Using differential evolution for fine tuning naïve Bayesian classifiers and its application for text classification

[Display omitted] •Using three metaheuristic algorithms to solve the probability estimation problem of NB.•Initial population is generated by a method used for fine-tuning the NB, namely, FTNB.•DE algorithm using a multi-parent mutation and crossover operations (MPDE) is proposed.•Three different me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 54; S. 183 - 199
Hauptverfasser: Diab, Diab M., El Hindi, Khalil M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.05.2017
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •Using three metaheuristic algorithms to solve the probability estimation problem of NB.•Initial population is generated by a method used for fine-tuning the NB, namely, FTNB.•DE algorithm using a multi-parent mutation and crossover operations (MPDE) is proposed.•Three different methods are used to select the final solution of DE.•Using MPDE achieves significant improvement over all other mothods. The Naive Bayes (NB) learning algorithm is simple and effective in many domains including text classification. However, its performance depends on the accuracy of the estimated conditional probability terms. Sometimes these terms are hard to be accurately estimated especially when the training data is scarce. This work transforms the probability estimation problem into an optimization problem, and exploits three metaheuristic approaches to solve it. These approaches are Genetic Algorithms (GA), Simulated Annealing (SA), and Differential Evolution (DE). We also propose a novel DE algorithm that uses multi-parent mutation and crossover operations (MPDE) and three different methods to select the final solution. We create an initial population by manipulating the solution generated by a method used for fine tuning the NB. We evaluate the proposed methods by using their resulted solutions to build NB classifiers and compare their results with the results of obtained from classical NB and Fine-Tuning Naïve Bayesian (FTNB) algorithm, using 53 UCI benchmark data sets. We name these obtained classifiers NBGA, NBSA, NBDE, and NB-MPDE respectively. We also evaluate the performance NB-MPDE for text-classification using 18 text-classification data sets, and compare its results with the results of obtained from FTNB, BNB, and MNB. The experimental results show that using DE in general and the proposed MPDE algorithm in particular are more convenient for fine-tuning NB than all other methods, including the other two metaheuristic methods (GA, and SA). They also indicate that NB-MPDE achieves superiority over classical NB, FTNB, NBDE, NBGA, NBSA, MNB, and BNB.
AbstractList [Display omitted] •Using three metaheuristic algorithms to solve the probability estimation problem of NB.•Initial population is generated by a method used for fine-tuning the NB, namely, FTNB.•DE algorithm using a multi-parent mutation and crossover operations (MPDE) is proposed.•Three different methods are used to select the final solution of DE.•Using MPDE achieves significant improvement over all other mothods. The Naive Bayes (NB) learning algorithm is simple and effective in many domains including text classification. However, its performance depends on the accuracy of the estimated conditional probability terms. Sometimes these terms are hard to be accurately estimated especially when the training data is scarce. This work transforms the probability estimation problem into an optimization problem, and exploits three metaheuristic approaches to solve it. These approaches are Genetic Algorithms (GA), Simulated Annealing (SA), and Differential Evolution (DE). We also propose a novel DE algorithm that uses multi-parent mutation and crossover operations (MPDE) and three different methods to select the final solution. We create an initial population by manipulating the solution generated by a method used for fine tuning the NB. We evaluate the proposed methods by using their resulted solutions to build NB classifiers and compare their results with the results of obtained from classical NB and Fine-Tuning Naïve Bayesian (FTNB) algorithm, using 53 UCI benchmark data sets. We name these obtained classifiers NBGA, NBSA, NBDE, and NB-MPDE respectively. We also evaluate the performance NB-MPDE for text-classification using 18 text-classification data sets, and compare its results with the results of obtained from FTNB, BNB, and MNB. The experimental results show that using DE in general and the proposed MPDE algorithm in particular are more convenient for fine-tuning NB than all other methods, including the other two metaheuristic methods (GA, and SA). They also indicate that NB-MPDE achieves superiority over classical NB, FTNB, NBDE, NBGA, NBSA, MNB, and BNB.
Author El Hindi, Khalil M.
Diab, Diab M.
Author_xml – sequence: 1
  givenname: Diab M.
  orcidid: 0000-0003-1904-2238
  surname: Diab
  fullname: Diab, Diab M.
  email: ddiab@ksu.edu.sa
– sequence: 2
  givenname: Khalil M.
  orcidid: 0000-0003-2457-9961
  surname: El Hindi
  fullname: El Hindi, Khalil M.
  email: khindi@ksu.edu.sa
BookMark eNp9kE1OwzAQRi1UJNrCBVj5AgmxnTiOxAYq_qRKLIC15Thj5Co4le1W9FQcgovhUNQFi248o9H3PJo3QxM3OEDokhQ5KQi_WuUqDDqnqc8JzYuSnaApETXNGi7IJPUVF1nZlPwMzUJYFSnYUDFF8S1Y9447awx4cNGqHsN26DfRDg6bwWNjHeC4cWPMqe-vLeBbtYNglcO6VyFYY8EHrFyHbUx1ve6tVgc-wmc8BPfzc3RqVB_g4q_O0cv93eviMVs-PzwtbpaZZpzHzNS8ZcQYTtNDQFfGVC1pdU2EZnXVCGBGsFrQWjVtIxpRcd2WTJVAFDFsjsT-V-2HEDwYqW383R-9sr0khRzdyZUc3cnRnSRUJncJpf_Qtbcfyu-OQ9d7CNJJ2-REBm3BaeisBx1lN9hj-A-Mw47h
CitedBy_id crossref_primary_10_12677_AAM_2023_1210423
crossref_primary_10_1080_08839514_2020_1790246
crossref_primary_10_3390_en14144140
crossref_primary_10_1016_j_ins_2021_08_025
crossref_primary_10_1016_j_neucom_2022_03_020
crossref_primary_10_1155_2019_2537689
crossref_primary_10_3389_fncom_2022_900885
crossref_primary_10_1007_s11227_019_02862_1
crossref_primary_10_1016_j_ipm_2018_09_004
crossref_primary_10_1007_s10660_019_09342_x
crossref_primary_10_3390_electronics11193126
crossref_primary_10_1016_j_bspc_2023_104700
crossref_primary_10_1016_j_asoc_2017_11_037
crossref_primary_10_1007_s10115_021_01622_z
crossref_primary_10_1007_s00521_019_04133_9
crossref_primary_10_1016_j_ipm_2023_103337
crossref_primary_10_1109_TKDE_2018_2836440
crossref_primary_10_1007_s11042_020_09013_2
crossref_primary_10_1016_j_procs_2018_05_104
crossref_primary_10_1007_s00500_021_06384_y
crossref_primary_10_1109_ACCESS_2019_2945907
crossref_primary_10_1007_s11042_024_19769_6
crossref_primary_10_1016_j_eswa_2018_03_058
crossref_primary_10_1007_s12046_020_01372_8
crossref_primary_10_1016_j_asoc_2020_106652
crossref_primary_10_1016_j_patcog_2025_112181
crossref_primary_10_3390_app13084852
crossref_primary_10_1007_s12652_022_04497_2
crossref_primary_10_3390_app12168087
crossref_primary_10_1016_j_heliyon_2024_e39279
crossref_primary_10_1007_s10489_019_01509_1
crossref_primary_10_1016_j_eswa_2021_115525
crossref_primary_10_3390_a13040083
crossref_primary_10_1016_j_eswa_2020_113265
crossref_primary_10_1080_0952813X_2018_1544284
crossref_primary_10_1007_s11432_020_3277_0
crossref_primary_10_1371_journal_pone_0278364
crossref_primary_10_1016_j_patcog_2018_11_032
crossref_primary_10_4018_IJIRR_2019010103
crossref_primary_10_3390_e20110857
crossref_primary_10_1109_TAI_2022_3144651
crossref_primary_10_1016_j_asoc_2022_109794
crossref_primary_10_1016_j_asoc_2019_01_003
crossref_primary_10_1155_2021_9524705
crossref_primary_10_1007_s11042_024_19528_7
crossref_primary_10_3390_s21134579
crossref_primary_10_1016_j_enbuild_2021_111105
crossref_primary_10_1016_j_patrec_2019_08_024
crossref_primary_10_1016_j_asoc_2017_12_007
crossref_primary_10_1007_s00521_018_3393_5
crossref_primary_10_1371_journal_pone_0250951
crossref_primary_10_1109_TBCAS_2024_3421313
crossref_primary_10_1109_ACCESS_2020_3044946
crossref_primary_10_1007_s00521_020_04997_2
crossref_primary_10_1016_j_patcog_2020_107674
crossref_primary_10_1016_j_ins_2019_08_071
crossref_primary_10_1016_j_jbi_2019_103191
crossref_primary_10_1016_j_ins_2022_10_004
crossref_primary_10_1080_08839514_2020_1723868
crossref_primary_10_1109_ACCESS_2020_2973331
crossref_primary_10_4018_IJIIT_2019040101
Cites_doi 10.1016/j.eswa.2012.03.022
10.1007/11424918_29
10.1016/j.knosys.2011.08.010
10.1016/j.engappai.2016.02.002
10.1109/ICCET.2010.5485482
10.1016/j.ins.2015.09.037
10.1023/A:1007465528199
10.1016/j.eswa.2015.02.049
10.3233/AIC-130588
10.1109/4235.752918
10.1142/S0218001416500038
10.1016/j.asej.2014.04.011
10.1093/comjnl/41.8.537
10.1016/B978-1-55860-332-5.50055-9
10.1142/S0218001416510058
10.1109/ICDM.2005.87
10.1016/j.eswa.2008.01.014
10.1016/j.eswa.2006.01.013
10.1201/b17988-20
10.1016/j.knosys.2006.11.008
10.1109/TSMCB.2011.2167966
10.1007/s10817-009-9130-0
10.1023/A:1007369909943
10.1007/s10115-007-0114-2
10.1016/j.eswa.2016.06.005
10.1016/j.engappai.2013.09.013
10.1023/A:1008202821328
10.1007/978-3-540-36668-3_116
10.1007/s10994-005-4258-6
10.1142/S0218213011004770
10.1109/CEC.2004.1331139
10.1109/CEC.2003.1299382
10.1016/S0305-0548(03)00116-3
10.1145/183422.183424
10.1613/jair.346
10.1016/j.patcog.2015.08.023
10.1109/LPT.2009.2020494
10.1039/b104835j
10.1016/j.jksuci.2014.03.008
10.1142/S0218001408006703
10.1016/j.knosys.2016.02.017
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2016.12.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 199
ExternalDocumentID 10_1016_j_asoc_2016_12_043
S156849461630672X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-f76b31ff621ff1ec5ff5b1bc718c37598e3f837827a9b989856cb43a4e1a1f3
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395901200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:51:19 EST 2025
Tue Nov 18 20:54:00 EST 2025
Fri Feb 23 02:24:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Improving estimated probabilities
Multi-parent crossover
Multinomial NB
Fine tuning Naïve Bayes
Multi-parent mutation
Genetic algorithm
Simulated annealing
Differential evolution
Bernoulli NB
Text classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-f76b31ff621ff1ec5ff5b1bc718c37598e3f837827a9b989856cb43a4e1a1f3
ORCID 0000-0003-2457-9961
0000-0003-1904-2238
PageCount 17
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2016_12_043
crossref_primary_10_1016_j_asoc_2016_12_043
elsevier_sciencedirect_doi_10_1016_j_asoc_2016_12_043
PublicationCentury 2000
PublicationDate May 2017
2017-05-00
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Elsayed, Sarker, Essam (bib0235) 2014; 27
I. Rish, An empirical study of the Naive Bayes classifier, IJCAI 2001 Work. Empir. Methods Artif. (2001) 41–46. doi:10.1039/b104835j.
I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition, 2005.
Tsutsui, Yamamura, Higuchi (bib0350) 1999
A. Gupte, S. Joshi, P. Gadgul, A. Kadam, Comparative Study of Classification Algorithms used in Sentiment Analysis, (n.d.).
L. Jiang, H. Zhang, Z. Cai, J. Su, Evolutional Naive Bayes, Proc. 1st Int. Symp. (2005).
Pazzani, Billsus (bib0020) 1997; 27
H. Liang, J., Xu, Y. Cheng, An Improving Text Categorization Method of Naive Bayes, J. Hebei Univ. Natural. (2007).
Jiang, Wang, Zhang, Cai, Huang (bib0175) 2008; 22
Yang, Tang, Yao (bib0365) 2008
L. Ying, Analysis on Text Classification Using Naive Bayes, Comput. Knowl. Technol. Academic. (2007).
Palacios-Alonso, Brizuela, Sucar (bib0295) 2009; 45
Alhussan, El Hindi (bib0410) 2016; 30
(Accessed 23 October 2016).
Hall (bib0305) 2007; 20
Storn (bib0315) 1999; 3
Jiang, Wang, Li, Zhang (bib0260) 2016; 329
Jiang, Wang, Cai (bib0270) 2012; 21
Thomsen (bib0320) 2003
Liu, Li, Nie, Zheng (bib0355) 2012
Wu, Pan, Zhu, Zhang, Zhang (bib0265) 2016; 51
W. Gong, Z. Cai, L. Jiang, Enhancing the performance of differential evolution using orthogonal design method, Appl. Math. Comput. (2008).
Lewis (bib0095) 1998
K. Price, R. Storn, J. Lampinen, Differential evolution: a practical approach to global optimization, (2005).
Liangxiao Jiang, Zhang (bib0165) 2005
J. Wu, Z. Cai, Attribute weighting via differential evolution algorithm for attribute weighted naive bayes (wnb)‏, J. Comput. Inf. Syst. 2011‏. (n.d.).
Vesterstrom, Thomsen (bib0310) 2004
Li, Park (bib0055) 2009; 36
Wilson, Martinez (bib0005) 1997; 6
.
H. Zhang, L. Jiang, J. Su, Hidden Naive Bayes, Proc. Natl. Conf (2005) 919–924.
Dai, Zhou, Zhang, Jiang (bib0390) 2013
G.I. Alkhatib, Agent Technologies and Web Engineering: Applications and Systems, Google Books, (n.d.)
El Hindi (bib0185) 2014; 26
Jiang, Cai, Wang, Zhang (bib0205) 2012
(Accessed 12 March 2015).
U.M. Fayyad, K.B. Irani, Multi-Interval Discretization of Continuos-Valued Attributes for Classification Learning, in: Proc. Int. Jt. Conf. Uncertain. AI, Proceedings of the International Joint Conference on Uncertainty in AI, 1993: pp. 1022–1027.
S.M. Kamruzzaman, C.M. Rahman, Text Categorization using Association Rule and Naive Bayes Classifier, (2010). doi:10.3923/ajit.2004.657.665.
Ao, Chi (bib0345) 2009
Wright (bib0230) 1990
Webb, Boughton, Wang (bib0400) 2005; 58
Russell, Norvig (bib0130) 1995; vol. 25
Mitchell (bib0140) 1997
Larkey, Croft (bib0080) 1996
Buddeewong, Kreesuradej (bib0090) 2005
Ragas, Koster (bib0010) 1998
Chen donghui, Liu zhijing (bib0050) 2010
Wu, Kumar, Ross Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Yu, Zhou, Steinbach, Hand, Steinberg (bib0120) 2007; 14
Judea Pearl (bib0275) 1991
Shin, Abraham, Han (bib0030) 2006
C.L. Blake, C.J. Merz, UCI Repository of machine learning databases, Univ. Calif. (1998)
Jiang, Li, Wang, Zhang (bib0245) 2016; 52
L. Jiang, H. Zhang, J. Su, Instance Cloning Local Naive Bayes, in: 2005: pp. 280–291. doi:10.1007/11424918_29.
Jiang, Cai, Zhang, Wang (bib0300) 2012; 39
D.E. Johnson, F.J. Oles, T. Zhang, T. Goetz, A decision-tree-based symbolic rule induction system for text categorization, (n.d.).
(Accessed 6 June 2016).
A. McCallum, K. Nigam, A comparison of event models for Naive Bayes text classification, AAAI-98 Work Learn Text (1998).
Zhang, Jiang, Li, Kong (bib0240) 2016; 100
M.E.H. Pedersen, M.E.H. Pedersen, Tuning & Simplifying Heuristical Optimization, (2010).
Yang, Tang, Yao (bib0360) 2007
P. Langley, S. Sage, Induction of Selective Bayesian Classifiers, Proc. Tenth Int. Conf. Uncertain. Artif. Intell. (1994) 399–406.
(Accessed 7 June 2016).
J.D.M. Rennie, L. Shih, J. Teevan, D.R. Karger, Tackling the Poor Assumptions of Naive Bayes Text Classifiers, (2003).
Zhou, Zhang, Wang, Zhang (bib0340) 2015
Mehta, Agrawal, Rissanen (bib0035) 1996
A.J.C. Trappey, F.-C. Hsu, C. V Trappey, C.-I. Lin, Development of a patent document classification and search platform using a back-propagation network, (n.d.). doi:10.1016/j.eswa.2006.01.013.
Islam, Das, Ghosh, Roy, Suganthan (bib0385) 2012; 42
Medhat, Hassan, Korashy (bib0105) 2014; 5
El Hindi (bib0180) 2014; 27
T. Joachims, Text Categorization with Support Vector Machines: Learning with Many Relevant Features, (n.d.).
Jiang, Zhang (bib0405) 2006
Dumais, Platt, Heckerman, Sahami (bib0015) 1998
Yang, Chute (bib0065) 1994; 12
Friedman, Geiger, Goldszmidt (bib0280) 1997; 29
Onan, Korukoğlu, Bulut (bib0070) 2016; 62
C.D. Manning, P. Raghavan, An Introduction to Information Retrieval, 2009. doi:10.1109/LPT.2009.2020494.
S. Taheri, M., Mammadov, A.M. Bagirov, Improving Naive Bayes Classifier Using Conditional Probabilities, (2010) 63–68.
Storn, Price (bib0215) 1997; 11
Danesh, Moshiri, Fatemi (bib0025) 2007
Zhang, Jiang, Li (bib0190) 2016; 30
Alan, Bovik (bib0335) 2008; 38
R. Gämperle, S. Müller, A parameter study for differential evolution, Adv. Intell. (2002).
Qiu, Jiang, Li (bib0255) 2015; 42
A. Garg, D. Roth, Understanding Probabilistic Classifiers, (n.d.).
Li, Jain (bib0075) 1998; 41
Ali, Törn (bib0325) 2004; 31
H. Zhang, C. Ling, An improved learning algorithm for augmented naive Bayes, Adv. Knowl. Discov. Data Min. (2001). http://link.springer.com/chapter/10.1007/3-540-45357-1_62. (Accessed 7 June 2016).
10.1016/j.asoc.2016.12.043_bib0040
10.1016/j.asoc.2016.12.043_bib0160
El Hindi (10.1016/j.asoc.2016.12.043_bib0180) 2014; 27
10.1016/j.asoc.2016.12.043_bib0085
Jiang (10.1016/j.asoc.2016.12.043_bib0245) 2016; 52
Alhussan (10.1016/j.asoc.2016.12.043_bib0410) 2016; 30
Jiang (10.1016/j.asoc.2016.12.043_bib0300) 2012; 39
Hall (10.1016/j.asoc.2016.12.043_bib0305) 2007; 20
Russell (10.1016/j.asoc.2016.12.043_bib0130) 1995; vol. 25
Mitchell (10.1016/j.asoc.2016.12.043_bib0140) 1997
Wu (10.1016/j.asoc.2016.12.043_bib0265) 2016; 51
Wu (10.1016/j.asoc.2016.12.043_bib0120) 2007; 14
Palacios-Alonso (10.1016/j.asoc.2016.12.043_bib0295) 2009; 45
Wright (10.1016/j.asoc.2016.12.043_bib0230) 1990
Qiu (10.1016/j.asoc.2016.12.043_bib0255) 2015; 42
Buddeewong (10.1016/j.asoc.2016.12.043_bib0090) 2005
Zhang (10.1016/j.asoc.2016.12.043_bib0240) 2016; 100
Tsutsui (10.1016/j.asoc.2016.12.043_bib0350) 1999
Storn (10.1016/j.asoc.2016.12.043_bib0315) 1999; 3
Yang (10.1016/j.asoc.2016.12.043_bib0365) 2008
10.1016/j.asoc.2016.12.043_bib0115
Zhou (10.1016/j.asoc.2016.12.043_bib0340) 2015
Danesh (10.1016/j.asoc.2016.12.043_bib0025) 2007
10.1016/j.asoc.2016.12.043_bib0110
Jiang (10.1016/j.asoc.2016.12.043_bib0270) 2012; 21
10.1016/j.asoc.2016.12.043_bib0395
10.1016/j.asoc.2016.12.043_bib0155
10.1016/j.asoc.2016.12.043_bib0150
Lewis (10.1016/j.asoc.2016.12.043_bib0095) 1998
10.1016/j.asoc.2016.12.043_bib0195
Yang (10.1016/j.asoc.2016.12.043_bib0065) 1994; 12
Onan (10.1016/j.asoc.2016.12.043_bib0070) 2016; 62
Ali (10.1016/j.asoc.2016.12.043_bib0325) 2004; 31
Larkey (10.1016/j.asoc.2016.12.043_bib0080) 1996
Elsayed (10.1016/j.asoc.2016.12.043_bib0235) 2014; 27
Ao (10.1016/j.asoc.2016.12.043_bib0345) 2009
Li (10.1016/j.asoc.2016.12.043_bib0055) 2009; 36
Wilson (10.1016/j.asoc.2016.12.043_bib0005) 1997; 6
Islam (10.1016/j.asoc.2016.12.043_bib0385) 2012; 42
Dai (10.1016/j.asoc.2016.12.043_bib0390) 2013
Jiang (10.1016/j.asoc.2016.12.043_bib0260) 2016; 329
Storn (10.1016/j.asoc.2016.12.043_bib0215) 1997; 11
10.1016/j.asoc.2016.12.043_bib0225
Shin (10.1016/j.asoc.2016.12.043_bib0030) 2006
10.1016/j.asoc.2016.12.043_bib0220
10.1016/j.asoc.2016.12.043_bib0145
10.1016/j.asoc.2016.12.043_bib0100
Li (10.1016/j.asoc.2016.12.043_bib0075) 1998; 41
10.1016/j.asoc.2016.12.043_bib0380
Mehta (10.1016/j.asoc.2016.12.043_bib0035) 1996
10.1016/j.asoc.2016.12.043_bib0060
Zhang (10.1016/j.asoc.2016.12.043_bib0190) 2016; 30
Vesterstrom (10.1016/j.asoc.2016.12.043_bib0310) 2004
Yang (10.1016/j.asoc.2016.12.043_bib0360) 2007
Jiang (10.1016/j.asoc.2016.12.043_bib0405) 2006
Thomsen (10.1016/j.asoc.2016.12.043_bib0320) 2003
Liangxiao Jiang (10.1016/j.asoc.2016.12.043_bib0165) 2005
10.1016/j.asoc.2016.12.043_bib0135
Judea Pearl (10.1016/j.asoc.2016.12.043_bib0275) 1991
Webb (10.1016/j.asoc.2016.12.043_bib0400) 2005; 58
Pazzani (10.1016/j.asoc.2016.12.043_bib0020) 1997; 27
Alan (10.1016/j.asoc.2016.12.043_bib0335) 2008; 38
Jiang (10.1016/j.asoc.2016.12.043_bib0175) 2008; 22
10.1016/j.asoc.2016.12.043_bib0330
10.1016/j.asoc.2016.12.043_bib0210
10.1016/j.asoc.2016.12.043_bib0375
10.1016/j.asoc.2016.12.043_bib0370
Ragas (10.1016/j.asoc.2016.12.043_bib0010) 1998
10.1016/j.asoc.2016.12.043_bib0250
10.1016/j.asoc.2016.12.043_bib0170
10.1016/j.asoc.2016.12.043_bib0290
Dumais (10.1016/j.asoc.2016.12.043_bib0015) 1998
Medhat (10.1016/j.asoc.2016.12.043_bib0105) 2014; 5
Jiang (10.1016/j.asoc.2016.12.043_bib0205) 2012
El Hindi (10.1016/j.asoc.2016.12.043_bib0185) 2014; 26
10.1016/j.asoc.2016.12.043_bib0125
10.1016/j.asoc.2016.12.043_bib0285
Liu (10.1016/j.asoc.2016.12.043_bib0355) 2012
10.1016/j.asoc.2016.12.043_bib0200
10.1016/j.asoc.2016.12.043_bib0045
Chen donghui (10.1016/j.asoc.2016.12.043_bib0050) 2010
Friedman (10.1016/j.asoc.2016.12.043_bib0280) 1997; 29
References_xml – reference: H. Zhang, C. Ling, An improved learning algorithm for augmented naive Bayes, Adv. Knowl. Discov. Data Min. (2001). http://link.springer.com/chapter/10.1007/3-540-45357-1_62. (Accessed 7 June 2016).
– start-page: 1980
  year: 2004
  end-page: 1987
  ident: bib0310
  article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
  publication-title: Proc 2004 Congr. Evol. Comput. (IEEE Cat. No.04TH8753), IEEE
– volume: 30
  year: 2016
  ident: bib0410
  article-title: Selectively fine-tuning Bayesian network learning algorithm
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– volume: 329
  start-page: 346
  year: 2016
  end-page: 356
  ident: bib0260
  article-title: Structure extended multinomial Naive Bayes
  publication-title: Inf. Sci. (Ny)
– reference: J. Wu, Z. Cai, Attribute weighting via differential evolution algorithm for attribute weighted naive bayes (wnb)‏, J. Comput. Inf. Syst. 2011‏. (n.d.).
– volume: 42
  start-page: 482
  year: 2012
  end-page: 500
  ident: bib0385
  article-title: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 3
  start-page: 22
  year: 1999
  end-page: 34
  ident: bib0315
  article-title: System design by constraint adaptation and differential evolution
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 202
  year: 2005
  end-page: 209
  ident: bib0165
  article-title: Learning instance greedily cloning Naive Bayes for ranking
  publication-title: Fifth IEEE Int Conf. Data Min., IEEE
– volume: 45
  start-page: 21
  year: 2009
  end-page: 37
  ident: bib0295
  article-title: Evolutionary learning of dynamic naive bayesian classifiers
  publication-title: J. Autom. Reason.
– volume: 30
  year: 2016
  ident: bib0190
  article-title: A new feature selection approach to Naive Bayes text classifiers
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– volume: 52
  start-page: 26
  year: 2016
  end-page: 39
  ident: bib0245
  article-title: Deep feature weighting for Naive Bayes and its application to text classification
  publication-title: Eng. Appl. Artif. Intell.
– reference: C.L. Blake, C.J. Merz, UCI Repository of machine learning databases, Univ. Calif. (1998)
– start-page: 2329
  year: 2013
  end-page: 2336
  ident: bib0390
  article-title: A differential evolution with an orthogonal local search
  publication-title: 2013 IEEE Congr. Evol. Comput. CEC
– start-page: 3523
  year: 2007
  end-page: 3530
  ident: bib0360
  article-title: Differential evolution for high-dimensional function optimization
  publication-title: 2007 IEEE Congr. Evol. Comput. CEC 2007, IEEE
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0215
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– reference: S. Taheri, M., Mammadov, A.M. Bagirov, Improving Naive Bayes Classifier Using Conditional Probabilities, (2010) 63–68.
– start-page: 1110
  year: 2008
  end-page: 1116
  ident: bib0365
  article-title: Self-adaptive differential evolution with neighborhood search
  publication-title: 2008 IEEE Congr. Evol. Comput. CEC 2008, IEEE
– reference: G.I. Alkhatib, Agent Technologies and Web Engineering: Applications and Systems, Google Books, (n.d.)
– year: 2012
  ident: bib0355
  article-title: A novel clustering-based differential evolution with 2 multi-parent crossovers for global optimization
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 1250007
  year: 2012
  ident: bib0270
  article-title: Discriminatively weighted Naive Bayes and its application in text classification
  publication-title: Int. J. Artif. Intell. Tools
– volume: 29
  start-page: 131
  year: 1997
  end-page: 163
  ident: bib0280
  article-title: Bayesian network classifiers
  publication-title: Mach. Learn.
– reference: A. McCallum, K. Nigam, A comparison of event models for Naive Bayes text classification, AAAI-98 Work Learn Text (1998).
– start-page: 1
  year: 2007
  end-page: 6
  ident: bib0025
  article-title: Improve text classification accuracy based on classifier fusion methods, 2007
  publication-title: 10th Int. Conf. Inf. Fusion
– volume: 5
  start-page: 1093
  year: 2014
  end-page: 1113
  ident: bib0105
  article-title: Sentiment analysis algorithms and applications: a survey
  publication-title: Ain Shams Eng. J.
– volume: 26
  start-page: 237
  year: 2014
  end-page: 246
  ident: bib0185
  article-title: A noise tolerant fine tuning algorithm for the Naïve Bayesian learning algorithm
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– reference: . (Accessed 7 June 2016).
– reference: T. Joachims, Text Categorization with Support Vector Machines: Learning with Many Relevant Features, (n.d.).
– volume: 62
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib0070
  article-title: A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification
  publication-title: Expert Syst. Appl.
– start-page: 79
  year: 2015
  end-page: 82
  ident: bib0340
  article-title: Feature selection in medical text classification based on differential evolution algorithm
  publication-title: Electron. Inf. Technol. Intellectualization, CRC Press
– reference: . (Accessed 6 June 2016).
– volume: 20
  start-page: 120
  year: 2007
  end-page: 126
  ident: bib0305
  article-title: A decision tree-based attribute weighting filter for Naive Bayes
  publication-title: Knowl. Based Syst.
– start-page: 369
  year: 1998
  end-page: 370
  ident: bib0010
  article-title: Four text classification algorithms compared on a Dutch corpus
  publication-title: Proc. 21st Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr.-SIGIR ’98, ACM Press
– start-page: 289
  year: 1996
  end-page: 297
  ident: bib0080
  article-title: Combining classifiers in text categorization
  publication-title: Proc. 19th Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr.-SIGIR ’96, ACM Press
– volume: 12
  start-page: 252
  year: 1994
  end-page: 277
  ident: bib0065
  article-title: An example-based mapping method for text categorization and retrieval
  publication-title: ACM Trans. Inf. Syst.
– volume: 38
  start-page: 1
  year: 2008
  end-page: 38
  ident: bib0335
  article-title: Document clustering using differential evolution
  publication-title: Optimization
– volume: 27
  start-page: 133
  year: 2014
  end-page: 141
  ident: bib0180
  article-title: Fine tuning the Naïve Bayesian learning algorithm
  publication-title: AI Commun.
– reference: J.D.M. Rennie, L. Shih, J. Teevan, D.R. Karger, Tackling the Poor Assumptions of Naive Bayes Text Classifiers, (2003).
– start-page: 2
  year: 2005
  end-page: 685
  ident: bib0090
  article-title: A new association rule-based text classifier algorithm
  publication-title: 17th IEEE Int. Conf. Tools with Artif. Intell., IEEE
– start-page: 414
  year: 1997
  ident: bib0140
  article-title: Machine Learning
– reference: . (Accessed 23 October 2016).
– volume: 39
  start-page: 11022
  year: 2012
  end-page: 11028
  ident: bib0300
  article-title: Not so greedy: randomly selected Naive Bayes
  publication-title: Expert Syst. Appl.
– year: 1991
  ident: bib0275
  article-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
– reference: H. Zhang, L. Jiang, J. Su, Hidden Naive Bayes, Proc. Natl. Conf (2005) 919–924.
– reference: L. Jiang, H. Zhang, J. Su, Instance Cloning Local Naive Bayes, in: 2005: pp. 280–291. doi:10.1007/11424918_29.
– reference: L. Ying, Analysis on Text Classification Using Naive Bayes, Comput. Knowl. Technol. Academic. (2007).
– volume: 42
  start-page: 5433
  year: 2015
  end-page: 5440
  ident: bib0255
  article-title: Not always simple classification: learning SuperParent for class probability estimation
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 1121
  year: 2008
  end-page: 1140
  ident: bib0175
  article-title: Using instance cloning to improve Naive Bayes for ranking
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– year: 2010
  ident: bib0050
  article-title: A new text categorization method based on HMM and SVM
  publication-title: 2010 2nd Int. Conf. Comput. Eng. Technol., IEEE
– volume: 31
  start-page: 1703
  year: 2004
  end-page: 1725
  ident: bib0325
  article-title: Population set-based global optimization algorithms: some modifications and numerical studies
  publication-title: Comput. Oper. Res.
– reference: P. Langley, S. Sage, Induction of Selective Bayesian Classifiers, Proc. Tenth Int. Conf. Uncertain. Artif. Intell. (1994) 399–406.
– volume: 41
  start-page: 537
  year: 1998
  end-page: 546
  ident: bib0075
  article-title: Classification of text documents
  publication-title: Comput. J.
– reference: . (Accessed 12 March 2015).
– reference: D.E. Johnson, F.J. Oles, T. Zhang, T. Goetz, A decision-tree-based symbolic rule induction system for text categorization, (n.d.).
– volume: 6
  start-page: 1
  year: 1997
  end-page: 34
  ident: bib0005
  article-title: Improved heterogeneous distance functions
  publication-title: J. Artif. Intell. Res.
– volume: 27
  start-page: 313
  year: 1997
  end-page: 331
  ident: bib0020
  article-title: Learning and revising user profiles: the identification of interesting web sites
  publication-title: Mach. Learn.
– volume: 100
  start-page: 137
  year: 2016
  end-page: 144
  ident: bib0240
  article-title: Two feature weighting approaches for Naive Bayes text classifiers
  publication-title: Knowl. Based Syst.
– start-page: 205
  year: 1990
  end-page: 220
  ident: bib0230
  article-title: Genetic algorithms for real parameter optimization
  publication-title: Found Genet. Agorithms
– start-page: 563
  year: 2006
  end-page: 566
  ident: bib0030
  article-title: Improving kNN Text Categorization by Removing Outliers from Training Set
– start-page: 970
  year: 2006
  end-page: 974
  ident: bib0405
  article-title: Weightily averaged one-dependence estimators
  publication-title: PRICAI 2006 Trends Artif. Intell.
– reference: R. Gämperle, S. Müller, A parameter study for differential evolution, Adv. Intell. (2002).
– reference: C.D. Manning, P. Raghavan, An Introduction to Information Retrieval, 2009. doi:10.1109/LPT.2009.2020494.
– reference: S.M. Kamruzzaman, C.M. Rahman, Text Categorization using Association Rule and Naive Bayes Classifier, (2010). doi:10.3923/ajit.2004.657.665.
– reference: I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition, 2005.
– start-page: 18
  year: 1996
  end-page: 32
  ident: bib0035
  article-title: SLIQ: a fast scalable classifier for data mining
  publication-title: Proc. 5th Int. Conf. Extending Database Technol. Adv. Database Technol.
– volume: 27
  start-page: 57
  year: 2014
  end-page: 69
  ident: bib0235
  article-title: A new genetic algorithm for solving optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– reference: U.M. Fayyad, K.B. Irani, Multi-Interval Discretization of Continuos-Valued Attributes for Classification Learning, in: Proc. Int. Jt. Conf. Uncertain. AI, Proceedings of the International Joint Conference on Uncertainty in AI, 1993: pp. 1022–1027.
– start-page: 148
  year: 1998
  end-page: 155
  ident: bib0015
  article-title: Inductive learning algorithms and representations for text categorization
  publication-title: Proc. Seventh Int. Conf. Inf. Knowl. Manag.-CIKM ’98, ACM Press
– volume: 14
  start-page: 1
  year: 2007
  end-page: 37
  ident: bib0120
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl. Inf. Syst.
– volume: 58
  start-page: 5
  year: 2005
  end-page: 24
  ident: bib0400
  article-title: Not so Naive Bayes: aggregating one-dependence estimators
  publication-title: Mach. Learn.
– reference: .
– reference: K. Price, R. Storn, J. Lampinen, Differential evolution: a practical approach to global optimization, (2005).
– reference: A. Garg, D. Roth, Understanding Probabilistic Classifiers, (n.d.).
– start-page: 657
  year: 1999
  end-page: 664
  ident: bib0350
  article-title: Multi-parent recombination with simplex crossover in real coded genetic algorithms
  publication-title: Proc. 1999 Genet. Evol. Comput. Conf.
– volume: 36
  start-page: 3208
  year: 2009
  end-page: 3215
  ident: bib0055
  article-title: An efficient document classification model using an improved back propagation neural network and singular value decomposition
  publication-title: Expert Syst. Appl.
– reference: I. Rish, An empirical study of the Naive Bayes classifier, IJCAI 2001 Work. Empir. Methods Artif. (2001) 41–46. doi:10.1039/b104835j.
– year: 2012
  ident: bib0205
  article-title: Improving tree augmented Naive Bayes for class probability estimation
  publication-title: Knowl. Based Syst.
– reference: A. Gupte, S. Joshi, P. Gadgul, A. Kadam, Comparative Study of Classification Algorithms used in Sentiment Analysis, (n.d.).
– reference: A.J.C. Trappey, F.-C. Hsu, C. V Trappey, C.-I. Lin, Development of a patent document classification and search platform using a back-propagation network, (n.d.). doi:10.1016/j.eswa.2006.01.013.
– start-page: 4
  year: 1998
  end-page: 15
  ident: bib0095
  article-title: Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval
– reference: L. Jiang, H. Zhang, Z. Cai, J. Su, Evolutional Naive Bayes, Proc. 1st Int. Symp. (2005).
– start-page: 2354
  year: 2003
  end-page: 2361
  ident: bib0320
  article-title: Flexible ligand docking using differential evolution
  publication-title: 2003 Congr. Evol. Comput. CEC 2003-Proc., IEEE
– start-page: 618
  year: 2009
  end-page: 622
  ident: bib0345
  article-title: Multi-parent mutation in differential evolution for multi-objective optimization
  publication-title: 5th Int Conf. Nat. Comput. ICNC 2009, IEEE
– reference: W. Gong, Z. Cai, L. Jiang, Enhancing the performance of differential evolution using orthogonal design method, Appl. Math. Comput. (2008).
– volume: 51
  start-page: 358
  year: 2016
  end-page: 377
  ident: bib0265
  article-title: SODE: self-adaptive one-dependence estimators for classification
  publication-title: Pattern Recognit.
– reference: H. Liang, J., Xu, Y. Cheng, An Improving Text Categorization Method of Naive Bayes, J. Hebei Univ. Natural. (2007).
– volume: vol. 25
  start-page: 27
  year: 1995
  ident: bib0130
  publication-title: A Modern Approach
– reference: M.E.H. Pedersen, M.E.H. Pedersen, Tuning & Simplifying Heuristical Optimization, (2010).
– volume: 39
  start-page: 11022
  year: 2012
  ident: 10.1016/j.asoc.2016.12.043_bib0300
  article-title: Not so greedy: randomly selected Naive Bayes
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.03.022
– start-page: 4
  year: 1998
  ident: 10.1016/j.asoc.2016.12.043_bib0095
– ident: 10.1016/j.asoc.2016.12.043_bib0170
  doi: 10.1007/11424918_29
– year: 2012
  ident: 10.1016/j.asoc.2016.12.043_bib0205
  article-title: Improving tree augmented Naive Bayes for class probability estimation
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2011.08.010
– volume: 52
  start-page: 26
  year: 2016
  ident: 10.1016/j.asoc.2016.12.043_bib0245
  article-title: Deep feature weighting for Naive Bayes and its application to text classification
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.02.002
– start-page: 148
  year: 1998
  ident: 10.1016/j.asoc.2016.12.043_bib0015
  article-title: Inductive learning algorithms and representations for text categorization
– year: 2010
  ident: 10.1016/j.asoc.2016.12.043_bib0050
  article-title: A new text categorization method based on HMM and SVM
  publication-title: 2010 2nd Int. Conf. Comput. Eng. Technol., IEEE
  doi: 10.1109/ICCET.2010.5485482
– start-page: 563
  year: 2006
  ident: 10.1016/j.asoc.2016.12.043_bib0030
– ident: 10.1016/j.asoc.2016.12.043_bib0370
– volume: 329
  start-page: 346
  year: 2016
  ident: 10.1016/j.asoc.2016.12.043_bib0260
  article-title: Structure extended multinomial Naive Bayes
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2015.09.037
– volume: 29
  start-page: 131
  year: 1997
  ident: 10.1016/j.asoc.2016.12.043_bib0280
  article-title: Bayesian network classifiers
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007465528199
– start-page: 1
  year: 2007
  ident: 10.1016/j.asoc.2016.12.043_bib0025
  article-title: Improve text classification accuracy based on classifier fusion methods, 2007
  publication-title: 10th Int. Conf. Inf. Fusion
– volume: 42
  start-page: 5433
  year: 2015
  ident: 10.1016/j.asoc.2016.12.043_bib0255
  article-title: Not always simple classification: learning SuperParent for class probability estimation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.02.049
– volume: 27
  start-page: 133
  year: 2014
  ident: 10.1016/j.asoc.2016.12.043_bib0180
  article-title: Fine tuning the Naïve Bayesian learning algorithm
  publication-title: AI Commun.
  doi: 10.3233/AIC-130588
– start-page: 1110
  year: 2008
  ident: 10.1016/j.asoc.2016.12.043_bib0365
  article-title: Self-adaptive differential evolution with neighborhood search
  publication-title: 2008 IEEE Congr. Evol. Comput. CEC 2008, IEEE
– start-page: 3523
  year: 2007
  ident: 10.1016/j.asoc.2016.12.043_bib0360
  article-title: Differential evolution for high-dimensional function optimization
  publication-title: 2007 IEEE Congr. Evol. Comput. CEC 2007, IEEE
– ident: 10.1016/j.asoc.2016.12.043_bib0100
– volume: 3
  start-page: 22
  year: 1999
  ident: 10.1016/j.asoc.2016.12.043_bib0315
  article-title: System design by constraint adaptation and differential evolution
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.752918
– volume: 30
  year: 2016
  ident: 10.1016/j.asoc.2016.12.043_bib0190
  article-title: A new feature selection approach to Naive Bayes text classifiers
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001416500038
– start-page: 369
  year: 1998
  ident: 10.1016/j.asoc.2016.12.043_bib0010
  article-title: Four text classification algorithms compared on a Dutch corpus
– start-page: 205
  year: 1990
  ident: 10.1016/j.asoc.2016.12.043_bib0230
  article-title: Genetic algorithms for real parameter optimization
  publication-title: Found Genet. Agorithms
– volume: 38
  start-page: 1
  year: 2008
  ident: 10.1016/j.asoc.2016.12.043_bib0335
  article-title: Document clustering using differential evolution
  publication-title: Optimization
– start-page: 2329
  year: 2013
  ident: 10.1016/j.asoc.2016.12.043_bib0390
  article-title: A differential evolution with an orthogonal local search
  publication-title: 2013 IEEE Congr. Evol. Comput. CEC
– ident: 10.1016/j.asoc.2016.12.043_bib0085
– volume: 5
  start-page: 1093
  year: 2014
  ident: 10.1016/j.asoc.2016.12.043_bib0105
  article-title: Sentiment analysis algorithms and applications: a survey
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2014.04.011
– ident: 10.1016/j.asoc.2016.12.043_bib0225
– volume: 41
  start-page: 537
  year: 1998
  ident: 10.1016/j.asoc.2016.12.043_bib0075
  article-title: Classification of text documents
  publication-title: Comput. J.
  doi: 10.1093/comjnl/41.8.537
– start-page: 414
  year: 1997
  ident: 10.1016/j.asoc.2016.12.043_bib0140
– ident: 10.1016/j.asoc.2016.12.043_bib0200
– start-page: 289
  year: 1996
  ident: 10.1016/j.asoc.2016.12.043_bib0080
  article-title: Combining classifiers in text categorization
– ident: 10.1016/j.asoc.2016.12.043_bib0040
– ident: 10.1016/j.asoc.2016.12.043_bib0290
  doi: 10.1016/B978-1-55860-332-5.50055-9
– start-page: 18
  year: 1996
  ident: 10.1016/j.asoc.2016.12.043_bib0035
  article-title: SLIQ: a fast scalable classifier for data mining
  publication-title: Proc. 5th Int. Conf. Extending Database Technol. Adv. Database Technol.
– ident: 10.1016/j.asoc.2016.12.043_bib0330
– volume: 30
  year: 2016
  ident: 10.1016/j.asoc.2016.12.043_bib0410
  article-title: Selectively fine-tuning Bayesian network learning algorithm
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001416510058
– start-page: 202
  year: 2005
  ident: 10.1016/j.asoc.2016.12.043_bib0165
  article-title: Learning instance greedily cloning Naive Bayes for ranking
  publication-title: Fifth IEEE Int Conf. Data Min., IEEE
  doi: 10.1109/ICDM.2005.87
– volume: 36
  start-page: 3208
  year: 2009
  ident: 10.1016/j.asoc.2016.12.043_bib0055
  article-title: An efficient document classification model using an improved back propagation neural network and singular value decomposition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.014
– ident: 10.1016/j.asoc.2016.12.043_bib0060
  doi: 10.1016/j.eswa.2006.01.013
– start-page: 79
  year: 2015
  ident: 10.1016/j.asoc.2016.12.043_bib0340
  article-title: Feature selection in medical text classification based on differential evolution algorithm
  publication-title: Electron. Inf. Technol. Intellectualization, CRC Press
  doi: 10.1201/b17988-20
– volume: 20
  start-page: 120
  year: 2007
  ident: 10.1016/j.asoc.2016.12.043_bib0305
  article-title: A decision tree-based attribute weighting filter for Naive Bayes
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2006.11.008
– volume: 42
  start-page: 482
  year: 2012
  ident: 10.1016/j.asoc.2016.12.043_bib0385
  article-title: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2011.2167966
– ident: 10.1016/j.asoc.2016.12.043_bib0160
– volume: 45
  start-page: 21
  year: 2009
  ident: 10.1016/j.asoc.2016.12.043_bib0295
  article-title: Evolutionary learning of dynamic naive bayesian classifiers
  publication-title: J. Autom. Reason.
  doi: 10.1007/s10817-009-9130-0
– volume: 27
  start-page: 313
  year: 1997
  ident: 10.1016/j.asoc.2016.12.043_bib0020
  article-title: Learning and revising user profiles: the identification of interesting web sites
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007369909943
– volume: 14
  start-page: 1
  year: 2007
  ident: 10.1016/j.asoc.2016.12.043_bib0120
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-007-0114-2
– ident: 10.1016/j.asoc.2016.12.043_bib0210
– year: 1991
  ident: 10.1016/j.asoc.2016.12.043_bib0275
– start-page: 618
  year: 2009
  ident: 10.1016/j.asoc.2016.12.043_bib0345
  article-title: Multi-parent mutation in differential evolution for multi-objective optimization
  publication-title: 5th Int Conf. Nat. Comput. ICNC 2009, IEEE
– volume: 62
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2016.12.043_bib0070
  article-title: A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.06.005
– volume: 27
  start-page: 57
  year: 2014
  ident: 10.1016/j.asoc.2016.12.043_bib0235
  article-title: A new genetic algorithm for solving optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.09.013
– ident: 10.1016/j.asoc.2016.12.043_bib0115
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.asoc.2016.12.043_bib0215
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– start-page: 970
  year: 2006
  ident: 10.1016/j.asoc.2016.12.043_bib0405
  article-title: Weightily averaged one-dependence estimators
  publication-title: PRICAI 2006 Trends Artif. Intell.
  doi: 10.1007/978-3-540-36668-3_116
– ident: 10.1016/j.asoc.2016.12.043_bib0220
– ident: 10.1016/j.asoc.2016.12.043_bib0150
– ident: 10.1016/j.asoc.2016.12.043_bib0375
– ident: 10.1016/j.asoc.2016.12.043_bib0395
– ident: 10.1016/j.asoc.2016.12.043_bib0045
– year: 2012
  ident: 10.1016/j.asoc.2016.12.043_bib0355
  article-title: A novel clustering-based differential evolution with 2 multi-parent crossovers for global optimization
  publication-title: Appl. Soft Comput.
– volume: 58
  start-page: 5
  year: 2005
  ident: 10.1016/j.asoc.2016.12.043_bib0400
  article-title: Not so Naive Bayes: aggregating one-dependence estimators
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-005-4258-6
– ident: 10.1016/j.asoc.2016.12.043_bib0135
– volume: 21
  start-page: 1250007
  year: 2012
  ident: 10.1016/j.asoc.2016.12.043_bib0270
  article-title: Discriminatively weighted Naive Bayes and its application in text classification
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213011004770
– start-page: 1980
  year: 2004
  ident: 10.1016/j.asoc.2016.12.043_bib0310
  article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
  publication-title: Proc 2004 Congr. Evol. Comput. (IEEE Cat. No.04TH8753), IEEE
  doi: 10.1109/CEC.2004.1331139
– start-page: 2354
  year: 2003
  ident: 10.1016/j.asoc.2016.12.043_bib0320
  article-title: Flexible ligand docking using differential evolution
  publication-title: 2003 Congr. Evol. Comput. CEC 2003-Proc., IEEE
  doi: 10.1109/CEC.2003.1299382
– volume: 31
  start-page: 1703
  year: 2004
  ident: 10.1016/j.asoc.2016.12.043_bib0325
  article-title: Population set-based global optimization algorithms: some modifications and numerical studies
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(03)00116-3
– volume: 12
  start-page: 252
  year: 1994
  ident: 10.1016/j.asoc.2016.12.043_bib0065
  article-title: An example-based mapping method for text categorization and retrieval
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/183422.183424
– ident: 10.1016/j.asoc.2016.12.043_bib0250
– start-page: 2
  year: 2005
  ident: 10.1016/j.asoc.2016.12.043_bib0090
  article-title: A new association rule-based text classifier algorithm
  publication-title: 17th IEEE Int. Conf. Tools with Artif. Intell., IEEE
– volume: 6
  start-page: 1
  year: 1997
  ident: 10.1016/j.asoc.2016.12.043_bib0005
  article-title: Improved heterogeneous distance functions
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.346
– ident: 10.1016/j.asoc.2016.12.043_bib0145
– start-page: 657
  year: 1999
  ident: 10.1016/j.asoc.2016.12.043_bib0350
  article-title: Multi-parent recombination with simplex crossover in real coded genetic algorithms
  publication-title: Proc. 1999 Genet. Evol. Comput. Conf.
– ident: 10.1016/j.asoc.2016.12.043_bib0110
– volume: vol. 25
  start-page: 27
  year: 1995
  ident: 10.1016/j.asoc.2016.12.043_bib0130
– volume: 51
  start-page: 358
  year: 2016
  ident: 10.1016/j.asoc.2016.12.043_bib0265
  article-title: SODE: self-adaptive one-dependence estimators for classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.08.023
– ident: 10.1016/j.asoc.2016.12.043_bib0155
– ident: 10.1016/j.asoc.2016.12.043_bib0195
  doi: 10.1109/LPT.2009.2020494
– ident: 10.1016/j.asoc.2016.12.043_bib0125
  doi: 10.1039/b104835j
– ident: 10.1016/j.asoc.2016.12.043_bib0285
– volume: 26
  start-page: 237
  year: 2014
  ident: 10.1016/j.asoc.2016.12.043_bib0185
  article-title: A noise tolerant fine tuning algorithm for the Naïve Bayesian learning algorithm
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2014.03.008
– volume: 22
  start-page: 1121
  year: 2008
  ident: 10.1016/j.asoc.2016.12.043_bib0175
  article-title: Using instance cloning to improve Naive Bayes for ranking
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001408006703
– ident: 10.1016/j.asoc.2016.12.043_bib0380
– volume: 100
  start-page: 137
  year: 2016
  ident: 10.1016/j.asoc.2016.12.043_bib0240
  article-title: Two feature weighting approaches for Naive Bayes text classifiers
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.02.017
SSID ssj0016928
Score 2.489985
Snippet [Display omitted] •Using three metaheuristic algorithms to solve the probability estimation problem of NB.•Initial population is generated by a method used for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms Bernoulli NB
Differential evolution
Fine tuning Naïve Bayes
Genetic algorithm
Improving estimated probabilities
Multi-parent crossover
Multi-parent mutation
Multinomial NB
Simulated annealing
Text classification
Title Using differential evolution for fine tuning naïve Bayesian classifiers and its application for text classification
URI https://dx.doi.org/10.1016/j.asoc.2016.12.043
Volume 54
WOSCitedRecordID wos000395901200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwELYo9NBLKf1RoS3yobdVEI5jJzlSBKJIICQ47C1yvLa6CKWIza7oU_Uh-mLM-G9T2qJy4OKNsrGzm_kyM54Z-yPkcy1zw6vdKgPb2mbFJDdZKyY2M1ZpOylLBo0jmyhPT6vxuD4LMd2ZoxMou666va2vn1TUcA6EjUtnHyHuNCicgGMQOrQgdmj_S_C-CCASn_QYETeLcEdXVGjRseznLiDSKZcpP1yY0Rf1w7gVlRod6qlFjuyUWhjkuX1hIuj0dKFeSjfuZxt82xkoeVe1Pu-jiUSneapcFgg_Ryc7y_KR0RFm0J3u-Qbzg6v4ZYhKgKVLNYBRkcoqK-oQXgyaVhQDVck8gU2wuszTJP2h0H1s4XJHAVaxEE-64G3Bl-YrpuzvWbVUaxjL2C4bHKPBMRqWNzDGM7KWl6IGdb629_VgfJyyT7J2nLzpP4TFVr4u8P4v-btDM3BSLl6Rl2F2Qfc8KjbIiulek_XI3EGDIn9DegcSOgQJTSChIGCKIKEeJLRTv34uDI0AoQOAUAAIBYDQAUBcfwQI_R0gb8n54cHF_lEW-DcyzaXsM1vKljNrZQ4NM1pYK1rWanBnNIcHVxlukY8gL1XdIg-pkLotuCoMU8zyd2S1-96Z94SaFgxJodWEYwxE71amNEJJXnAuLMzXNwmLj7DRYWt6ZEi5av4tvE0ySn2u_cYsD14tomSa4Fp6l7EBoD3Qb-tRd_lAXizfhY9ktb-Zm0_kuV7009nNdkDZHfm5nzM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+differential+evolution+for+fine+tuning+na%C3%AFve+Bayesian+classifiers+and+its+application+for+text+classification&rft.jtitle=Applied+soft+computing&rft.au=Diab%2C+Diab+M.&rft.au=El+Hindi%2C+Khalil+M.&rft.date=2017-05-01&rft.issn=1568-4946&rft.volume=54&rft.spage=183&rft.epage=199&rft_id=info:doi/10.1016%2Fj.asoc.2016.12.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2016_12_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon