Emperror: A Flexible Generative Perception Error Model for Probing Self-Driving Planners

To handle the complexities of real-world traffic, learning planners for self-driving from data is a promising direction. While recent approaches have shown great progress, they typically assume a setting in which the ground-truth world state is available as input. However, when deployed, planning ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 10; H. 6; S. 5807 - 5814
Hauptverfasser: Hanselmann, Niklas, Doll, Simon, Cordts, Marius, Lensch, Hendrik P.A., Geiger, Andreas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To handle the complexities of real-world traffic, learning planners for self-driving from data is a promising direction. While recent approaches have shown great progress, they typically assume a setting in which the ground-truth world state is available as input. However, when deployed, planning needs to be robust to the long-tail of errors incurred by a noisy perception system, which is often neglected in evaluation. To address this, previous work has proposed drawing adversarial samples from a perception error model (PEM) mimicking the noise characteristics of a target object detector. However, these methods use simple PEMs that fail to accurately capture all failure modes of detection. In this letter, we present Emperror , a novel transformer-based generative PEM, apply it to stress-test an imitation learning (IL)-based planner and show that it imitates modern detectors more faithfully than previous work. Furthermore, it is able to produce realistic noisy inputs that increase the planner's collision rate by up to 85%, demonstrating its utility as a valuable tool for a more complete evaluation of self-driving planners.
AbstractList To handle the complexities of real-world traffic, learning planners for self-driving from data is a promising direction. While recent approaches have shown great progress, they typically assume a setting in which the ground-truth world state is available as input. However, when deployed, planning needs to be robust to the long-tail of errors incurred by a noisy perception system, which is often neglected in evaluation. To address this, previous work has proposed drawing adversarial samples from a perception error model (PEM) mimicking the noise characteristics of a target object detector. However, these methods use simple PEMs that fail to accurately capture all failure modes of detection. In this letter, we present Emperror , a novel transformer-based generative PEM, apply it to stress-test an imitation learning (IL)-based planner and show that it imitates modern detectors more faithfully than previous work. Furthermore, it is able to produce realistic noisy inputs that increase the planner's collision rate by up to 85%, demonstrating its utility as a valuable tool for a more complete evaluation of self-driving planners.
Author Hanselmann, Niklas
Doll, Simon
Lensch, Hendrik P.A.
Cordts, Marius
Geiger, Andreas
Author_xml – sequence: 1
  givenname: Niklas
  orcidid: 0000-0001-7387-4583
  surname: Hanselmann
  fullname: Hanselmann, Niklas
  email: Niklas.Hanselmann@mercedes-benz.com
  organization: Mercedes-Benz AG R&D, Sindelfingen, Germany
– sequence: 2
  givenname: Simon
  orcidid: 0000-0001-7985-0830
  surname: Doll
  fullname: Doll, Simon
  organization: Mercedes-Benz AG R&D, Sindelfingen, Germany
– sequence: 3
  givenname: Marius
  orcidid: 0000-0001-8729-9233
  surname: Cordts
  fullname: Cordts, Marius
  organization: Mercedes-Benz  AG  R&D, Sindelfingen, Germany
– sequence: 4
  givenname: Hendrik P.A.
  orcidid: 0000-0003-3616-8668
  surname: Lensch
  fullname: Lensch, Hendrik P.A.
  organization: University of Tübingen, Tübingen, Germany
– sequence: 5
  givenname: Andreas
  orcidid: 0000-0002-8151-3726
  surname: Geiger
  fullname: Geiger, Andreas
  organization: University of Tübingen, Tübingen, Germany
BookMark eNp9kE1Lw0AQhhepYK29e_Cw4Dl1P7K7WW-ltlWoWPwAb2E3mZUtaRI3adF_b0I9FA-e5h14nxl4ztGgrEpA6JKSCaVE36yepxNGmJhwIZlK9AkaMq5UxJWUg6N8hsZNsyGEUMEU12KI3ufbGkKowi2e4kUBX94WgJdQQjCt3wNeQ8igbn1V4nnfw49VDgV2XVqHyvryA79A4aK74Pf9si5M2cHNBTp1pmhg_DtH6G0xf53dR6un5cNsuooyLmUbOeaESYAp4_JcJso6ZqmLE5uJOIu5sirh0jqXJ1xRp23CWcxySIQQSmSx5SN0fbhbh-pzB02bbqpdKLuXKadaKa01j7sWObSyUDVNAJfWwW9N-E4pSXuFaacw7RWmvwo7RP5BMt-aXkQbjC_-A68OoAeAoz9aUUYk_wHad3_b
CODEN IRALC6
CitedBy_id crossref_primary_10_3390_e27090947
Cites_doi 10.1109/cvpr42600.2020.01164
10.1109/CVPR52729.2023.00928
10.1007/978-3-030-58574-7_19
10.1109/CVPR52688.2022.01679
10.1109/CVPR.2016.90
10.1109/CVPR.2018.00798
10.1109/ICRA48891.2023.10161501
10.1109/ITSC.2018.8570015
10.1007/978-3-030-58523-5_40
10.1561/0600000079
10.1007/978-3-031-20077-9_1
10.1109/IROS45743.2020.9340696
10.1109/CVPR52729.2023.01712
10.1016/j.artint.2021.103500
10.32657/10356/154942
10.1109/CVPR52733.2024.01395
10.1007/978-3-031-19839-7_20
10.1109/CVPR46437.2021.01026
10.1109/CVPR46437.2021.00978
10.1109/CVPR46437.2021.01161
10.1109/ICCV51070.2023.00335
10.1007/978-3-030-58452-8_13
10.1109/ICCV51070.2023.00766
10.24963/ijcai.2020/483
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2025.3562789
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 5814
ExternalDocumentID 10_1109_LRA_2025_3562789
10971206
Genre orig-research
GrantInformation_xml – fundername: German Federal Ministry for Economic Affairs and Climate Action
– fundername: ERC Starting Grant through LEGO-3D
  grantid: 850533
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c366t-f2f5a8e27afdd687bf2b1f48bc54c437b7836bffd8371f9b83242de855575c4b3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479448500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Mon Jun 30 07:44:25 EDT 2025
Sat Nov 29 07:57:47 EST 2025
Tue Nov 18 21:39:27 EST 2025
Wed Aug 27 02:03:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-f2f5a8e27afdd687bf2b1f48bc54c437b7836bffd8371f9b83242de855575c4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3616-8668
0000-0001-7387-4583
0000-0001-8729-9233
0000-0001-7985-0830
0000-0002-8151-3726
PQID 3197799934
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2025_3562789
crossref_citationtrail_10_1109_LRA_2025_3562789
ieee_primary_10971206
proquest_journals_3197799934
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref37
Filos (ref11) 2020
ref14
ref36
Caesar (ref9) 2021
ref31
ref30
ref32
Deasy (ref33) 2020
ref1
Hu (ref6) 2021
ref17
ref16
ref38
ref18
Ju (ref19) 2023
Montali (ref10) 2023; 36
Sadeghi (ref13) 2023
ref24
Wang (ref2) 2021
ref23
ref26
ref25
ref20
ref42
ref22
ref21
Sadeghi (ref15) 2021
Sohn (ref28) 2015
Renz (ref7) 2022
ref27
Higgins (ref34) 2017
Kingma (ref41) 2015
Ba (ref39) 2016
ref3
Dauner (ref8) 2023
Kingma (ref29) 2014
ref5
Clevert (ref40) 2015
Li (ref4) 2023
References_xml – ident: ref32
  doi: 10.1109/cvpr42600.2020.01164
– ident: ref23
  doi: 10.1109/CVPR52729.2023.00928
– start-page: 459
  volume-title: Proc. Conf. Robot Learn.
  year: 2022
  ident: ref7
  article-title: Plant: Explainable planning transformers via object-level representations
– start-page: 10647
  volume-title: Proc. Neural Inf. Process. Syst.
  year: 2020
  ident: ref33
  article-title: Constraining variational inference with geometric Jensen-Shannon divergence
– ident: ref18
  doi: 10.1007/978-3-030-58574-7_19
– year: 2023
  ident: ref19
  article-title: Perception imitation: Towards synthesis-free simulator for autonomous vehicles
– ident: ref25
  doi: 10.1109/CVPR52688.2022.01679
– year: 2015
  ident: ref40
  article-title: Fast and accurate deep network learning by exponential linear units (ELUS)
– ident: ref38
  doi: 10.1109/CVPR.2016.90
– ident: ref20
  doi: 10.1109/CVPR.2018.00798
– year: 2016
  ident: ref39
  article-title: Layer normalization
– ident: ref12
  doi: 10.1109/ICRA48891.2023.10161501
– volume-title: Proc. Neural Inf. Process. Syst. Workshops
  year: 2021
  ident: ref15
  article-title: A step towards efficient evaluation of complex perception tasks in simulation
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2015
  ident: ref41
  article-title: Adam: A method for stochastic optimization
– ident: ref16
  doi: 10.1109/ITSC.2018.8570015
– ident: ref5
  doi: 10.1007/978-3-030-58523-5_40
– ident: ref1
  doi: 10.1561/0600000079
– ident: ref30
  doi: 10.1007/978-3-031-20077-9_1
– ident: ref22
  doi: 10.1109/IROS45743.2020.9340696
– volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
  year: 2021
  ident: ref9
  article-title: NuPlan: A closed-loop ML-based planning benchmark for autonomous vehicles
– ident: ref35
  doi: 10.1109/CVPR52729.2023.01712
– volume: 36
  start-page: 59151
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2023
  ident: ref10
  article-title: The Waymo Open Sim Agents Challenge
– ident: ref42
  doi: 10.1016/j.artint.2021.103500
– ident: ref17
  doi: 10.32657/10356/154942
– ident: ref37
  doi: 10.1109/CVPR52733.2024.01395
– ident: ref26
  doi: 10.1007/978-3-031-19839-7_20
– ident: ref31
  doi: 10.1109/CVPR46437.2021.01026
– year: 2023
  ident: ref13
  article-title: Attacking motion planners using adversarial perception errors
– ident: ref24
  doi: 10.1109/CVPR46437.2021.00978
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2014
  ident: ref29
  article-title: Auto-encoding variational bayes
– start-page: 15273
  volume-title: Proc. IEEE/CVF Int. Conf. Comput. Vis.
  year: 2021
  ident: ref6
  article-title: FIERY: Future instance segmentation in bird’s-eye view from surround monocular cameras
– start-page: 3145
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2020
  ident: ref11
  article-title: Can autonomous vehicles identify, recover from, and adapt to distribution shifts?
– start-page: 180
  volume-title: Proc. Conf. Robot Learn.
  year: 2021
  ident: ref2
  article-title: Detr3d: 3 d object detection from multi-view images via 3D-to-2D queries
– year: 2023
  ident: ref4
  article-title: Graph-based topology reasoning for driving scenes
– ident: ref21
  doi: 10.1109/CVPR46437.2021.01161
– ident: ref3
  doi: 10.1109/ICCV51070.2023.00335
– start-page: 1268
  volume-title: Proc. Conf. Robot Learn.
  year: 2023
  ident: ref8
  article-title: Parting with misconceptions about learning-based vehicle motion planning
– start-page: 3483
  volume-title: Proc. Neural Inf. Process. Syst.
  year: 2015
  ident: ref28
  article-title: Learning structured output representation using deep conditional generative models
– ident: ref27
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref36
  doi: 10.1109/ICCV51070.2023.00766
– ident: ref14
  doi: 10.24963/ijcai.2020/483
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2017
  ident: ref34
  article-title: beta-VAE: Learning basic visual concepts with a constrained variational framework
SSID ssj0001527395
Score 2.3069048
Snippet To handle the complexities of real-world traffic, learning planners for self-driving from data is a promising direction. While recent approaches have shown...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5807
SubjectTerms autonomous agents
Collision rates
Complexity theory
Decoding
Deep learning methods
Detectors
Failure modes
Heavily-tailed distribution
Noise
Noise measurement
object detection
Perception
Planning
segmentation and categorization
Three-dimensional displays
Trajectory
Transformers
Title Emperror: A Flexible Generative Perception Error Model for Probing Self-Driving Planners
URI https://ieeexplore.ieee.org/document/10971206
https://www.proquest.com/docview/3197799934
Volume 10
WOSCitedRecordID wos001479448500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxGFUnlgYUhb5-UcWwWtGEpV8VK3KHZsVClKUdoy8tvxOWmphEBiy3COorvY953t-z5CrkIQoP2EORAJlDDTyklAcEcrZbI5k4xZMp3XIR-NoskExlWzuu2FUUrZy2eqjY_2LD-dySVulXXwtJS5SLC9zXlYNmt9b6gglRgEq6PILnSGjz1TALpB2zNJnqOQ-0bqsVoqPxZgm1UGB__8nkOyX8FH2ivjfUS2VH5M9jZIBU_IpG-QcFHMihvaowPkuxSZoiW9NK5tdLy-y0L7aEdRDy2jBr3SMbIy5W_0SWXauSumuNtAra6RQYl18jLoP9_eO5V-giO9MFw42tVBEimXJzpNw4gL7Qqm_UjIwJe-xwV2cAitU1OkMg0iQnCVqigIDIaTvvBOSS2f5eqMUOM9kBB0pclePkSQQJgCmPnLkN6QqQbprFwby4pcHDUustgWGV2ITTBiDEZcBaNBrtcj3ktijT9s6-j8DbvS7w3SXIUvrqbePDZrCucG9nr--S_DLsguvr288NUktUWxVJdkR34spvOiRbYfPvst-299AbBBy2M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MmqgHf2JEUXvw4mFA96utN6IQjJMQRcNtWbvWkCxgBvj329cNJDGaeNvhNVveW_u-1_Z9H0LXIRdc-wlxOBMgYaaVk3BBHa2UyeZEEmLJdN4i2u-z0YgPymZ12wujlLKXz1QDHu1ZfjqVC9gqa8JpKXGBYHsTpLPKdq3vLRUgE-PB8jCyxZvRc9uUgG7Q8EyapyDlvpZ8rJrKjyXY5pXu_j-_6ADtlQASt4uIH6INNTlCu2u0gsdo1DFYOM-n-S1u4y4wXopM4YJgGlY3PFjdZsEdsMOgiJZhg1_xAHiZJu_4RWXauc_HsN-ArbKRwYlV9NrtDO96Tqmg4EgvDOeOdnWQMOXSRKdpyKjQriDaZ0IGvvQ9KqCHQ2idmjKVaC4YwKtUsSAwKE76wjtBlcl0ok4RNt7jkgctafKXzxlPeJhybmYwAYJDomqouXRtLEt6cVC5yGJbZrR4bIIRQzDiMhg1dLMa8VFQa_xhWwXnr9kVfq-h-jJ8cTn5ZrFZVSg1wNfzz34ZdoW2e8OnKI4e-o_naAfeVFz_qqPKPF-oC7QlP-fjWX5p_7AvombNew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emperror%3A+A+Flexible+Generative+Perception+Error+Model+for+Probing+Self-Driving+Planners&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Hanselmann%2C+Niklas&rft.au=Doll%2C+Simon&rft.au=Cordts%2C+Marius&rft.au=Lensch%2C+Hendrik+P.A.&rft.date=2025-06-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=10&rft.issue=6&rft.spage=5807&rft.epage=5814&rft_id=info:doi/10.1109%2FLRA.2025.3562789&rft.externalDocID=10971206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon