A service‐agnostic method for predicting service metrics in real time

Summary We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we collect device and network statistics from a cloud testbed and apply regression methods to predict, in real‐time, client‐side service...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of network management Ročník 28; číslo 2
Hlavní autoři: Yanggratoke, Rerngvit, Ahmed, Jawwad, Ardelius, John, Flinta, Christofer, Johnsson, Andreas, Gillblad, Daniel, Stadler, Rolf
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester Wiley Subscription Services, Inc 01.03.2018
Témata:
ISSN:1055-7148, 1099-1190, 1099-1190
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we collect device and network statistics from a cloud testbed and apply regression methods to predict, in real‐time, client‐side service metrics for video streaming and key‐value store services. Results from intensive evaluation on our testbed indicate that our method accurately predicts service metrics in real time (mean absolute error below 16% for video frame rate and read latency, for instance). Further, our method is service agnostic in the sense that it takes as input operating systems and network statistics instead of service‐specific metrics. We show that feature set reduction significantly improves the prediction accuracy in our case, while simultaneously reducing model computation time. We find that the prediction accuracy decreases when, instead of a single service, both services run on the same testbed simultaneously or when the network quality on the path between the server cluster and the client deteriorates. Finally, we discuss the design and implementation of a real‐time analytics engine, which processes streams of device statistics and service metrics from testbed sensors and produces model predictions through online learning. We collect device and network statistics from a cloud testbed and use statistical learning to predict client‐side service metrics for video streaming and key‐value store services. Our method predicts service metrics in real time, with mean absolute error below 16% for video frame rate and read latency. The method is service agnostic as it does not rely on service‐specific metrics on the server side. We find that feature set reduction can improve prediction accuracy, while significantly reducing model computation time.
AbstractList We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we collect device and network statistics from a cloud testbed and apply regression methods to predict, in real-time, client-side service metrics for video streaming and key-value store services. Results from intensive evaluation on our testbed indicate that our method accurately predicts service metrics in real time (mean absolute error below 16% for video frame rate and read latency, for instance). Further, our method is service agnostic in the sense that it takes as input operating systems and network statistics instead of service-specific metrics. We show that feature set reduction significantly improves the prediction accuracy in our case, while simultaneously reducing model computation time. We find that the prediction accuracy decreases when, instead of a single service, both services run on the same testbed simultaneously or when the network quality on the path between the server cluster and the client deteriorates. Finally, we discuss the design and implementation of a real-time analytics engine, which processes streams of device statistics and service metrics from testbed sensors and produces model predictions through online learning.
We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we collect device and network statistics from a cloud testbed and apply regression methods to predict, in real-time, client-side service metrics for video streaming and key-value store services. Results from intensive evaluation on our testbed indicate that our method accurately predicts service metrics in real time (mean absolute error below 16% for video frame rate and read latency, for instance). Further, our method is service agnostic in the sense that it takes as input operating systems and network statistics instead of service-specific metrics. We show that feature set reduction significantly improves the prediction accuracy in our case, while simultaneously reducing model computation time. We find that the prediction accuracy decreases when, instead of a single service, both services run on the same testbed simultaneously or when the network quality on the path between the server cluster and the client deteriorates. Finally, we discuss the design and implementation of a real-time analytics engine, which processes streams of device statistics and service metrics from testbed sensors and produces model predictions through online learning. 
Summary We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we collect device and network statistics from a cloud testbed and apply regression methods to predict, in real‐time, client‐side service metrics for video streaming and key‐value store services. Results from intensive evaluation on our testbed indicate that our method accurately predicts service metrics in real time (mean absolute error below 16% for video frame rate and read latency, for instance). Further, our method is service agnostic in the sense that it takes as input operating systems and network statistics instead of service‐specific metrics. We show that feature set reduction significantly improves the prediction accuracy in our case, while simultaneously reducing model computation time. We find that the prediction accuracy decreases when, instead of a single service, both services run on the same testbed simultaneously or when the network quality on the path between the server cluster and the client deteriorates. Finally, we discuss the design and implementation of a real‐time analytics engine, which processes streams of device statistics and service metrics from testbed sensors and produces model predictions through online learning. We collect device and network statistics from a cloud testbed and use statistical learning to predict client‐side service metrics for video streaming and key‐value store services. Our method predicts service metrics in real time, with mean absolute error below 16% for video frame rate and read latency. The method is service agnostic as it does not rely on service‐specific metrics on the server side. We find that feature set reduction can improve prediction accuracy, while significantly reducing model computation time.
Author Gillblad, Daniel
Ahmed, Jawwad
Flinta, Christofer
Yanggratoke, Rerngvit
Ardelius, John
Johnsson, Andreas
Stadler, Rolf
Author_xml – sequence: 1
  givenname: Rerngvit
  orcidid: 0000-0002-2680-9065
  surname: Yanggratoke
  fullname: Yanggratoke, Rerngvit
  email: rerngvit@kth.se
  organization: KTH Royal Institute of Technology
– sequence: 2
  givenname: Jawwad
  surname: Ahmed
  fullname: Ahmed, Jawwad
– sequence: 3
  givenname: John
  surname: Ardelius
  fullname: Ardelius, John
– sequence: 4
  givenname: Christofer
  surname: Flinta
  fullname: Flinta, Christofer
– sequence: 5
  givenname: Andreas
  surname: Johnsson
  fullname: Johnsson, Andreas
– sequence: 6
  givenname: Daniel
  surname: Gillblad
  fullname: Gillblad, Daniel
– sequence: 7
  givenname: Rolf
  surname: Stadler
  fullname: Stadler, Rolf
  organization: KTH Royal Institute of Technology
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-225070$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33516$$DView record from Swedish Publication Index
BookMark eNqF0UFLwzAUB_AgE9ym4EcoeBGkM2mbNjmOOacw9aJeQ5q-bplbM5PMsZsfwc_oJ7F120UUT3mQ33u8x7-DWpWpAKFTgnsE4-iygkWPcE4OUJtgzkNCOG41NaVhRhJ2hDrOzXBNCc_aaNQPHNg3reDz_UNOKuO8VsEC_NQUQWlssLRQaOV1NdnD5tdq5QJdBRbkPPB6AcfosJRzBye7t4ueroePg5tw_DC6HfTHoYrTjIRxSsokgzQpIKdRKSPFs5wxKbOyKGjCFOUJsJSztFQpVpjFRZQymisAokpK4y662M51a1iucrG0eiHtRhipxZV-7gtjJ8JqEceUpLUO_9cvfiqiiOIM1_5s65fWvK7AeTEzK1vVB4kIk4ixLIkb1dsqZY1zFkqhtJdem8pbqeeCYNFEIeooRBNF3XD-o2G_yC90t_Faz2HzpxP3w7tv_wVeZ5ri
CitedBy_id crossref_primary_10_3103_S0278641925700165
crossref_primary_10_1007_s10922_017_9426_z
crossref_primary_10_1134_S106423072570042X
Cites_doi 10.1023/A:1010933404324
10.1109/QOMEX.2010.5517692
10.1111/j.2517-6161.1996.tb02080.x
10.1145/2365864.2151028
10.1109/CNSM.2013.6727810
10.1109/MASCOT.2003.1240667
10.1109/CNSM.2015.7367349
10.1109/CCGRID.2010.98
10.1145/2068816.2068836
10.1007/s10618-010-0201-y
10.1007/s10994-012-5320-9
10.1109/SVM.2011.6096464
10.1049/iet-com.2009.0649
10.1145/2523813
10.1109/TNET.2009.2037812
10.18637/jss.v033.i01
10.1109/MCOM.2008.4473087
10.1109/INM.2015.7140318
10.1007/s10619-013-7125-7
10.32614/CRAN.package.RMOA
10.1007/978-3-7908-2604-3_16
10.1145/1821748.1821766
10.1109/INM.2015.7140449
10.1109/ISSC.2015.7163768
10.1007/978-0-387-21606-5
10.1109/INM.2015.7140272
10.1145/2486001.2486025
10.1109/INM.2011.5990693
10.1145/1557019.1557060
10.1109/NOMS.2008.4575113
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
DOI 10.1002/nem.1991
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1099-1190
EndPage n/a
ExternalDocumentID oai_DiVA_org_ri_33516
oai_DiVA_org_kth_225070
10_1002_nem_1991
NEM1991
Genre article
GrantInformation_xml – fundername: Swedish Governmental Agency for Innovation Systems, VINNOVA
  funderid: 2013-03895
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5GY
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8US
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
UCJ
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WWI
WXSBR
WYISQ
WZISG
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c3671-361f47e64deb52fa2c97b88aa7fdd548c594e86986fc60c083d2685bcee1cf553
IEDL.DBID DRFUL
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000427120900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1055-7148
1099-1190
IngestDate Tue Nov 04 16:25:22 EST 2025
Tue Nov 04 16:36:10 EST 2025
Sun Nov 09 07:38:40 EST 2025
Tue Nov 18 21:10:17 EST 2025
Sat Nov 29 07:48:49 EST 2025
Wed Jan 22 16:19:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3671-361f47e64deb52fa2c97b88aa7fdd548c594e86986fc60c083d2685bcee1cf553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2680-9065
PQID 2012887430
PQPubID 2034908
PageCount 1
ParticipantIDs swepub_primary_oai_DiVA_org_ri_33516
swepub_primary_oai_DiVA_org_kth_225070
proquest_journals_2012887430
crossref_citationtrail_10_1002_nem_1991
crossref_primary_10_1002_nem_1991
wiley_primary_10_1002_nem_1991_NEM1991
PublicationCentury 2000
PublicationDate March/April 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March/April 2018
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of network management
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References October 2003
2010; 33
2012
2011
2010; 18
2010
2009
2008
2002; 2
2013; 90
2014; 46
2005
November 2015
2004
May 2015
1996; 58
2001; 45
2001
April 2015
2013; 31
June 2015
2017
2008; 46
2011; 23
2015
2014
2013
2010; 4
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
James G (e_1_2_10_9_1) 2014
e_1_2_10_40_1
Tibshirani R (e_1_2_10_14_1) 1996; 58
Liaw A (e_1_2_10_42_1) 2002; 2
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 4
  start-page: 1389
  issue: 12
  year: 2010
  end-page: 1403
  article-title: Learning models for video quality prediction over wireless local area network and universal mobile telecommunication system networks
  publication-title: Commun IET
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 90
  start-page: 317
  issue: 3
  year: 2013
  end-page: 346
  article-title: On evaluating stream learning algorithms
  publication-title: Mach Learn
– start-page: 18
  year: 2015
  end-page: 26
– start-page: 495
  year: 2010
  end-page: 504
– start-page: 18
  year: 2005
  end-page: 23
– start-page: 25
  year: 2008
  end-page: 32
– start-page: 118
  year: 2010
  end-page: 123
– year: 2001
– start-page: 246
  year: October 2003
  end-page: 249
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  end-page: 22
  article-title: Classification and regression by randomforest
  publication-title: R News
– start-page: 52
  year: 2009
  end-page: 59
– volume: 31
  start-page: 447
  issue: 3
  year: 2013
  end-page: 470
  article-title: Data‐driven and automated prediction of service level agreement violations in service compositions
  publication-title: Distrib Parallel Databases
– start-page: 177
  year: 2010
  end-page: 186
– start-page: 209
  year: 2011
  end-page: 216
– volume: 46
  start-page: 78
  year: 2008
  end-page: 84
  article-title: Standardization activities in the itu for a qoe assessment of iptv
  publication-title: IEEE Commun Mag
– start-page: 16
  year: 2004
  end-page: 16
– start-page: 414
  year: April 2015
  end-page: 422
– year: 2014
– volume: 18
  start-page: 1026
  issue: 4
  year: 2010
  end-page: 1039
  article-title: A machine learning approach to tcp throughput prediction
  publication-title: IEEE/ACM Trans Networking
– volume: 23
  start-page: 128
  issue: 1
  year: 2011
  end-page: 168
  article-title: Learning model trees from evolving data streams
  publication-title: Data Min. Knowl Discov
– start-page: 1
  year: June 2015
  end-page: 6
– start-page: 1
  year: 2011
  end-page: 10
– start-page: 339
  year: 2013
  end-page: 350
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  end-page: 22
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Stat Software
– start-page: 135
  year: November 2015
  end-page: 143
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc. Ser B (Methodological)
– start-page: 12
  year: 2009
  end-page: 12
– start-page: 195
  year: 2011
  end-page: 208
– start-page: 1141
  year: May 2015
  end-page: 1142
– start-page: 3
  year: 2012
  end-page: 14
– start-page: 329
  year: 2009
  end-page: 338
– start-page: 59
  year: 2013
  end-page: 66
– year: 2017
– volume: 46
  start-page: 37
  issue: 4
  year: 2014
  article-title: A survey on concept drift adaptation
  publication-title: ACM Comput Surv (CSUR)
– year: 2015
– ident: e_1_2_10_16_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_10_58_1
– ident: e_1_2_10_30_1
– ident: e_1_2_10_50_1
  doi: 10.1109/QOMEX.2010.5517692
– volume: 58
  start-page: 267
  year: 1996
  ident: e_1_2_10_14_1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc. Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_10_47_1
  doi: 10.1145/2365864.2151028
– ident: e_1_2_10_36_1
– ident: e_1_2_10_2_1
  doi: 10.1109/CNSM.2013.6727810
– ident: e_1_2_10_28_1
  doi: 10.1109/MASCOT.2003.1240667
– ident: e_1_2_10_35_1
– ident: e_1_2_10_8_1
  doi: 10.1109/CNSM.2015.7367349
– ident: e_1_2_10_46_1
  doi: 10.1109/CCGRID.2010.98
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: e_1_2_10_42_1
  article-title: Classification and regression by randomforest
  publication-title: R News
– ident: e_1_2_10_21_1
– ident: e_1_2_10_27_1
– ident: e_1_2_10_48_1
  doi: 10.1145/2068816.2068836
– ident: e_1_2_10_19_1
– ident: e_1_2_10_23_1
– ident: e_1_2_10_26_1
– ident: e_1_2_10_20_1
– ident: e_1_2_10_17_1
  doi: 10.1007/s10618-010-0201-y
– ident: e_1_2_10_29_1
– ident: e_1_2_10_34_1
– ident: e_1_2_10_18_1
– ident: e_1_2_10_31_1
– ident: e_1_2_10_43_1
  doi: 10.1007/s10994-012-5320-9
– ident: e_1_2_10_7_1
– ident: e_1_2_10_45_1
– ident: e_1_2_10_5_1
  doi: 10.1109/SVM.2011.6096464
– ident: e_1_2_10_33_1
– ident: e_1_2_10_51_1
  doi: 10.1049/iet-com.2009.0649
– ident: e_1_2_10_11_1
  doi: 10.1145/2523813
– volume-title: An Introduction to Statistical Learning with Applications in R
  year: 2014
  ident: e_1_2_10_9_1
– ident: e_1_2_10_3_1
  doi: 10.1109/TNET.2009.2037812
– ident: e_1_2_10_32_1
– ident: e_1_2_10_39_1
  doi: 10.18637/jss.v033.i01
– ident: e_1_2_10_52_1
  doi: 10.1109/MCOM.2008.4473087
– ident: e_1_2_10_38_1
– ident: e_1_2_10_57_1
  doi: 10.1109/INM.2015.7140318
– ident: e_1_2_10_40_1
– ident: e_1_2_10_24_1
– ident: e_1_2_10_53_1
  doi: 10.1007/s10619-013-7125-7
– ident: e_1_2_10_41_1
  doi: 10.32614/CRAN.package.RMOA
– ident: e_1_2_10_13_1
  doi: 10.1007/978-3-7908-2604-3_16
– ident: e_1_2_10_54_1
– ident: e_1_2_10_49_1
  doi: 10.1145/1821748.1821766
– ident: e_1_2_10_37_1
  doi: 10.1109/INM.2015.7140449
– ident: e_1_2_10_56_1
  doi: 10.1109/ISSC.2015.7163768
– ident: e_1_2_10_15_1
  doi: 10.1007/978-0-387-21606-5
– ident: e_1_2_10_55_1
  doi: 10.1109/INM.2015.7140272
– ident: e_1_2_10_44_1
  doi: 10.1145/2486001.2486025
– ident: e_1_2_10_12_1
  doi: 10.1109/INM.2011.5990693
– ident: e_1_2_10_25_1
– ident: e_1_2_10_6_1
– ident: e_1_2_10_10_1
  doi: 10.1145/1557019.1557060
– ident: e_1_2_10_4_1
  doi: 10.1109/NOMS.2008.4575113
– ident: e_1_2_10_22_1
SSID ssj0002197
Score 2.1601934
Snippet Summary We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations....
We predict performance metrics of cloud services using statistical learning, whereby the behaviour of a system is learned from observations. Specifically, we...
SourceID swepub
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Cloud computing
Design and implementations
Distance learning
Distributed computer systems
Forecasting
Learning systems
machine learning
Mean absolute error
Network statistics
Operating systems
Performance measurement
Performance metrics
Prediction accuracy
Predictions
quality of service
Real time
Real time network
Real-time analytics
real-time network analytics
Regression analysis
Statistical analysis
statistical learning
Statistics
Testbeds
Video streaming
Video transmission
Title A service‐agnostic method for predicting service metrics in real time
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnem.1991
https://www.proquest.com/docview/2012887430
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-225070
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33516
Volume 28
WOSCitedRecordID wos000427120900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1190
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002197
  issn: 1055-7148
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NToNAEN4Y60EP_hur1axJoydSurDLcmxsq4faGGNNbxtYQImVNlA9-wg-o0_iLAukTdSYeOLALGx2dma-gdlvEGp6xOfc4tSA4GRCguJEhg_AxKARRBs3cC0Z5Oz6A2c45OOxe1tUVaqzMJofovrgpiwj99fKwD0_ay2QhoYv6qgdZD41daYKEq9a964_GlR-GGwxb61iUmo4gPpL6lmTtMqxy8FoAWFq1tBlwJpHnP7Wf-a6jTYLnIk7emPsoJUw2UUbC-yDe-iqgzPtKT7fP_KCO5DFuqU0BiyLZ6n6i6PqoktBdRccZ4bjBAPanGDVmn4fjfq9-8tro-irYEiLOW3DYu3IdkJmB6FPSeQR6TqgMc9zoiCADEZS1w45czmLJDMlgLSAME59iKdtGVFqHaDVZJqEhwi7fkg85ng8sInNiQ9jJCUACWxPcbubdXRRLrCQBem46n0xEZoumQhYGqGWpo7OKsmZJtr4RqZR6kgUppYJokIsByAELzvXeqseoLizu_FDR0zTR_E8fxLgvcDH1VHzN8E0FpZF2wyelyv1x_mIYe9GXY_-KniM1mG6XNewNdDqPH0NT9CafJvHWXpabOAvz0v06g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kV1APvsX1GUH0VOymzaN4WtRVcV1EVLyFNm11Udelu3r2J_gb_SVOmnZZQUXw1EMnaZjJzHxJk28AtkMaSelJ5mBycnGBIlInQmDisBSzTRAHno5zdv2WaLfl7W1wMQb75V0Yyw8x3HAznpHHa-PgZkN6b4Q1NHkyd-1w6VP1uSdkBaqHl83r1jAQozPmtVVcxhyBsL_knnXpXtn2azYagZiWNvQrYs1TTnPmX4OdhekCaZKGnRpzMJZ052FqhH9wAY4bpG9jxcfbe37kDmWJLSpNEM2SXmb-45iT0aWgeYuhs086XYJ485GY4vSLcN08ujo4cYrKCo72uKg7Hq-nvki4HycRo2lIdSDQZmEo0jjGNYxmgZ9IHkieau5qhGkx5ZJFmFHrOmXMW4JK97mbLAMJooSGXIQy9qkvaYRtNKMICvzQsLu7NdgtNax0QTtuql88KkuYTBWqRhnV1GBrKNmzVBvfyKyVRlKFs_UVNUlWIhTCj-1Yww07MOzZh52bhnrO7tTD4F5h_MIoV4Pt3wSzjvI8VufYX27VH8ej2kfn5rnyV8FNmDi5Om-p1mn7bBUmcejSnmhbg8oge0nWYVy_Djr9bKOYzZ9yTvja
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwED9kiuiD_8X5N4LoU7FLmzTFp-GcinOIqPgW2jTVoc7RTZ_9CH5GP4mXph0TVASf-tBLGu5yd7-kye8AdiIaC-EJ5mBycnGBEqROjMDEYSlmmzAJPZXk7PqtoN0Wt7fhxRgclHdhLD_EcMPNeEYer42D616S7o-whuonc9cOlz7jPguZX4HxxmXzujUMxOiMeW0VlzEnQNhfcs-6dL9s-zUbjUBMSxv6FbHmKac5-6_BzsFMgTRJ3U6NeRjT3QWYHuEfXITjOunbWPHx9p4fuUNZYotKE0SzpJeZ_zjmZHQpaN5i6OyTTpcg3nwkpjj9Elw3j64OT5yisoKjPB7UHI_XUj_Q3E90zGgaURUGaLMoCtIkwTWMYqGvBQ8FTxV3FcK0hHLBYsyoNZUy5i1Dpfvc1StAwljTiAeRSHzqCxpjG8UoggI_MuzubhX2Sg1LVdCOm-oXj9ISJlOJqpFGNVXYHkr2LNXGNzLrpZFk4Wx9SU2SFQiF8GO71nDDDgx7dqNzU5fP2Z18GNxLjF8Y5aqw85tg1pGex2oc-8ut-uN4ZPvo3DxX_yq4BZMXjaZsnbbP1mAKRy7sgbZ1qAyyF70BE-p10Olnm8Vk_gQI9vhV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+service%E2%80%90agnostic+method+for+predicting+service+metrics+in+real+time&rft.jtitle=International+journal+of+network+management&rft.au=Yanggratoke%2C+Rerngvit&rft.au=Ahmed%2C+Jawwad&rft.au=Ardelius%2C+John&rft.au=Flinta%2C+Christofer&rft.date=2018-03-01&rft.issn=1055-7148&rft.eissn=1099-1190&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1002%2Fnem.1991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nem_1991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-7148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-7148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-7148&client=summon