Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification
[Display omitted] •A two phase hybrid model based on improved-Binary Particle Swarm Optimization (iBPSO) is proposed for cancer diagnosis and classification using DNA microarray technology.•The model is examined on 11 different types of cancer microarray datasets and classified the samples with 100%...
Saved in:
| Published in: | Applied soft computing Vol. 62; pp. 203 - 215 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.01.2018
|
| Subjects: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•A two phase hybrid model based on improved-Binary Particle Swarm Optimization (iBPSO) is proposed for cancer diagnosis and classification using DNA microarray technology.•The model is examined on 11 different types of cancer microarray datasets and classified the samples with 100% accuracy for seven datasets and with more than 92% for the remaining datasets.•Comparative performance evaluation of the proposed model is done with seven other benchmark methods and the model exhibits superior performance.•The model also selects small number (<1.5%) of highly relevant genes responsible for cancer classification which facilitates early prognosis of the disease.•The proposed improved-BPSO also provides the solution for inherent local optimum problem of traditional BPSO.
DNA microarray technology has emerged as a prospective tool for diagnosis of cancer and its classification. It provides better insights of many genetic mutations occurring within a cell associated with cancer. However, thousands of gene expressions measured for each biological sample using microarray pose a great challenge. Many statistical and machine learning methods have been applied to get most relevant genes prior to cancer classification. A two phase hybrid model for cancer classification is being proposed, integrating Correlation-based Feature Selection (CFS) with improved-Binary Particle Swarm Optimization (iBPSO). This model selects a low dimensional set of prognostic genes to classify biological samples of binary and multi class cancers using Naive–Bayes classifier with stratified 10-fold cross-validation. The proposed iBPSO also controls the problem of early convergence to the local optimum of traditional BPSO. The proposed model has been evaluated on 11 benchmark microarray datasets of different cancer types. Experimental results are compared with seven other well known methods, and our model exhibited better results in terms of classification accuracy and the number of selected genes in most cases. In particular, it achieved up to 100% classification accuracy for seven out of eleven datasets with a very small sized prognostic gene subset (up to <1.5%) for all eleven datasets. |
|---|---|
| AbstractList | [Display omitted]
•A two phase hybrid model based on improved-Binary Particle Swarm Optimization (iBPSO) is proposed for cancer diagnosis and classification using DNA microarray technology.•The model is examined on 11 different types of cancer microarray datasets and classified the samples with 100% accuracy for seven datasets and with more than 92% for the remaining datasets.•Comparative performance evaluation of the proposed model is done with seven other benchmark methods and the model exhibits superior performance.•The model also selects small number (<1.5%) of highly relevant genes responsible for cancer classification which facilitates early prognosis of the disease.•The proposed improved-BPSO also provides the solution for inherent local optimum problem of traditional BPSO.
DNA microarray technology has emerged as a prospective tool for diagnosis of cancer and its classification. It provides better insights of many genetic mutations occurring within a cell associated with cancer. However, thousands of gene expressions measured for each biological sample using microarray pose a great challenge. Many statistical and machine learning methods have been applied to get most relevant genes prior to cancer classification. A two phase hybrid model for cancer classification is being proposed, integrating Correlation-based Feature Selection (CFS) with improved-Binary Particle Swarm Optimization (iBPSO). This model selects a low dimensional set of prognostic genes to classify biological samples of binary and multi class cancers using Naive–Bayes classifier with stratified 10-fold cross-validation. The proposed iBPSO also controls the problem of early convergence to the local optimum of traditional BPSO. The proposed model has been evaluated on 11 benchmark microarray datasets of different cancer types. Experimental results are compared with seven other well known methods, and our model exhibited better results in terms of classification accuracy and the number of selected genes in most cases. In particular, it achieved up to 100% classification accuracy for seven out of eleven datasets with a very small sized prognostic gene subset (up to <1.5%) for all eleven datasets. |
| Author | Jain, Indu Jain, Renu Jain, Vinod Kumar |
| Author_xml | – sequence: 1 givenname: Indu surname: Jain fullname: Jain, Indu email: indujain06@gmail.com organization: School of Mathematics and Allied Sciences (SOMAAS), Jiwaji University, Gwalior, M.P. 474006, India – sequence: 2 givenname: Vinod Kumar orcidid: 0000-0002-5725-4998 surname: Jain fullname: Jain, Vinod Kumar email: vkjain@iiitdmj.ac.in organization: PDPM-Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, Dumna Airport Road, P.O. Khamaria, Jabalpur, M.P., India – sequence: 3 givenname: Renu surname: Jain fullname: Jain, Renu email: renujain3@rediffmail.com organization: School of Mathematics and Allied Sciences (SOMAAS), Jiwaji University, Gwalior, M.P. 474006, India |
| BookMark | eNp9kNtKAzEQhoNUsK2-gFd5gV1z2KZZ8EaLJyhUUK9DNplIynZTkrWi-PCmhwvxojAwQ8j3M_ON0KALHSB0SUlJCRVXy1KnYEpG6LQkdUm4PEFDKqesqIWkgzxPhCyquhJnaJTSkmSoZnKIfmYhRmh170OHHej-IwJO0ILZvTQ6gcV-tY5hA7a49Z2OX_hZx96bFvDLp44rvFj3fuW_Dxkh4nfo_obozmKjOwMRm1an5J03u8_n6NTpNsHFoY_R2_3d6-yxmC8enmY388JwIfoCHKsaZ7kAWTnJprYRRrJaE66FZZw5wSVhpqFgGpOLMacrLRxv6KQxxPIxkvtcE0NKEZwyvt9t0EftW0WJ2lpUS7W1qLYWFalVtphR9g9dR7_KEo5D13sI8lEbD1El4yELsD5mJ8oGfwz_Ba5sktY |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106337 crossref_primary_10_1016_j_eswa_2021_115828 crossref_primary_10_1007_s13042_021_01319_3 crossref_primary_10_1186_s12859_021_04443_7 crossref_primary_10_1016_j_swevo_2020_100663 crossref_primary_10_1007_s11042_019_7181_8 crossref_primary_10_1007_s00500_022_06844_z crossref_primary_10_1016_j_swevo_2020_100661 crossref_primary_10_1016_j_eswa_2022_118946 crossref_primary_10_1016_j_asoc_2022_109293 crossref_primary_10_1109_ACCESS_2024_3489476 crossref_primary_10_3390_pr11020562 crossref_primary_10_1038_s41598_019_53471_0 crossref_primary_10_1007_s13721_021_00313_7 crossref_primary_10_1016_j_patcog_2020_107804 crossref_primary_10_1038_s41598_023_44437_4 crossref_primary_10_1109_TEVC_2021_3134804 crossref_primary_10_1016_j_knosys_2022_109899 crossref_primary_10_1111_exsy_13309 crossref_primary_10_1007_s10462_020_09860_3 crossref_primary_10_1080_10255842_2024_2429012 crossref_primary_10_2174_1574893616666210624130124 crossref_primary_10_1016_j_jhydrol_2019_124012 crossref_primary_10_1016_j_eswa_2019_113122 crossref_primary_10_1016_j_neucom_2022_05_048 crossref_primary_10_1016_j_jprocont_2022_06_013 crossref_primary_10_1016_j_jenvman_2020_110485 crossref_primary_10_1007_s00521_021_06459_9 crossref_primary_10_3390_electronics10232984 crossref_primary_10_1016_j_jtbi_2018_12_010 crossref_primary_10_1088_1757_899X_864_1_012066 crossref_primary_10_1016_j_jbi_2021_103764 crossref_primary_10_32604_biocell_2023_026254 crossref_primary_10_1007_s10489_021_02708_5 crossref_primary_10_1093_comjnl_bxac033 crossref_primary_10_3390_math10111929 crossref_primary_10_1016_j_bspc_2022_103999 crossref_primary_10_1016_j_csbj_2022_09_033 crossref_primary_10_1007_s11517_018_1874_4 crossref_primary_10_1002_cpe_6718 crossref_primary_10_1049_ccs2_12003 crossref_primary_10_1007_s42044_024_00174_z crossref_primary_10_32604_cmc_2021_015291 crossref_primary_10_1049_htl_2018_5055 crossref_primary_10_1007_s00521_021_06775_0 crossref_primary_10_1109_ACCESS_2019_2894366 crossref_primary_10_1109_TEVC_2025_3533490 crossref_primary_10_1007_s11042_024_20146_6 crossref_primary_10_3390_cancers15133411 crossref_primary_10_3390_math11051081 crossref_primary_10_1016_j_knosys_2022_109874 crossref_primary_10_1186_s12920_018_0447_6 crossref_primary_10_1155_2021_5227377 crossref_primary_10_1080_10106049_2020_1737972 crossref_primary_10_1007_s13042_022_01726_0 crossref_primary_10_1016_j_compeleceng_2022_108035 crossref_primary_10_1186_s12859_022_04689_9 crossref_primary_10_1007_s41870_024_01999_4 crossref_primary_10_1016_j_ygeno_2019_09_015 crossref_primary_10_1002_ett_4367 crossref_primary_10_1016_j_eswa_2025_126404 crossref_primary_10_1080_10255842_2022_2112185 crossref_primary_10_3233_JIFS_220412 crossref_primary_10_1016_j_jbi_2020_103466 crossref_primary_10_1016_j_cmpb_2023_107987 crossref_primary_10_1088_1742_6596_1490_1_012031 crossref_primary_10_1007_s00500_019_04203_z crossref_primary_10_2174_1574893618666230227122331 crossref_primary_10_1016_j_asoc_2023_110241 crossref_primary_10_1016_j_asoc_2024_112654 crossref_primary_10_1038_s41598_019_45223_x crossref_primary_10_1016_j_compbiomed_2022_105622 crossref_primary_10_1016_j_swevo_2021_100868 crossref_primary_10_1007_s42600_023_00335_2 crossref_primary_10_1049_htl_2018_5041 crossref_primary_10_1016_j_ijleo_2023_171574 crossref_primary_10_1007_s13369_021_05486_x crossref_primary_10_1016_j_eswa_2022_116550 crossref_primary_10_3390_app122211795 crossref_primary_10_1016_j_jksuci_2023_101757 crossref_primary_10_1016_j_ins_2019_06_063 crossref_primary_10_1155_2022_1452301 crossref_primary_10_3390_s21072508 crossref_primary_10_1007_s12065_021_00608_8 crossref_primary_10_1016_j_measurement_2024_115974 crossref_primary_10_3390_s17112688 crossref_primary_10_1016_j_asoc_2020_106238 crossref_primary_10_1155_2018_3641286 crossref_primary_10_1007_s10586_018_2200_5 crossref_primary_10_1007_s11831_021_09694_4 crossref_primary_10_1007_s11063_021_10700_w crossref_primary_10_1016_j_asoc_2018_11_014 crossref_primary_10_1016_j_ygeno_2020_07_027 crossref_primary_10_1016_j_eswa_2019_06_044 crossref_primary_10_1016_j_prime_2023_100303 crossref_primary_10_1155_2021_6680424 crossref_primary_10_1002_ima_23007 crossref_primary_10_7717_peerj_cs_697 crossref_primary_10_1007_s42044_025_00252_w crossref_primary_10_1007_s00521_021_06406_8 crossref_primary_10_1016_j_compbiomed_2022_105766 crossref_primary_10_1007_s11227_022_04507_2 crossref_primary_10_1109_ACCESS_2024_3390684 crossref_primary_10_1007_s11334_022_00492_0 crossref_primary_10_1016_j_est_2023_107589 crossref_primary_10_1007_s10489_021_03118_3 crossref_primary_10_1016_j_jtbi_2019_110098 crossref_primary_10_1016_j_ejps_2023_106408 crossref_primary_10_1109_ACCESS_2019_2922987 crossref_primary_10_1007_s10916_023_02031_1 crossref_primary_10_1016_j_engappai_2021_104210 crossref_primary_10_1007_s42979_025_03928_z crossref_primary_10_1088_1742_6596_2571_1_012016 crossref_primary_10_3390_pr11071940 crossref_primary_10_1080_19427867_2019_1581485 crossref_primary_10_1016_j_eswa_2022_117864 crossref_primary_10_1007_s10115_025_02340_6 crossref_primary_10_1016_j_applthermaleng_2019_04_017 crossref_primary_10_1016_j_asoc_2019_106031 crossref_primary_10_1109_ACCESS_2021_3070428 crossref_primary_10_1093_jcde_qwac120 crossref_primary_10_3390_en15103485 crossref_primary_10_1007_s42417_023_01024_1 crossref_primary_10_1016_j_jksuci_2020_05_002 crossref_primary_10_1049_syb2_12044 crossref_primary_10_1109_ACCESS_2021_3124710 crossref_primary_10_1007_s12652_024_04853_4 crossref_primary_10_4018_IJIIT_289966 crossref_primary_10_1007_s10796_024_10559_x crossref_primary_10_3233_KES_190134 crossref_primary_10_1016_j_asoc_2018_09_022 crossref_primary_10_1016_j_knosys_2023_110420 crossref_primary_10_3389_fgene_2020_603808 crossref_primary_10_1093_jcde_qwaf050 crossref_primary_10_1109_TEVC_2021_3100056 crossref_primary_10_1016_j_envpol_2023_122620 crossref_primary_10_1016_j_eswa_2021_115655 crossref_primary_10_1007_s00521_022_07780_7 crossref_primary_10_3390_s19163451 crossref_primary_10_1080_0952813X_2023_2183267 crossref_primary_10_1016_j_eswa_2022_118654 crossref_primary_10_3390_computation7020031 crossref_primary_10_1016_j_matcom_2020_08_013 crossref_primary_10_1109_TAI_2022_3145333 crossref_primary_10_1007_s10489_021_02550_9 crossref_primary_10_1016_j_knosys_2021_107804 crossref_primary_10_7717_peerj_cs_2872 crossref_primary_10_1007_s12243_023_00951_0 crossref_primary_10_1016_j_asoc_2020_106299 crossref_primary_10_1016_j_ejor_2018_10_051 crossref_primary_10_1016_j_eswa_2019_06_007 crossref_primary_10_3390_app14135660 crossref_primary_10_1016_j_compbiomed_2019_103375 crossref_primary_10_1080_01430750_2020_1730952 crossref_primary_10_3390_genes10120969 crossref_primary_10_3390_sym13101812 crossref_primary_10_1016_j_knosys_2023_110635 crossref_primary_10_3390_bioengineering11060533 crossref_primary_10_1002_ima_22596 crossref_primary_10_1007_s00500_023_09062_3 crossref_primary_10_1016_j_mehy_2020_109577 crossref_primary_10_1007_s12597_023_00662_z crossref_primary_10_1016_j_eswa_2021_115882 crossref_primary_10_3390_biomimetics10050315 crossref_primary_10_3233_JIFS_181904 crossref_primary_10_3390_land12061213 crossref_primary_10_3389_fnins_2022_1034971 crossref_primary_10_1007_s00500_020_05365_x crossref_primary_10_1186_s12911_021_01696_3 crossref_primary_10_1007_s41965_023_00133_w crossref_primary_10_1177_09544062251358059 crossref_primary_10_1007_s10462_021_10052_w crossref_primary_10_1155_2022_2856818 crossref_primary_10_1155_2024_4105224 crossref_primary_10_1007_s11517_022_02555_7 crossref_primary_10_1186_s40537_025_01105_w crossref_primary_10_1007_s10115_024_02292_3 crossref_primary_10_1016_j_knosys_2021_107034 crossref_primary_10_1007_s40745_024_00571_y crossref_primary_10_1007_s00521_022_07661_z crossref_primary_10_1016_j_compbiomed_2023_107237 crossref_primary_10_1016_j_jbi_2021_103803 crossref_primary_10_1007_s11042_021_11474_y crossref_primary_10_1016_j_asoc_2021_107302 crossref_primary_10_1016_j_asoc_2022_109585 crossref_primary_10_1007_s00521_022_07147_y crossref_primary_10_1631_FITEE_2100569 crossref_primary_10_1007_s12652_022_04450_3 crossref_primary_10_1016_j_compeleceng_2020_106963 crossref_primary_10_1007_s10044_022_01117_9 crossref_primary_10_3390_mi15010018 crossref_primary_10_1007_s11227_022_04920_7 crossref_primary_10_1155_2024_9382390 crossref_primary_10_1016_j_chemolab_2018_10_009 crossref_primary_10_1016_j_asoc_2023_110078 crossref_primary_10_3390_systems11100519 crossref_primary_10_1186_s12859_022_04848_y crossref_primary_10_1007_s11042_020_09337_z crossref_primary_10_1007_s00521_019_04671_2 crossref_primary_10_3390_diagnostics11101936 crossref_primary_10_1016_j_bspc_2022_104080 crossref_primary_10_3390_sym14101955 crossref_primary_10_3390_a14040120 crossref_primary_10_1016_j_ab_2021_114242 crossref_primary_10_1016_j_knosys_2022_108640 crossref_primary_10_1038_s41598_021_83150_y crossref_primary_10_1002_widm_70026 crossref_primary_10_1007_s10586_024_04934_1 crossref_primary_10_3390_fractalfract7040283 crossref_primary_10_1016_j_asoc_2020_106994 crossref_primary_10_1016_j_bbe_2018_08_004 crossref_primary_10_1007_s11227_022_04658_2 crossref_primary_10_1007_s10115_024_02225_0 crossref_primary_10_1002_dac_4908 crossref_primary_10_1007_s10462_021_10009_z crossref_primary_10_1016_j_jocs_2025_102686 crossref_primary_10_1088_1757_899X_551_1_012035 crossref_primary_10_1007_s00500_020_04793_z crossref_primary_10_1155_2021_6079163 crossref_primary_10_1016_j_eij_2025_100637 crossref_primary_10_1007_s00500_021_05726_0 crossref_primary_10_3390_sym12060922 crossref_primary_10_3390_diagnostics13040708 crossref_primary_10_1049_htl2_12097 crossref_primary_10_1016_j_is_2021_101906 crossref_primary_10_1007_s11063_023_11159_7 crossref_primary_10_1016_j_neucom_2024_128361 crossref_primary_10_1186_s13195_023_01195_9 crossref_primary_10_1007_s11047_019_09769_z crossref_primary_10_1007_s42235_025_00656_1 crossref_primary_10_1016_j_compbiolchem_2022_107767 crossref_primary_10_2174_1574893614666190204150918 crossref_primary_10_1109_ACCESS_2022_3142859 crossref_primary_10_1109_ACCESS_2024_3351943 crossref_primary_10_1007_s42452_020_2575_9 crossref_primary_10_3390_ijgi7090338 crossref_primary_10_1186_s40537_025_01144_3 crossref_primary_10_1016_j_compbiomed_2021_105051 crossref_primary_10_1111_coin_12341 crossref_primary_10_1016_j_knosys_2022_110250 |
| Cites_doi | 10.1109/TCBB.2012.105 10.1109/TCBB.2012.33 10.1073/pnas.211566398 10.1109/TCBB.2007.1009 10.1093/bioinformatics/btm344 10.1073/pnas.96.16.9212 10.1109/TEVC.2007.896686 10.1007/s00500-007-0272-x 10.1073/pnas.96.12.6745 10.1016/S0004-3702(97)00063-5 10.1007/BF00994018 10.1016/j.artmed.2004.01.007 10.1016/j.asoc.2012.01.008 10.1109/TEVC.2015.2503422 10.1142/S0219720005001004 10.1126/science.286.5439.531 10.1023/A:1010933404324 10.1016/j.asoc.2014.08.032 10.1016/j.patcog.2007.02.007 10.1073/pnas.082099299 10.1016/S0004-3702(97)00043-X 10.1016/j.eswa.2011.04.165 10.1016/j.patcog.2005.11.001 10.1093/bioinformatics/bth261 10.1016/j.asoc.2009.11.010 10.1016/j.compbiolchem.2007.10.001 10.1101/gr.190001 10.1093/bioinformatics/16.10.906 10.1109/TCBB.2007.70224 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2017.09.038 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 215 |
| ExternalDocumentID | 10_1016_j_asoc_2017_09_038 S156849461730577X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c366t-ef24bfd36e84f827db6c829a03a6d232f63802cb1ecbccbc22fa4a6f3b15bc0d3 |
| ISICitedReferencesCount | 287 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418333500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 22:39:58 EST 2025 Sat Nov 29 03:05:33 EST 2025 Fri Feb 23 02:24:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Microarray data analysis Naive–Bayes Hybrid model Improved Binary Particle Swarm Optimization (iBPSO) Gene selection Cancer classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c366t-ef24bfd36e84f827db6c829a03a6d232f63802cb1ecbccbc22fa4a6f3b15bc0d3 |
| ORCID | 0000-0002-5725-4998 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2017_09_038 crossref_primary_10_1016_j_asoc_2017_09_038 elsevier_sciencedirect_doi_10_1016_j_asoc_2017_09_038 |
| PublicationCentury | 2000 |
| PublicationDate | January 2018 2018-01-00 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Tibshirani, Hastie, Narasimhan, Chu (bib0180) 2002; 99 Furey, Cristianini, Duffy, Bednarski, Schummer, Haussler (bib0135) 2000; 16 Shen, Shi, Kong (bib0035) 2008; 32 Kennedy, Eberhart (bib0060) 1995 James, Witten, Hastie, Tibshirani (bib0110) 2013; vol. 112 Ruiz, Riquelme, Aguilar-Ruiz (bib0200) 2006; 39 Saeys, Inza, Larra naga (bib0075) 2007; 23 Hall (bib0020) 1999 Ramaswamy, Tamayo, Rifkin, Mukherjee, Yeang, Angelo, Ladd, Reich, Latulippe, Mesirov (bib0145) 2001; 98 Del Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (bib0220) 2008; 12 Li, Yang (bib0165) 2002 Cortes, Vapnik (bib0225) 1995; 20 Eberhart, Kennedy (bib0055) 1995 Liu, Mei, Li (bib0100) 2016; 20 Yu, Liu (bib0170) 2003 Breiman (bib0230) 2001; 45 Frank, Hall, Trigg, Holmes, Witten (bib0215) 2004; 20 Kennedy, Eberhart (bib0065) 1997 Xing, Jordan, Karp (bib0125) 2001 Xiong, Fang, Zhao (bib0130) 2001; 11 Golub, Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri (bib0010) 1999; 286 Zhu, Ong, Dash (bib0205) 2007; 40 Rish (bib0095) 2001 Wu, Dai, Shi, Yan, Zhang (bib0015) 2012; 9 Kelemen, Zhou, Lawhead, Liang (bib0085) 2003 Li, Wu, Tan (bib0040) 2008; 12 Xu, Anagnostopoulos, Wunsch (bib0050) 2007; 4 Wang, Makedon (bib0185) 2004 Ding, Peng (bib0175) 2005; 3 Huerta, Duval, Hao (bib0190) 2006 Lee, Leu (bib0195) 2011; 11 Chuang, Yang, Wu, Yang (bib0210) 2011; 38 Tang, Zhang, Huang (bib0140) 2007; 4 Lazar, Taminau, Meganck, Steenhoff, Coletta, Molter, De Schaetzen, Duque, Bersini, Nowe (bib0080) 2012; 9 Kohavi, John (bib0025) 1997; 97 Perou, Jeffrey, Van De Rijn, Rees, Eisen, Ross, Pergamenschikov, Williams, Zhu, Lee (bib0005) 1999; 96 Chen, Wang, Wang, Angelia (bib0045) 2014; 24 Kohavi (bib0105) 1995 Alon, Barkai, Notterman, Gish, Ybarra, Mack, Levine (bib0115) 1999; 96 Hwang, Cho, Park, Kim, Zhang (bib0150) 2002 Inza, Larra naga, Blanco, Cerrolaza (bib0070) 2004; 31 Fernández-Navarro, Hervás-Martínez, Ruiz, Riquelme (bib0155) 2012; 12 Li, Pedersen, Darden, Weinberg (bib0160) 2002 Li, Zhang, Speer, Martin (bib0120) 2002 Blum, Langley (bib0030) 1997; 97 Mitchell (bib0090) 1997 Golub (10.1016/j.asoc.2017.09.038_bib0010) 1999; 286 Yu (10.1016/j.asoc.2017.09.038_bib0170) 2003 Chuang (10.1016/j.asoc.2017.09.038_bib0210) 2011; 38 Li (10.1016/j.asoc.2017.09.038_bib0120) 2002 Kohavi (10.1016/j.asoc.2017.09.038_bib0105) 1995 Perou (10.1016/j.asoc.2017.09.038_bib0005) 1999; 96 Ruiz (10.1016/j.asoc.2017.09.038_bib0200) 2006; 39 Ding (10.1016/j.asoc.2017.09.038_bib0175) 2005; 3 Xing (10.1016/j.asoc.2017.09.038_bib0125) 2001 Tang (10.1016/j.asoc.2017.09.038_bib0140) 2007; 4 Wang (10.1016/j.asoc.2017.09.038_bib0185) 2004 Li (10.1016/j.asoc.2017.09.038_bib0160) 2002 Wu (10.1016/j.asoc.2017.09.038_bib0015) 2012; 9 Zhu (10.1016/j.asoc.2017.09.038_bib0205) 2007; 40 Frank (10.1016/j.asoc.2017.09.038_bib0215) 2004; 20 Rish (10.1016/j.asoc.2017.09.038_bib0095) 2001 Xiong (10.1016/j.asoc.2017.09.038_bib0130) 2001; 11 Li (10.1016/j.asoc.2017.09.038_bib0165) 2002 James (10.1016/j.asoc.2017.09.038_bib0110) 2013; vol. 112 Xu (10.1016/j.asoc.2017.09.038_bib0050) 2007; 4 Alon (10.1016/j.asoc.2017.09.038_bib0115) 1999; 96 Del Valle (10.1016/j.asoc.2017.09.038_bib0220) 2008; 12 Kennedy (10.1016/j.asoc.2017.09.038_bib0065) 1997 Furey (10.1016/j.asoc.2017.09.038_bib0135) 2000; 16 Ramaswamy (10.1016/j.asoc.2017.09.038_bib0145) 2001; 98 Inza (10.1016/j.asoc.2017.09.038_bib0070) 2004; 31 Tibshirani (10.1016/j.asoc.2017.09.038_bib0180) 2002; 99 Liu (10.1016/j.asoc.2017.09.038_bib0100) 2016; 20 Hall (10.1016/j.asoc.2017.09.038_bib0020) 1999 Lazar (10.1016/j.asoc.2017.09.038_bib0080) 2012; 9 Cortes (10.1016/j.asoc.2017.09.038_bib0225) 1995; 20 Shen (10.1016/j.asoc.2017.09.038_bib0035) 2008; 32 Lee (10.1016/j.asoc.2017.09.038_bib0195) 2011; 11 Breiman (10.1016/j.asoc.2017.09.038_bib0230) 2001; 45 Blum (10.1016/j.asoc.2017.09.038_bib0030) 1997; 97 Fernández-Navarro (10.1016/j.asoc.2017.09.038_bib0155) 2012; 12 Mitchell (10.1016/j.asoc.2017.09.038_bib0090) 1997 Li (10.1016/j.asoc.2017.09.038_bib0040) 2008; 12 Kelemen (10.1016/j.asoc.2017.09.038_bib0085) 2003 Chen (10.1016/j.asoc.2017.09.038_bib0045) 2014; 24 Kennedy (10.1016/j.asoc.2017.09.038_bib0060) 1995 Huerta (10.1016/j.asoc.2017.09.038_bib0190) 2006 Eberhart (10.1016/j.asoc.2017.09.038_bib0055) 1995 Kohavi (10.1016/j.asoc.2017.09.038_bib0025) 1997; 97 Saeys (10.1016/j.asoc.2017.09.038_bib0075) 2007; 23 Hwang (10.1016/j.asoc.2017.09.038_bib0150) 2002 |
| References_xml | – start-page: 1769 year: 2003 end-page: 1773 ident: bib0085 article-title: Naive Bayesian classifier for microarray data publication-title: Proceedings of the International Joint Conference on Neural Networks, 2003, vol. 3 – volume: 9 start-page: 1106 year: 2012 end-page: 1119 ident: bib0080 article-title: A survey on filter techniques for feature selection in gene expression microarray analysis publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) – start-page: 601 year: 2001 end-page: 608 ident: bib0125 article-title: Feature selection for high-dimensional genomic microarray data publication-title: ICML, vol. 1 – volume: 32 start-page: 53 year: 2008 end-page: 60 ident: bib0035 article-title: Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data publication-title: Comput. Biol. Chem. – volume: 20 start-page: 2479 year: 2004 end-page: 2481 ident: bib0215 article-title: Data mining in bioinformatics using Weka publication-title: Bioinformatics – start-page: 167 year: 2002 end-page: 182 ident: bib0150 article-title: Applying machine learning techniques to analysis of gene expression data: cancer diagnosis publication-title: Methods of Microarray Data Analysis – start-page: 41 year: 2001 end-page: 46 ident: bib0095 article-title: An empirical study of the Naive Bayes classifier publication-title: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3 – volume: 4 start-page: 365 year: 2007 end-page: 381 ident: bib0140 article-title: Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – start-page: 137 year: 2002 end-page: 149 ident: bib0165 article-title: How many genes are needed for a discriminant microarray data analysis publication-title: Methods of Microarray Data Analysis – volume: 97 start-page: 245 year: 1997 end-page: 271 ident: bib0030 article-title: Selection of relevant features and examples in machine learning publication-title: Artif. Intell. – volume: 286 start-page: 531 year: 1999 end-page: 537 ident: bib0010 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science – volume: 39 start-page: 2383 year: 2006 end-page: 2392 ident: bib0200 article-title: Incremental wrapper-based gene selection from microarray data for cancer classification publication-title: Pattern Recognit. – volume: 12 start-page: 1787 year: 2012 end-page: 1800 ident: bib0155 article-title: Evolutionary generalized radial basis function neural networks for improving prediction accuracy in gene classification using feature selection publication-title: Appl. Soft Comput. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0230 article-title: Random forests publication-title: Mach. Learn. – volume: 24 start-page: 773 year: 2014 end-page: 780 ident: bib0045 article-title: Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data publication-title: Appl. Soft Comput. – volume: 31 start-page: 91 year: 2004 end-page: 103 ident: bib0070 article-title: Filter versus wrapper gene selection approaches in DNA microarray domains publication-title: Artif. Intell. Med. – volume: 11 start-page: 1878 year: 2001 end-page: 1887 ident: bib0130 article-title: Biomarker identification by feature wrappers publication-title: Genome Res. – start-page: 497 year: 2004 end-page: 498 ident: bib0185 article-title: Application of relief-F feature filtering algorithm to selecting informative genes for cancer classification using microarray data publication-title: 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004. Proceedings – start-page: 81 year: 2002 end-page: 95 ident: bib0160 article-title: Computational analysis of leukemia microarray expression data using the GA/KNN method publication-title: Methods of Microarray Data Analysis – volume: 20 start-page: 666 year: 2016 end-page: 681 ident: bib0100 article-title: An analysis of the inertia weight parameter for binary particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – volume: 40 start-page: 3236 year: 2007 end-page: 3248 ident: bib0205 article-title: Markov blanket-embedded genetic algorithm for gene selection publication-title: Pattern Recognit. – start-page: 185 year: 2002 end-page: 194 ident: bib0120 article-title: Evaluation of current methods of testing differential gene expression and beyond publication-title: Methods of Microarray Data Analysis II – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0225 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 12 start-page: 1039 year: 2008 end-page: 1048 ident: bib0040 article-title: Gene selection using hybrid particle swarm optimization and genetic algorithm publication-title: Soft Comput. – year: 1999 ident: bib0020 article-title: Correlation-based feature selection for machine learning (Ph.D. thesis) – start-page: 1137 year: 1995 end-page: 1145 ident: bib0105 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Ijcai, vol. 14 – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: bib0025 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – volume: 96 start-page: 6745 year: 1999 end-page: 6750 ident: bib0115 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 99 start-page: 6567 year: 2002 end-page: 6572 ident: bib0180 article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 38 start-page: 13367 year: 2011 end-page: 13377 ident: bib0210 article-title: Gene selection and classification using Taguchi chaotic binary particle swarm optimization publication-title: Expert Syst. Appl. – volume: 16 start-page: 906 year: 2000 end-page: 914 ident: bib0135 article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data publication-title: Bioinformatics – start-page: 856 year: 2003 end-page: 863 ident: bib0170 article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution publication-title: ICML, vol. 3 – volume: 3 start-page: 185 year: 2005 end-page: 205 ident: bib0175 article-title: Minimum redundancy feature selection from microarray gene expression data publication-title: J. Bioinform. Comput. Biol. – volume: 96 start-page: 9212 year: 1999 end-page: 9217 ident: bib0005 article-title: Distinctive gene expression patterns in human mammary epithelial cells and breast cancers publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 1649 year: 2012 end-page: 1662 ident: bib0015 article-title: Biomarker identification and cancer classification based on microarray data using Laplace Naive Bayes model with mean shrinkage publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – start-page: 1942 year: 1995 end-page: 1948 ident: bib0060 article-title: Particle swarm optimization publication-title: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4 – year: 1997 ident: bib0090 article-title: Machine Learning – volume: vol. 112 year: 2013 ident: bib0110 publication-title: An Introduction to Statistical Learning – volume: 4 start-page: 65 year: 2007 end-page: 77 ident: bib0050 article-title: Multiclass cancer classification using semisupervised ellipsoid artmap and particle swarm optimization with gene expression data publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – volume: 11 start-page: 208 year: 2011 end-page: 213 ident: bib0195 article-title: A novel hybrid feature selection method for microarray data analysis publication-title: Appl. Soft Comput. – start-page: 39 year: 1995 end-page: 43 ident: bib0055 article-title: A new optimizer using particle swarm theory publication-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, vol. 1 – start-page: 34 year: 2006 end-page: 44 ident: bib0190 article-title: A hybrid GA/SVM approach for gene selection and classification of microarray data publication-title: Applications of Evolutionary Computing – volume: 12 start-page: 171 year: 2008 end-page: 195 ident: bib0220 article-title: Particle swarm optimization: basic concepts, variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. – start-page: 4104 year: 1997 end-page: 4108 ident: bib0065 article-title: A discrete binary version of the particle swarm algorithm publication-title: 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation, vol. 5 – volume: 23 start-page: 2507 year: 2007 end-page: 2517 ident: bib0075 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – volume: 98 start-page: 15149 year: 2001 end-page: 15154 ident: bib0145 article-title: Multiclass cancer diagnosis using tumor gene expression signatures publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 1649 issue: 6 year: 2012 ident: 10.1016/j.asoc.2017.09.038_bib0015 article-title: Biomarker identification and cancer classification based on microarray data using Laplace Naive Bayes model with mean shrinkage publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2012.105 – start-page: 39 year: 1995 ident: 10.1016/j.asoc.2017.09.038_bib0055 article-title: A new optimizer using particle swarm theory – start-page: 137 year: 2002 ident: 10.1016/j.asoc.2017.09.038_bib0165 article-title: How many genes are needed for a discriminant microarray data analysis – start-page: 4104 year: 1997 ident: 10.1016/j.asoc.2017.09.038_bib0065 article-title: A discrete binary version of the particle swarm algorithm – volume: vol. 112 year: 2013 ident: 10.1016/j.asoc.2017.09.038_bib0110 – start-page: 1769 year: 2003 ident: 10.1016/j.asoc.2017.09.038_bib0085 article-title: Naive Bayesian classifier for microarray data – year: 1999 ident: 10.1016/j.asoc.2017.09.038_bib0020 – volume: 9 start-page: 1106 issue: 4 year: 2012 ident: 10.1016/j.asoc.2017.09.038_bib0080 article-title: A survey on filter techniques for feature selection in gene expression microarray analysis publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) doi: 10.1109/TCBB.2012.33 – start-page: 1137 year: 1995 ident: 10.1016/j.asoc.2017.09.038_bib0105 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Ijcai, vol. 14 – volume: 98 start-page: 15149 issue: 26 year: 2001 ident: 10.1016/j.asoc.2017.09.038_bib0145 article-title: Multiclass cancer diagnosis using tumor gene expression signatures publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.211566398 – volume: 4 start-page: 65 issue: 1 year: 2007 ident: 10.1016/j.asoc.2017.09.038_bib0050 article-title: Multiclass cancer classification using semisupervised ellipsoid artmap and particle swarm optimization with gene expression data publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2007.1009 – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 10.1016/j.asoc.2017.09.038_bib0075 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 96 start-page: 9212 issue: 16 year: 1999 ident: 10.1016/j.asoc.2017.09.038_bib0005 article-title: Distinctive gene expression patterns in human mammary epithelial cells and breast cancers publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.16.9212 – volume: 12 start-page: 171 issue: 2 year: 2008 ident: 10.1016/j.asoc.2017.09.038_bib0220 article-title: Particle swarm optimization: basic concepts, variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.896686 – volume: 12 start-page: 1039 issue: 11 year: 2008 ident: 10.1016/j.asoc.2017.09.038_bib0040 article-title: Gene selection using hybrid particle swarm optimization and genetic algorithm publication-title: Soft Comput. doi: 10.1007/s00500-007-0272-x – start-page: 856 year: 2003 ident: 10.1016/j.asoc.2017.09.038_bib0170 article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution publication-title: ICML, vol. 3 – volume: 96 start-page: 6745 issue: 12 year: 1999 ident: 10.1016/j.asoc.2017.09.038_bib0115 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.12.6745 – volume: 97 start-page: 245 issue: 1 year: 1997 ident: 10.1016/j.asoc.2017.09.038_bib0030 article-title: Selection of relevant features and examples in machine learning publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00063-5 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.asoc.2017.09.038_bib0225 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – start-page: 185 year: 2002 ident: 10.1016/j.asoc.2017.09.038_bib0120 article-title: Evaluation of current methods of testing differential gene expression and beyond – volume: 31 start-page: 91 issue: 2 year: 2004 ident: 10.1016/j.asoc.2017.09.038_bib0070 article-title: Filter versus wrapper gene selection approaches in DNA microarray domains publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2004.01.007 – start-page: 497 year: 2004 ident: 10.1016/j.asoc.2017.09.038_bib0185 article-title: Application of relief-F feature filtering algorithm to selecting informative genes for cancer classification using microarray data – start-page: 34 year: 2006 ident: 10.1016/j.asoc.2017.09.038_bib0190 article-title: A hybrid GA/SVM approach for gene selection and classification of microarray data – volume: 12 start-page: 1787 issue: 6 year: 2012 ident: 10.1016/j.asoc.2017.09.038_bib0155 article-title: Evolutionary generalized radial basis function neural networks for improving prediction accuracy in gene classification using feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.01.008 – year: 1997 ident: 10.1016/j.asoc.2017.09.038_bib0090 – volume: 20 start-page: 666 issue: 5 year: 2016 ident: 10.1016/j.asoc.2017.09.038_bib0100 article-title: An analysis of the inertia weight parameter for binary particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2503422 – volume: 3 start-page: 185 issue: 02 year: 2005 ident: 10.1016/j.asoc.2017.09.038_bib0175 article-title: Minimum redundancy feature selection from microarray gene expression data publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S0219720005001004 – volume: 286 start-page: 531 issue: 5439 year: 1999 ident: 10.1016/j.asoc.2017.09.038_bib0010 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.asoc.2017.09.038_bib0230 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 24 start-page: 773 year: 2014 ident: 10.1016/j.asoc.2017.09.038_bib0045 article-title: Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.032 – volume: 40 start-page: 3236 issue: 11 year: 2007 ident: 10.1016/j.asoc.2017.09.038_bib0205 article-title: Markov blanket-embedded genetic algorithm for gene selection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.02.007 – start-page: 41 year: 2001 ident: 10.1016/j.asoc.2017.09.038_bib0095 article-title: An empirical study of the Naive Bayes classifier – volume: 99 start-page: 6567 issue: 10 year: 2002 ident: 10.1016/j.asoc.2017.09.038_bib0180 article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.082099299 – volume: 97 start-page: 273 issue: 1 year: 1997 ident: 10.1016/j.asoc.2017.09.038_bib0025 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – start-page: 81 year: 2002 ident: 10.1016/j.asoc.2017.09.038_bib0160 article-title: Computational analysis of leukemia microarray expression data using the GA/KNN method – volume: 38 start-page: 13367 issue: 10 year: 2011 ident: 10.1016/j.asoc.2017.09.038_bib0210 article-title: Gene selection and classification using Taguchi chaotic binary particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.165 – volume: 39 start-page: 2383 issue: 12 year: 2006 ident: 10.1016/j.asoc.2017.09.038_bib0200 article-title: Incremental wrapper-based gene selection from microarray data for cancer classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.11.001 – start-page: 601 year: 2001 ident: 10.1016/j.asoc.2017.09.038_bib0125 article-title: Feature selection for high-dimensional genomic microarray data – volume: 20 start-page: 2479 issue: 15 year: 2004 ident: 10.1016/j.asoc.2017.09.038_bib0215 article-title: Data mining in bioinformatics using Weka publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth261 – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2017.09.038_bib0060 article-title: Particle swarm optimization – start-page: 167 year: 2002 ident: 10.1016/j.asoc.2017.09.038_bib0150 article-title: Applying machine learning techniques to analysis of gene expression data: cancer diagnosis – volume: 11 start-page: 208 issue: 1 year: 2011 ident: 10.1016/j.asoc.2017.09.038_bib0195 article-title: A novel hybrid feature selection method for microarray data analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.11.010 – volume: 32 start-page: 53 issue: 1 year: 2008 ident: 10.1016/j.asoc.2017.09.038_bib0035 article-title: Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2007.10.001 – volume: 11 start-page: 1878 issue: 11 year: 2001 ident: 10.1016/j.asoc.2017.09.038_bib0130 article-title: Biomarker identification by feature wrappers publication-title: Genome Res. doi: 10.1101/gr.190001 – volume: 16 start-page: 906 issue: 10 year: 2000 ident: 10.1016/j.asoc.2017.09.038_bib0135 article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.10.906 – volume: 4 start-page: 365 issue: 3 year: 2007 ident: 10.1016/j.asoc.2017.09.038_bib0140 article-title: Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2007.70224 |
| SSID | ssj0016928 |
| Score | 2.6423724 |
| Snippet | [Display omitted]
•A two phase hybrid model based on improved-Binary Particle Swarm Optimization (iBPSO) is proposed for cancer diagnosis and classification... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 203 |
| SubjectTerms | Cancer classification Gene selection Hybrid model Improved Binary Particle Swarm Optimization (iBPSO) Microarray data analysis Naive–Bayes |
| Title | Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification |
| URI | https://dx.doi.org/10.1016/j.asoc.2017.09.038 |
| Volume | 62 |
| WOSCitedRecordID | wos000418333500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwGLWGKQcu7Khlkw_coqDEzng5lqoIECoVLWhukePYUqtpppqNHvgR_GQ-L8mEFFWAhDSKRp7Ysea9PH9xvgWhVzZXVmd1lYIpT9Kits4JoJKp4lIzzWmeK59d_yM_OhLTqTwejX60sTCbGW8acXUlL_8r1NAGYLvQ2b-AuxsUGuA7gA5HgB2OfwT8gau3MYs-hMbn7UyWvtqNa3GrVu1iIxfzjanTNyEc9ziOk5x8U4uL5BPoyEUM0PR-iHCx_iA-Fs7RZZFoZ307d6Mtwm1O22jfLkHovef6etUukz62PyQvcKVDhm1fz5p5nXjn7-FPn02z7m9U5GKwUXE9giYILhNpIeM2pAltgpNUslDKpVXpqNlRZjPaW7FJCAi9thiEfYnz1wp47pz4eMhoK7ZLX-eQeOLm4aaRg-JNOJ_eQjuET6QYo53994fTD92bKSZ9vd5u3jEQK_gMDq_0e2OnZ8Cc3kd345MH3g9IP0Aj0zxE99qqHjiK_CP0vUcgHAmEO-yxJxAeEAi3BMKeQLhPIAwEwo5AvUGAQDgQCP9KoMfoy9vD04N3aazRkWrK2Co1lhSVrSkzorCC8LpiWhCpMqpYDda6BX3PiK5yoysNH0KsKhSztMonFYgEfYLGzbwxuwjrwqX6Jsbl2S8oCIagudKa1tTCU40p9lDe_pmljgnsXR2VWdl6Kp6XDoDSAVBmsgQA9lDS9bkM6VtuPHvSYlRGAzQYliVQ6oZ-T_-x3zN0Z3ujPEfj1WJtXqDberM6Wy5eRub9BFVIseo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+feature+selection+based+improved-Binary+Particle+Swarm+Optimization+for+gene+selection+and+cancer+classification&rft.jtitle=Applied+soft+computing&rft.au=Jain%2C+Indu&rft.au=Jain%2C+Vinod+Kumar&rft.au=Jain%2C+Renu&rft.date=2018-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=62&rft.spage=203&rft.epage=215&rft_id=info:doi/10.1016%2Fj.asoc.2017.09.038&rft.externalDocID=S156849461730577X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |