_9_1 – ident: e_1_2_10_3_1 doi: 10.1109/TNET.2009.2037812 – ident: e_1_2_10_32_1 – ident: e_1_2_10_39_1 doi: 10.18637/jss.v033.i01 – ident: e_1_2_10_52_1 doi: 10.1109/MCOM.2008.4473087 – ident: e_1_2_10_38_1 – ident: e_1_2_10_57_1 doi: 10.1109/INM.2015.7140318 – ident: e_1_2_10_40_1 – ident: e_1_2_10_24_1 – ident: e_1_2_10_53_1 doi: 10.1007/s10619-013-7125-7 – ident: e_1_2_10_41_1 doi: 10.32614/CRAN.package.RMOA – ident: e_1_2_10_13_1 doi: 10.1007/978-3-7908-2604-3_16 – ident: e_1_2_10_54_1 – ident: e_1_2_10_49_1 doi: 10.1145/1821748.1821766 – ident: e_1_2_10_37_1 doi: 10.1109/INM.2015.7140449 – ident: e_1_2_10_56_1 doi: 10.1109/ISSC.2015.7163768 – ident: e_1_2_10_15_1 doi: 10.1007/978-0-387-21606-5 – ident: e_1_2_10_55_1 doi: 10.1109/INM.2015.7140272 – ident: e_1_2_10_44_1 doi: 10.1145/2486001.2486025 – ident: e_1_2_10_12_1 doi: 10.1109/INM.2011.5990693 – ident: e_1_2_10_25_1 – ident: e_1_2_10_6_1 – ident: e_1_2_10_10_1 doi: 10.1145/1557019.1557060 – ident: e_1_2_10_4_1 doi: 10.1109/NOMS.2008.4575113 – ident: e_1_2_10_22_1 |
| SSID | ssj0002197 |
| Score | 2.1601934 |
| Snippet | Summary
We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations.... We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we... |
| SourceID | swepub proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Cloud computing Design and implementations Distance learning Distributed computer systems Forecasting Learning systems machine learning Mean absolute error Network statistics Operating systems Performance measurement Performance metrics Prediction accuracy Predictions quality of service Real time Real time network Real-time analytics real-time network analytics Regression analysis Statistical analysis statistical learning Statistics Testbeds Video streaming Video transmission |
| Title | A service‐agnostic method for predicting service metrics in real time |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnem.1991 https://www.proquest.com/docview/2012887430 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-225070 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33516 |
| Volume | 28 |
| WOSCitedRecordID | wos000427120900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1190 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002197 issn: 1055-7148 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NToNAEN4Y60EP_hur1axJoydSurDLcmxsq4faGGNNbxtYQImVNlA9-wg-o0_iLAukTdSYeOLALGx2dma-gdlvEGp6xOfc4tSA4GRCguJEhg_AxKARRBs3cC0Z5Oz6A2c45OOxe1tUVaqzMJofovrgpiwj99fKwD0_ay2QhoYv6qgdZD41daYKEq9a964_GlR-GGwxb61iUmo4gPpL6lmTtMqxy8FoAWFq1tBlwJpHnP7Wf-a6jTYLnIk7emPsoJUw2UUbC-yDe-iqgzPtKT7fP_KCO5DFuqU0BiyLZ6n6i6PqoktBdRccZ4bjBAPanGDVmn4fjfq9-8tro-irYEiLOW3DYu3IdkJmB6FPSeQR6TqgMc9zoiCADEZS1w45czmLJDMlgLSAME59iKdtGVFqHaDVZJqEhwi7fkg85ng8sInNiQ9jJCUACWxPcbubdXRRLrCQBem46n0xEZoumQhYGqGWpo7OKsmZJtr4RqZR6kgUppYJokIsByAELzvXeqseoLizu_FDR0zTR_E8fxLgvcDH1VHzN8E0FpZF2wyelyv1x_mIYe9GXY_-KniM1mG6XNewNdDqPH0NT9CafJvHWXpabOAvz0v06g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kV1APvsX1GUH0VOymzaN4WtRVcV1EVLyFNm11Udelu3r2J_gb_SVOmnZZQUXw1EMnaZjJzHxJk28AtkMaSelJ5mBycnGBIlInQmDisBSzTRAHno5zdv2WaLfl7W1wMQb75V0Yyw8x3HAznpHHa-PgZkN6b4Q1NHkyd-1w6VP1uSdkBaqHl83r1jAQozPmtVVcxhyBsL_knnXpXtn2azYagZiWNvQrYs1TTnPmX4OdhekCaZKGnRpzMJZ052FqhH9wAY4bpG9jxcfbe37kDmWJLSpNEM2SXmb-45iT0aWgeYuhs086XYJ485GY4vSLcN08ujo4cYrKCo72uKg7Hq-nvki4HycRo2lIdSDQZmEo0jjGNYxmgZ9IHkieau5qhGkx5ZJFmFHrOmXMW4JK97mbLAMJooSGXIQy9qkvaYRtNKMICvzQsLu7NdgtNax0QTtuql88KkuYTBWqRhnV1GBrKNmzVBvfyKyVRlKFs_UVNUlWIhTCj-1Yww07MOzZh52bhnrO7tTD4F5h_MIoV4Pt3wSzjvI8VufYX27VH8ej2kfn5rnyV8FNmDi5Om-p1mn7bBUmcejSnmhbg8oge0nWYVy_Djr9bKOYzZ9yTvja |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwED9kiuiD_8X5N4LoU7FLmzTFp-GcinOIqPgW2jTVoc7RTZ_9CH5GP4mXph0TVASf-tBLGu5yd7-kye8AdiIaC-EJ5mBycnGBEqROjMDEYSlmmzAJPZXk7PqtoN0Wt7fhxRgclHdhLD_EcMPNeEYer42D616S7o-whuonc9cOlz7jPguZX4HxxmXzujUMxOiMeW0VlzEnQNhfcs-6dL9s-zUbjUBMSxv6FbHmKac5-6_BzsFMgTRJ3U6NeRjT3QWYHuEfXITjOunbWPHx9p4fuUNZYotKE0SzpJeZ_zjmZHQpaN5i6OyTTpcg3nwkpjj9Elw3j64OT5yisoKjPB7UHI_XUj_Q3E90zGgaURUGaLMoCtIkwTWMYqGvBQ8FTxV3FcK0hHLBYsyoNZUy5i1Dpfvc1StAwljTiAeRSHzqCxpjG8UoggI_MuzubhX2Sg1LVdCOm-oXj9ISJlOJqpFGNVXYHkr2LNXGNzLrpZFk4Wx9SU2SFQiF8GO71nDDDgx7dqNzU5fP2Z18GNxLjF8Y5aqw85tg1pGex2oc-8ut-uN4ZPvo3DxX_yq4BZMXjaZsnbbP1mAKRy7sgbZ1qAyyF70BE-p10Olnm8Vk_gQI9vhV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+service%E2%80%90agnostic+method+for+predicting+service+metrics+in+real+time&rft.jtitle=International+journal+of+network+management&rft.au=Yanggratoke%2C+Rerngvit&rft.au=Ahmed%2C+Jawwad&rft.au=Ardelius%2C+John&rft.au=Flinta%2C+Christofer&rft.date=2018-03-01&rft.issn=1055-7148&rft.eissn=1099-1190&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1002%2Fnem.1991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nem_1991 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-7148&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-7148&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-7148&client=summon |