Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification

[Display omitted] •A two phase hybrid model based on improved-Binary Particle Swarm Optimization (iBPSO) is proposed for cancer diagnosis and classification using DNA microarray technology.•The model is examined on 11 different types of cancer microarray datasets and classified the samples with 100%...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 62; s. 203 - 215
Hlavní autoři: Jain, Indu, Jain, Vinod Kumar, Jain, Renu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2018
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •A two phase hybrid model based on improved-Binary Particle Swarm Optimization (iBPSO) is proposed for cancer diagnosis and classification using DNA microarray technology.•The model is examined on 11 different types of cancer microarray datasets and classified the samples with 100% accuracy for seven datasets and with more than 92% for the remaining datasets.•Comparative performance evaluation of the proposed model is done with seven other benchmark methods and the model exhibits superior performance.•The model also selects small number (<1.5%) of highly relevant genes responsible for cancer classification which facilitates early prognosis of the disease.•The proposed improved-BPSO also provides the solution for inherent local optimum problem of traditional BPSO. DNA microarray technology has emerged as a prospective tool for diagnosis of cancer and its classification. It provides better insights of many genetic mutations occurring within a cell associated with cancer. However, thousands of gene expressions measured for each biological sample using microarray pose a great challenge. Many statistical and machine learning methods have been applied to get most relevant genes prior to cancer classification. A two phase hybrid model for cancer classification is being proposed, integrating Correlation-based Feature Selection (CFS) with improved-Binary Particle Swarm Optimization (iBPSO). This model selects a low dimensional set of prognostic genes to classify biological samples of binary and multi class cancers using Naive–Bayes classifier with stratified 10-fold cross-validation. The proposed iBPSO also controls the problem of early convergence to the local optimum of traditional BPSO. The proposed model has been evaluated on 11 benchmark microarray datasets of different cancer types. Experimental results are compared with seven other well known methods, and our model exhibited better results in terms of classification accuracy and the number of selected genes in most cases. In particular, it achieved up to 100% classification accuracy for seven out of eleven datasets with a very small sized prognostic gene subset (up to <1.5%) for all eleven datasets.
AbstractList [Display omitted] •A two phase hybrid model based on improved-Binary Particle Swarm Optimization (iBPSO) is proposed for cancer diagnosis and classification using DNA microarray technology.•The model is examined on 11 different types of cancer microarray datasets and classified the samples with 100% accuracy for seven datasets and with more than 92% for the remaining datasets.•Comparative performance evaluation of the proposed model is done with seven other benchmark methods and the model exhibits superior performance.•The model also selects small number (<1.5%) of highly relevant genes responsible for cancer classification which facilitates early prognosis of the disease.•The proposed improved-BPSO also provides the solution for inherent local optimum problem of traditional BPSO. DNA microarray technology has emerged as a prospective tool for diagnosis of cancer and its classification. It provides better insights of many genetic mutations occurring within a cell associated with cancer. However, thousands of gene expressions measured for each biological sample using microarray pose a great challenge. Many statistical and machine learning methods have been applied to get most relevant genes prior to cancer classification. A two phase hybrid model for cancer classification is being proposed, integrating Correlation-based Feature Selection (CFS) with improved-Binary Particle Swarm Optimization (iBPSO). This model selects a low dimensional set of prognostic genes to classify biological samples of binary and multi class cancers using Naive–Bayes classifier with stratified 10-fold cross-validation. The proposed iBPSO also controls the problem of early convergence to the local optimum of traditional BPSO. The proposed model has been evaluated on 11 benchmark microarray datasets of different cancer types. Experimental results are compared with seven other well known methods, and our model exhibited better results in terms of classification accuracy and the number of selected genes in most cases. In particular, it achieved up to 100% classification accuracy for seven out of eleven datasets with a very small sized prognostic gene subset (up to <1.5%) for all eleven datasets.
Author Jain, Indu
Jain, Renu
Jain, Vinod Kumar
Author_xml – sequence: 1
  givenname: Indu
  surname: Jain
  fullname: Jain, Indu
  email: indujain06@gmail.com
  organization: School of Mathematics and Allied Sciences (SOMAAS), Jiwaji University, Gwalior, M.P. 474006, India
– sequence: 2
  givenname: Vinod Kumar
  orcidid: 0000-0002-5725-4998
  surname: Jain
  fullname: Jain, Vinod Kumar
  email: vkjain@iiitdmj.ac.in
  organization: PDPM-Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, Dumna Airport Road, P.O. Khamaria, Jabalpur, M.P., India
– sequence: 3
  givenname: Renu
  surname: Jain
  fullname: Jain, Renu
  email: renujain3@rediffmail.com
  organization: School of Mathematics and Allied Sciences (SOMAAS), Jiwaji University, Gwalior, M.P. 474006, India
BookMark eNp9kNtKAzEQhoNUsK2-gFd5gV1z2KZZ8EaLJyhUUK9DNplIynZTkrWi-PCmhwvxojAwQ8j3M_ON0KALHSB0SUlJCRVXy1KnYEpG6LQkdUm4PEFDKqesqIWkgzxPhCyquhJnaJTSkmSoZnKIfmYhRmh170OHHej-IwJO0ILZvTQ6gcV-tY5hA7a49Z2OX_hZx96bFvDLp44rvFj3fuW_Dxkh4nfo_obozmKjOwMRm1an5J03u8_n6NTpNsHFoY_R2_3d6-yxmC8enmY388JwIfoCHKsaZ7kAWTnJprYRRrJaE66FZZw5wSVhpqFgGpOLMacrLRxv6KQxxPIxkvtcE0NKEZwyvt9t0EftW0WJ2lpUS7W1qLYWFalVtphR9g9dR7_KEo5D13sI8lEbD1El4yELsD5mJ8oGfwz_Ba5sktY
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106337
crossref_primary_10_1016_j_eswa_2021_115828
crossref_primary_10_1007_s13042_021_01319_3
crossref_primary_10_1186_s12859_021_04443_7
crossref_primary_10_1016_j_swevo_2020_100663
crossref_primary_10_1007_s11042_019_7181_8
crossref_primary_10_1007_s00500_022_06844_z
crossref_primary_10_1016_j_swevo_2020_100661
crossref_primary_10_1016_j_eswa_2022_118946
crossref_primary_10_1016_j_asoc_2022_109293
crossref_primary_10_1109_ACCESS_2024_3489476
crossref_primary_10_3390_pr11020562
crossref_primary_10_1038_s41598_019_53471_0
crossref_primary_10_1007_s13721_021_00313_7
crossref_primary_10_1016_j_patcog_2020_107804
crossref_primary_10_1038_s41598_023_44437_4
crossref_primary_10_1109_TEVC_2021_3134804
crossref_primary_10_1016_j_knosys_2022_109899
crossref_primary_10_1111_exsy_13309
crossref_primary_10_1007_s10462_020_09860_3
crossref_primary_10_1080_10255842_2024_2429012
crossref_primary_10_2174_1574893616666210624130124
crossref_primary_10_1016_j_jhydrol_2019_124012
crossref_primary_10_1016_j_eswa_2019_113122
crossref_primary_10_1016_j_neucom_2022_05_048
crossref_primary_10_1016_j_jprocont_2022_06_013
crossref_primary_10_1016_j_jenvman_2020_110485
crossref_primary_10_1007_s00521_021_06459_9
crossref_primary_10_3390_electronics10232984
crossref_primary_10_1016_j_jtbi_2018_12_010
crossref_primary_10_1088_1757_899X_864_1_012066
crossref_primary_10_1016_j_jbi_2021_103764
crossref_primary_10_32604_biocell_2023_026254
crossref_primary_10_1007_s10489_021_02708_5
crossref_primary_10_1093_comjnl_bxac033
crossref_primary_10_3390_math10111929
crossref_primary_10_1016_j_bspc_2022_103999
crossref_primary_10_1016_j_csbj_2022_09_033
crossref_primary_10_1007_s11517_018_1874_4
crossref_primary_10_1002_cpe_6718
crossref_primary_10_1049_ccs2_12003
crossref_primary_10_1007_s42044_024_00174_z
crossref_primary_10_32604_cmc_2021_015291
crossref_primary_10_1049_htl_2018_5055
crossref_primary_10_1007_s00521_021_06775_0
crossref_primary_10_1109_ACCESS_2019_2894366
crossref_primary_10_1109_TEVC_2025_3533490
crossref_primary_10_1007_s11042_024_20146_6
crossref_primary_10_3390_cancers15133411
crossref_primary_10_3390_math11051081
crossref_primary_10_1016_j_knosys_2022_109874
crossref_primary_10_1186_s12920_018_0447_6
crossref_primary_10_1155_2021_5227377
crossref_primary_10_1080_10106049_2020_1737972
crossref_primary_10_1007_s13042_022_01726_0
crossref_primary_10_1016_j_compeleceng_2022_108035
crossref_primary_10_1186_s12859_022_04689_9
crossref_primary_10_1007_s41870_024_01999_4
crossref_primary_10_1016_j_ygeno_2019_09_015
crossref_primary_10_1002_ett_4367
crossref_primary_10_1016_j_eswa_2025_126404
crossref_primary_10_1080_10255842_2022_2112185
crossref_primary_10_3233_JIFS_220412
crossref_primary_10_1016_j_jbi_2020_103466
crossref_primary_10_1016_j_cmpb_2023_107987
crossref_primary_10_1088_1742_6596_1490_1_012031
crossref_primary_10_1007_s00500_019_04203_z
crossref_primary_10_2174_1574893618666230227122331
crossref_primary_10_1016_j_asoc_2023_110241
crossref_primary_10_1016_j_asoc_2024_112654
crossref_primary_10_1038_s41598_019_45223_x
crossref_primary_10_1016_j_compbiomed_2022_105622
crossref_primary_10_1016_j_swevo_2021_100868
crossref_primary_10_1007_s42600_023_00335_2
crossref_primary_10_1049_htl_2018_5041
crossref_primary_10_1016_j_ijleo_2023_171574
crossref_primary_10_1007_s13369_021_05486_x
crossref_primary_10_1016_j_eswa_2022_116550
crossref_primary_10_3390_app122211795
crossref_primary_10_1016_j_jksuci_2023_101757
crossref_primary_10_1016_j_ins_2019_06_063
crossref_primary_10_1155_2022_1452301
crossref_primary_10_3390_s21072508
crossref_primary_10_1007_s12065_021_00608_8
crossref_primary_10_1016_j_measurement_2024_115974
crossref_primary_10_3390_s17112688
crossref_primary_10_1016_j_asoc_2020_106238
crossref_primary_10_1155_2018_3641286
crossref_primary_10_1007_s10586_018_2200_5
crossref_primary_10_1007_s11831_021_09694_4
crossref_primary_10_1007_s11063_021_10700_w
crossref_primary_10_1016_j_asoc_2018_11_014
crossref_primary_10_1016_j_ygeno_2020_07_027
crossref_primary_10_1016_j_eswa_2019_06_044
crossref_primary_10_1016_j_prime_2023_100303
crossref_primary_10_1155_2021_6680424
crossref_primary_10_1002_ima_23007
crossref_primary_10_7717_peerj_cs_697
crossref_primary_10_1007_s42044_025_00252_w
crossref_primary_10_1007_s00521_021_06406_8
crossref_primary_10_1016_j_compbiomed_2022_105766
crossref_primary_10_1007_s11227_022_04507_2
crossref_primary_10_1109_ACCESS_2024_3390684
crossref_primary_10_1007_s11334_022_00492_0
crossref_primary_10_1016_j_est_2023_107589
crossref_primary_10_1007_s10489_021_03118_3
crossref_primary_10_1016_j_jtbi_2019_110098
crossref_primary_10_1016_j_ejps_2023_106408
crossref_primary_10_1109_ACCESS_2019_2922987
crossref_primary_10_1007_s10916_023_02031_1
crossref_primary_10_1016_j_engappai_2021_104210
crossref_primary_10_1007_s42979_025_03928_z
crossref_primary_10_1088_1742_6596_2571_1_012016
crossref_primary_10_3390_pr11071940
crossref_primary_10_1080_19427867_2019_1581485
crossref_primary_10_1016_j_eswa_2022_117864
crossref_primary_10_1007_s10115_025_02340_6
crossref_primary_10_1016_j_applthermaleng_2019_04_017
crossref_primary_10_1016_j_asoc_2019_106031
crossref_primary_10_1109_ACCESS_2021_3070428
crossref_primary_10_1093_jcde_qwac120
crossref_primary_10_3390_en15103485
crossref_primary_10_1007_s42417_023_01024_1
crossref_primary_10_1016_j_jksuci_2020_05_002
crossref_primary_10_1049_syb2_12044
crossref_primary_10_1109_ACCESS_2021_3124710
crossref_primary_10_1007_s12652_024_04853_4
crossref_primary_10_4018_IJIIT_289966
crossref_primary_10_1007_s10796_024_10559_x
crossref_primary_10_3233_KES_190134
crossref_primary_10_1016_j_asoc_2018_09_022
crossref_primary_10_1016_j_knosys_2023_110420
crossref_primary_10_3389_fgene_2020_603808
crossref_primary_10_1093_jcde_qwaf050
crossref_primary_10_1109_TEVC_2021_3100056
crossref_primary_10_1016_j_envpol_2023_122620
crossref_primary_10_1016_j_eswa_2021_115655
crossref_primary_10_1007_s00521_022_07780_7
crossref_primary_10_3390_s19163451
crossref_primary_10_1080_0952813X_2023_2183267
crossref_primary_10_1016_j_eswa_2022_118654
crossref_primary_10_3390_computation7020031
crossref_primary_10_1016_j_matcom_2020_08_013
crossref_primary_10_1109_TAI_2022_3145333
crossref_primary_10_1007_s10489_021_02550_9
crossref_primary_10_1016_j_knosys_2021_107804
crossref_primary_10_7717_peerj_cs_2872
crossref_primary_10_1007_s12243_023_00951_0
crossref_primary_10_1016_j_asoc_2020_106299
crossref_primary_10_1016_j_ejor_2018_10_051
crossref_primary_10_1016_j_eswa_2019_06_007
crossref_primary_10_3390_app14135660
crossref_primary_10_1016_j_compbiomed_2019_103375
crossref_primary_10_1080_01430750_2020_1730952
crossref_primary_10_3390_genes10120969
crossref_primary_10_3390_sym13101812
crossref_primary_10_1016_j_knosys_2023_110635
crossref_primary_10_3390_bioengineering11060533
crossref_primary_10_1002_ima_22596
crossref_primary_10_1007_s00500_023_09062_3
crossref_primary_10_1016_j_mehy_2020_109577
crossref_primary_10_1007_s12597_023_00662_z
crossref_primary_10_1016_j_eswa_2021_115882
crossref_primary_10_3390_biomimetics10050315
crossref_primary_10_3233_JIFS_181904
crossref_primary_10_3390_land12061213
crossref_primary_10_3389_fnins_2022_1034971
crossref_primary_10_1007_s00500_020_05365_x
crossref_primary_10_1186_s12911_021_01696_3
crossref_primary_10_1007_s41965_023_00133_w
crossref_primary_10_1177_09544062251358059
crossref_primary_10_1007_s10462_021_10052_w
crossref_primary_10_1155_2022_2856818
crossref_primary_10_1155_2024_4105224
crossref_primary_10_1007_s11517_022_02555_7
crossref_primary_10_1186_s40537_025_01105_w
crossref_primary_10_1007_s10115_024_02292_3
crossref_primary_10_1016_j_knosys_2021_107034
crossref_primary_10_1007_s40745_024_00571_y
crossref_primary_10_1007_s00521_022_07661_z
crossref_primary_10_1016_j_compbiomed_2023_107237
crossref_primary_10_1016_j_jbi_2021_103803
crossref_primary_10_1007_s11042_021_11474_y
crossref_primary_10_1016_j_asoc_2021_107302
crossref_primary_10_1016_j_asoc_2022_109585
crossref_primary_10_1007_s00521_022_07147_y
crossref_primary_10_1631_FITEE_2100569
crossref_primary_10_1007_s12652_022_04450_3
crossref_primary_10_1016_j_compeleceng_2020_106963
crossref_primary_10_1007_s10044_022_01117_9
crossref_primary_10_3390_mi15010018
crossref_primary_10_1007_s11227_022_04920_7
crossref_primary_10_1155_2024_9382390
crossref_primary_10_1016_j_chemolab_2018_10_009
crossref_primary_10_1016_j_asoc_2023_110078
crossref_primary_10_3390_systems11100519
crossref_primary_10_1186_s12859_022_04848_y
crossref_primary_10_1007_s11042_020_09337_z
crossref_primary_10_1007_s00521_019_04671_2
crossref_primary_10_3390_diagnostics11101936
crossref_primary_10_1016_j_bspc_2022_104080
crossref_primary_10_3390_sym14101955
crossref_primary_10_3390_a14040120
crossref_primary_10_1016_j_ab_2021_114242
crossref_primary_10_1016_j_knosys_2022_108640
crossref_primary_10_1038_s41598_021_83150_y
crossref_primary_10_1002_widm_70026
crossref_primary_10_1007_s10586_024_04934_1
crossref_primary_10_3390_fractalfract7040283
crossref_primary_10_1016_j_asoc_2020_106994
crossref_primary_10_1016_j_bbe_2018_08_004
crossref_primary_10_1007_s11227_022_04658_2
crossref_primary_10_1007_s10115_024_02225_0
crossref_primary_10_1002_dac_4908
crossref_primary_10_1007_s10462_021_10009_z
crossref_primary_10_1016_j_jocs_2025_102686
crossref_primary_10_1088_1757_899X_551_1_012035
crossref_primary_10_1007_s00500_020_04793_z
crossref_primary_10_1155_2021_6079163
crossref_primary_10_1016_j_eij_2025_100637
crossref_primary_10_1007_s00500_021_05726_0
crossref_primary_10_3390_sym12060922
crossref_primary_10_3390_diagnostics13040708
crossref_primary_10_1049_htl2_12097
crossref_primary_10_1016_j_is_2021_101906
crossref_primary_10_1007_s11063_023_11159_7
crossref_primary_10_1016_j_neucom_2024_128361
crossref_primary_10_1186_s13195_023_01195_9
crossref_primary_10_1007_s11047_019_09769_z
crossref_primary_10_1007_s42235_025_00656_1
crossref_primary_10_1016_j_compbiolchem_2022_107767
crossref_primary_10_2174_1574893614666190204150918
crossref_primary_10_1109_ACCESS_2022_3142859
crossref_primary_10_1109_ACCESS_2024_3351943
crossref_primary_10_1007_s42452_020_2575_9
crossref_primary_10_3390_ijgi7090338
crossref_primary_10_1186_s40537_025_01144_3
crossref_primary_10_1016_j_compbiomed_2021_105051
crossref_primary_10_1111_coin_12341
crossref_primary_10_1016_j_knosys_2022_110250
Cites_doi 10.1109/TCBB.2012.105
10.1109/TCBB.2012.33
10.1073/pnas.211566398
10.1109/TCBB.2007.1009
10.1093/bioinformatics/btm344
10.1073/pnas.96.16.9212
10.1109/TEVC.2007.896686
10.1007/s00500-007-0272-x
10.1073/pnas.96.12.6745
10.1016/S0004-3702(97)00063-5
10.1007/BF00994018
10.1016/j.artmed.2004.01.007
10.1016/j.asoc.2012.01.008
10.1109/TEVC.2015.2503422
10.1142/S0219720005001004
10.1126/science.286.5439.531
10.1023/A:1010933404324
10.1016/j.asoc.2014.08.032
10.1016/j.patcog.2007.02.007
10.1073/pnas.082099299
10.1016/S0004-3702(97)00043-X
10.1016/j.eswa.2011.04.165
10.1016/j.patcog.2005.11.001
10.1093/bioinformatics/bth261
10.1016/j.asoc.2009.11.010
10.1016/j.compbiolchem.2007.10.001
10.1101/gr.190001
10.1093/bioinformatics/16.10.906
10.1109/TCBB.2007.70224
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2017.09.038
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 215
ExternalDocumentID 10_1016_j_asoc_2017_09_038
S156849461730577X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-ef24bfd36e84f827db6c829a03a6d232f63802cb1ecbccbc22fa4a6f3b15bc0d3
ISICitedReferencesCount 287
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418333500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:39:58 EST 2025
Sat Nov 29 03:05:33 EST 2025
Fri Feb 23 02:24:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microarray data analysis
Naive–Bayes
Hybrid model
Improved Binary Particle Swarm Optimization (iBPSO)
Gene selection
Cancer classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-ef24bfd36e84f827db6c829a03a6d232f63802cb1ecbccbc22fa4a6f3b15bc0d3
ORCID 0000-0002-5725-4998
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2017_09_038
crossref_primary_10_1016_j_asoc_2017_09_038
elsevier_sciencedirect_doi_10_1016_j_asoc_2017_09_038
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tibshirani, Hastie, Narasimhan, Chu (bib0180) 2002; 99
Furey, Cristianini, Duffy, Bednarski, Schummer, Haussler (bib0135) 2000; 16
Shen, Shi, Kong (bib0035) 2008; 32
Kennedy, Eberhart (bib0060) 1995
James, Witten, Hastie, Tibshirani (bib0110) 2013; vol. 112
Ruiz, Riquelme, Aguilar-Ruiz (bib0200) 2006; 39
Saeys, Inza, Larra naga (bib0075) 2007; 23
Hall (bib0020) 1999
Ramaswamy, Tamayo, Rifkin, Mukherjee, Yeang, Angelo, Ladd, Reich, Latulippe, Mesirov (bib0145) 2001; 98
Del Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (bib0220) 2008; 12
Li, Yang (bib0165) 2002
Cortes, Vapnik (bib0225) 1995; 20
Eberhart, Kennedy (bib0055) 1995
Liu, Mei, Li (bib0100) 2016; 20
Yu, Liu (bib0170) 2003
Breiman (bib0230) 2001; 45
Frank, Hall, Trigg, Holmes, Witten (bib0215) 2004; 20
Kennedy, Eberhart (bib0065) 1997
Xing, Jordan, Karp (bib0125) 2001
Xiong, Fang, Zhao (bib0130) 2001; 11
Golub, Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri (bib0010) 1999; 286
Zhu, Ong, Dash (bib0205) 2007; 40
Rish (bib0095) 2001
Wu, Dai, Shi, Yan, Zhang (bib0015) 2012; 9
Kelemen, Zhou, Lawhead, Liang (bib0085) 2003
Li, Wu, Tan (bib0040) 2008; 12
Xu, Anagnostopoulos, Wunsch (bib0050) 2007; 4
Wang, Makedon (bib0185) 2004
Ding, Peng (bib0175) 2005; 3
Huerta, Duval, Hao (bib0190) 2006
Lee, Leu (bib0195) 2011; 11
Chuang, Yang, Wu, Yang (bib0210) 2011; 38
Tang, Zhang, Huang (bib0140) 2007; 4
Lazar, Taminau, Meganck, Steenhoff, Coletta, Molter, De Schaetzen, Duque, Bersini, Nowe (bib0080) 2012; 9
Kohavi, John (bib0025) 1997; 97
Perou, Jeffrey, Van De Rijn, Rees, Eisen, Ross, Pergamenschikov, Williams, Zhu, Lee (bib0005) 1999; 96
Chen, Wang, Wang, Angelia (bib0045) 2014; 24
Kohavi (bib0105) 1995
Alon, Barkai, Notterman, Gish, Ybarra, Mack, Levine (bib0115) 1999; 96
Hwang, Cho, Park, Kim, Zhang (bib0150) 2002
Inza, Larra naga, Blanco, Cerrolaza (bib0070) 2004; 31
Fernández-Navarro, Hervás-Martínez, Ruiz, Riquelme (bib0155) 2012; 12
Li, Pedersen, Darden, Weinberg (bib0160) 2002
Li, Zhang, Speer, Martin (bib0120) 2002
Blum, Langley (bib0030) 1997; 97
Mitchell (bib0090) 1997
Golub (10.1016/j.asoc.2017.09.038_bib0010) 1999; 286
Yu (10.1016/j.asoc.2017.09.038_bib0170) 2003
Chuang (10.1016/j.asoc.2017.09.038_bib0210) 2011; 38
Li (10.1016/j.asoc.2017.09.038_bib0120) 2002
Kohavi (10.1016/j.asoc.2017.09.038_bib0105) 1995
Perou (10.1016/j.asoc.2017.09.038_bib0005) 1999; 96
Ruiz (10.1016/j.asoc.2017.09.038_bib0200) 2006; 39
Ding (10.1016/j.asoc.2017.09.038_bib0175) 2005; 3
Xing (10.1016/j.asoc.2017.09.038_bib0125) 2001
Tang (10.1016/j.asoc.2017.09.038_bib0140) 2007; 4
Wang (10.1016/j.asoc.2017.09.038_bib0185) 2004
Li (10.1016/j.asoc.2017.09.038_bib0160) 2002
Wu (10.1016/j.asoc.2017.09.038_bib0015) 2012; 9
Zhu (10.1016/j.asoc.2017.09.038_bib0205) 2007; 40
Frank (10.1016/j.asoc.2017.09.038_bib0215) 2004; 20
Rish (10.1016/j.asoc.2017.09.038_bib0095) 2001
Xiong (10.1016/j.asoc.2017.09.038_bib0130) 2001; 11
Li (10.1016/j.asoc.2017.09.038_bib0165) 2002
James (10.1016/j.asoc.2017.09.038_bib0110) 2013; vol. 112
Xu (10.1016/j.asoc.2017.09.038_bib0050) 2007; 4
Alon (10.1016/j.asoc.2017.09.038_bib0115) 1999; 96
Del Valle (10.1016/j.asoc.2017.09.038_bib0220) 2008; 12
Kennedy (10.1016/j.asoc.2017.09.038_bib0065) 1997
Furey (10.1016/j.asoc.2017.09.038_bib0135) 2000; 16
Ramaswamy (10.1016/j.asoc.2017.09.038_bib0145) 2001; 98
Inza (10.1016/j.asoc.2017.09.038_bib0070) 2004; 31
Tibshirani (10.1016/j.asoc.2017.09.038_bib0180) 2002; 99
Liu (10.1016/j.asoc.2017.09.038_bib0100) 2016; 20
Hall (10.1016/j.asoc.2017.09.038_bib0020) 1999
Lazar (10.1016/j.asoc.2017.09.038_bib0080) 2012; 9
Cortes (10.1016/j.asoc.2017.09.038_bib0225) 1995; 20
Shen (10.1016/j.asoc.2017.09.038_bib0035) 2008; 32
Lee (10.1016/j.asoc.2017.09.038_bib0195) 2011; 11
Breiman (10.1016/j.asoc.2017.09.038_bib0230) 2001; 45
Blum (10.1016/j.asoc.2017.09.038_bib0030) 1997; 97
Fernández-Navarro (10.1016/j.asoc.2017.09.038_bib0155) 2012; 12
Mitchell (10.1016/j.asoc.2017.09.038_bib0090) 1997
Li (10.1016/j.asoc.2017.09.038_bib0040) 2008; 12
Kelemen (10.1016/j.asoc.2017.09.038_bib0085) 2003
Chen (10.1016/j.asoc.2017.09.038_bib0045) 2014; 24
Kennedy (10.1016/j.asoc.2017.09.038_bib0060) 1995
Huerta (10.1016/j.asoc.2017.09.038_bib0190) 2006
Eberhart (10.1016/j.asoc.2017.09.038_bib0055) 1995
Kohavi (10.1016/j.asoc.2017.09.038_bib0025) 1997; 97
Saeys (10.1016/j.asoc.2017.09.038_bib0075) 2007; 23
Hwang (10.1016/j.asoc.2017.09.038_bib0150) 2002
References_xml – start-page: 1769
  year: 2003
  end-page: 1773
  ident: bib0085
  article-title: Naive Bayesian classifier for microarray data
  publication-title: Proceedings of the International Joint Conference on Neural Networks, 2003, vol. 3
– volume: 9
  start-page: 1106
  year: 2012
  end-page: 1119
  ident: bib0080
  article-title: A survey on filter techniques for feature selection in gene expression microarray analysis
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB)
– start-page: 601
  year: 2001
  end-page: 608
  ident: bib0125
  article-title: Feature selection for high-dimensional genomic microarray data
  publication-title: ICML, vol. 1
– volume: 32
  start-page: 53
  year: 2008
  end-page: 60
  ident: bib0035
  article-title: Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data
  publication-title: Comput. Biol. Chem.
– volume: 20
  start-page: 2479
  year: 2004
  end-page: 2481
  ident: bib0215
  article-title: Data mining in bioinformatics using Weka
  publication-title: Bioinformatics
– start-page: 167
  year: 2002
  end-page: 182
  ident: bib0150
  article-title: Applying machine learning techniques to analysis of gene expression data: cancer diagnosis
  publication-title: Methods of Microarray Data Analysis
– start-page: 41
  year: 2001
  end-page: 46
  ident: bib0095
  article-title: An empirical study of the Naive Bayes classifier
  publication-title: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3
– volume: 4
  start-page: 365
  year: 2007
  end-page: 381
  ident: bib0140
  article-title: Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– start-page: 137
  year: 2002
  end-page: 149
  ident: bib0165
  article-title: How many genes are needed for a discriminant microarray data analysis
  publication-title: Methods of Microarray Data Analysis
– volume: 97
  start-page: 245
  year: 1997
  end-page: 271
  ident: bib0030
  article-title: Selection of relevant features and examples in machine learning
  publication-title: Artif. Intell.
– volume: 286
  start-page: 531
  year: 1999
  end-page: 537
  ident: bib0010
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science
– volume: 39
  start-page: 2383
  year: 2006
  end-page: 2392
  ident: bib0200
  article-title: Incremental wrapper-based gene selection from microarray data for cancer classification
  publication-title: Pattern Recognit.
– volume: 12
  start-page: 1787
  year: 2012
  end-page: 1800
  ident: bib0155
  article-title: Evolutionary generalized radial basis function neural networks for improving prediction accuracy in gene classification using feature selection
  publication-title: Appl. Soft Comput.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0230
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 24
  start-page: 773
  year: 2014
  end-page: 780
  ident: bib0045
  article-title: Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data
  publication-title: Appl. Soft Comput.
– volume: 31
  start-page: 91
  year: 2004
  end-page: 103
  ident: bib0070
  article-title: Filter versus wrapper gene selection approaches in DNA microarray domains
  publication-title: Artif. Intell. Med.
– volume: 11
  start-page: 1878
  year: 2001
  end-page: 1887
  ident: bib0130
  article-title: Biomarker identification by feature wrappers
  publication-title: Genome Res.
– start-page: 497
  year: 2004
  end-page: 498
  ident: bib0185
  article-title: Application of relief-F feature filtering algorithm to selecting informative genes for cancer classification using microarray data
  publication-title: 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004. Proceedings
– start-page: 81
  year: 2002
  end-page: 95
  ident: bib0160
  article-title: Computational analysis of leukemia microarray expression data using the GA/KNN method
  publication-title: Methods of Microarray Data Analysis
– volume: 20
  start-page: 666
  year: 2016
  end-page: 681
  ident: bib0100
  article-title: An analysis of the inertia weight parameter for binary particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 40
  start-page: 3236
  year: 2007
  end-page: 3248
  ident: bib0205
  article-title: Markov blanket-embedded genetic algorithm for gene selection
  publication-title: Pattern Recognit.
– start-page: 185
  year: 2002
  end-page: 194
  ident: bib0120
  article-title: Evaluation of current methods of testing differential gene expression and beyond
  publication-title: Methods of Microarray Data Analysis II
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0225
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 12
  start-page: 1039
  year: 2008
  end-page: 1048
  ident: bib0040
  article-title: Gene selection using hybrid particle swarm optimization and genetic algorithm
  publication-title: Soft Comput.
– year: 1999
  ident: bib0020
  article-title: Correlation-based feature selection for machine learning (Ph.D. thesis)
– start-page: 1137
  year: 1995
  end-page: 1145
  ident: bib0105
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Ijcai, vol. 14
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: bib0025
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– volume: 96
  start-page: 6745
  year: 1999
  end-page: 6750
  ident: bib0115
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 99
  start-page: 6567
  year: 2002
  end-page: 6572
  ident: bib0180
  article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 38
  start-page: 13367
  year: 2011
  end-page: 13377
  ident: bib0210
  article-title: Gene selection and classification using Taguchi chaotic binary particle swarm optimization
  publication-title: Expert Syst. Appl.
– volume: 16
  start-page: 906
  year: 2000
  end-page: 914
  ident: bib0135
  article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data
  publication-title: Bioinformatics
– start-page: 856
  year: 2003
  end-page: 863
  ident: bib0170
  article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution
  publication-title: ICML, vol. 3
– volume: 3
  start-page: 185
  year: 2005
  end-page: 205
  ident: bib0175
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: J. Bioinform. Comput. Biol.
– volume: 96
  start-page: 9212
  year: 1999
  end-page: 9217
  ident: bib0005
  article-title: Distinctive gene expression patterns in human mammary epithelial cells and breast cancers
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9
  start-page: 1649
  year: 2012
  end-page: 1662
  ident: bib0015
  article-title: Biomarker identification and cancer classification based on microarray data using Laplace Naive Bayes model with mean shrinkage
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0060
  article-title: Particle swarm optimization
  publication-title: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4
– year: 1997
  ident: bib0090
  article-title: Machine Learning
– volume: vol. 112
  year: 2013
  ident: bib0110
  publication-title: An Introduction to Statistical Learning
– volume: 4
  start-page: 65
  year: 2007
  end-page: 77
  ident: bib0050
  article-title: Multiclass cancer classification using semisupervised ellipsoid artmap and particle swarm optimization with gene expression data
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 11
  start-page: 208
  year: 2011
  end-page: 213
  ident: bib0195
  article-title: A novel hybrid feature selection method for microarray data analysis
  publication-title: Appl. Soft Comput.
– start-page: 39
  year: 1995
  end-page: 43
  ident: bib0055
  article-title: A new optimizer using particle swarm theory
  publication-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, vol. 1
– start-page: 34
  year: 2006
  end-page: 44
  ident: bib0190
  article-title: A hybrid GA/SVM approach for gene selection and classification of microarray data
  publication-title: Applications of Evolutionary Computing
– volume: 12
  start-page: 171
  year: 2008
  end-page: 195
  ident: bib0220
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 4104
  year: 1997
  end-page: 4108
  ident: bib0065
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation, vol. 5
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: bib0075
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 98
  start-page: 15149
  year: 2001
  end-page: 15154
  ident: bib0145
  article-title: Multiclass cancer diagnosis using tumor gene expression signatures
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9
  start-page: 1649
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2017.09.038_bib0015
  article-title: Biomarker identification and cancer classification based on microarray data using Laplace Naive Bayes model with mean shrinkage
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2012.105
– start-page: 39
  year: 1995
  ident: 10.1016/j.asoc.2017.09.038_bib0055
  article-title: A new optimizer using particle swarm theory
– start-page: 137
  year: 2002
  ident: 10.1016/j.asoc.2017.09.038_bib0165
  article-title: How many genes are needed for a discriminant microarray data analysis
– start-page: 4104
  year: 1997
  ident: 10.1016/j.asoc.2017.09.038_bib0065
  article-title: A discrete binary version of the particle swarm algorithm
– volume: vol. 112
  year: 2013
  ident: 10.1016/j.asoc.2017.09.038_bib0110
– start-page: 1769
  year: 2003
  ident: 10.1016/j.asoc.2017.09.038_bib0085
  article-title: Naive Bayesian classifier for microarray data
– year: 1999
  ident: 10.1016/j.asoc.2017.09.038_bib0020
– volume: 9
  start-page: 1106
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2017.09.038_bib0080
  article-title: A survey on filter techniques for feature selection in gene expression microarray analysis
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB)
  doi: 10.1109/TCBB.2012.33
– start-page: 1137
  year: 1995
  ident: 10.1016/j.asoc.2017.09.038_bib0105
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Ijcai, vol. 14
– volume: 98
  start-page: 15149
  issue: 26
  year: 2001
  ident: 10.1016/j.asoc.2017.09.038_bib0145
  article-title: Multiclass cancer diagnosis using tumor gene expression signatures
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.211566398
– volume: 4
  start-page: 65
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2017.09.038_bib0050
  article-title: Multiclass cancer classification using semisupervised ellipsoid artmap and particle swarm optimization with gene expression data
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2007.1009
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 10.1016/j.asoc.2017.09.038_bib0075
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 96
  start-page: 9212
  issue: 16
  year: 1999
  ident: 10.1016/j.asoc.2017.09.038_bib0005
  article-title: Distinctive gene expression patterns in human mammary epithelial cells and breast cancers
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.16.9212
– volume: 12
  start-page: 171
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2017.09.038_bib0220
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.896686
– volume: 12
  start-page: 1039
  issue: 11
  year: 2008
  ident: 10.1016/j.asoc.2017.09.038_bib0040
  article-title: Gene selection using hybrid particle swarm optimization and genetic algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-007-0272-x
– start-page: 856
  year: 2003
  ident: 10.1016/j.asoc.2017.09.038_bib0170
  article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution
  publication-title: ICML, vol. 3
– volume: 96
  start-page: 6745
  issue: 12
  year: 1999
  ident: 10.1016/j.asoc.2017.09.038_bib0115
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.12.6745
– volume: 97
  start-page: 245
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2017.09.038_bib0030
  article-title: Selection of relevant features and examples in machine learning
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00063-5
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.asoc.2017.09.038_bib0225
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– start-page: 185
  year: 2002
  ident: 10.1016/j.asoc.2017.09.038_bib0120
  article-title: Evaluation of current methods of testing differential gene expression and beyond
– volume: 31
  start-page: 91
  issue: 2
  year: 2004
  ident: 10.1016/j.asoc.2017.09.038_bib0070
  article-title: Filter versus wrapper gene selection approaches in DNA microarray domains
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2004.01.007
– start-page: 497
  year: 2004
  ident: 10.1016/j.asoc.2017.09.038_bib0185
  article-title: Application of relief-F feature filtering algorithm to selecting informative genes for cancer classification using microarray data
– start-page: 34
  year: 2006
  ident: 10.1016/j.asoc.2017.09.038_bib0190
  article-title: A hybrid GA/SVM approach for gene selection and classification of microarray data
– volume: 12
  start-page: 1787
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2017.09.038_bib0155
  article-title: Evolutionary generalized radial basis function neural networks for improving prediction accuracy in gene classification using feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.01.008
– year: 1997
  ident: 10.1016/j.asoc.2017.09.038_bib0090
– volume: 20
  start-page: 666
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2017.09.038_bib0100
  article-title: An analysis of the inertia weight parameter for binary particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2503422
– volume: 3
  start-page: 185
  issue: 02
  year: 2005
  ident: 10.1016/j.asoc.2017.09.038_bib0175
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S0219720005001004
– volume: 286
  start-page: 531
  issue: 5439
  year: 1999
  ident: 10.1016/j.asoc.2017.09.038_bib0010
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2017.09.038_bib0230
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 24
  start-page: 773
  year: 2014
  ident: 10.1016/j.asoc.2017.09.038_bib0045
  article-title: Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.08.032
– volume: 40
  start-page: 3236
  issue: 11
  year: 2007
  ident: 10.1016/j.asoc.2017.09.038_bib0205
  article-title: Markov blanket-embedded genetic algorithm for gene selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.02.007
– start-page: 41
  year: 2001
  ident: 10.1016/j.asoc.2017.09.038_bib0095
  article-title: An empirical study of the Naive Bayes classifier
– volume: 99
  start-page: 6567
  issue: 10
  year: 2002
  ident: 10.1016/j.asoc.2017.09.038_bib0180
  article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.082099299
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2017.09.038_bib0025
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– start-page: 81
  year: 2002
  ident: 10.1016/j.asoc.2017.09.038_bib0160
  article-title: Computational analysis of leukemia microarray expression data using the GA/KNN method
– volume: 38
  start-page: 13367
  issue: 10
  year: 2011
  ident: 10.1016/j.asoc.2017.09.038_bib0210
  article-title: Gene selection and classification using Taguchi chaotic binary particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.165
– volume: 39
  start-page: 2383
  issue: 12
  year: 2006
  ident: 10.1016/j.asoc.2017.09.038_bib0200
  article-title: Incremental wrapper-based gene selection from microarray data for cancer classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.11.001
– start-page: 601
  year: 2001
  ident: 10.1016/j.asoc.2017.09.038_bib0125
  article-title: Feature selection for high-dimensional genomic microarray data
– volume: 20
  start-page: 2479
  issue: 15
  year: 2004
  ident: 10.1016/j.asoc.2017.09.038_bib0215
  article-title: Data mining in bioinformatics using Weka
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth261
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2017.09.038_bib0060
  article-title: Particle swarm optimization
– start-page: 167
  year: 2002
  ident: 10.1016/j.asoc.2017.09.038_bib0150
  article-title: Applying machine learning techniques to analysis of gene expression data: cancer diagnosis
– volume: 11
  start-page: 208
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2017.09.038_bib0195
  article-title: A novel hybrid feature selection method for microarray data analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.11.010
– volume: 32
  start-page: 53
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2017.09.038_bib0035
  article-title: Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2007.10.001
– volume: 11
  start-page: 1878
  issue: 11
  year: 2001
  ident: 10.1016/j.asoc.2017.09.038_bib0130
  article-title: Biomarker identification by feature wrappers
  publication-title: Genome Res.
  doi: 10.1101/gr.190001
– volume: 16
  start-page: 906
  issue: 10
  year: 2000
  ident: 10.1016/j.asoc.2017.09.038_bib0135
  article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.906
– volume: 4
  start-page: 365
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2017.09.038_bib0140
  article-title: Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2007.70224
SSID ssj0016928
Score 2.6424217
Snippet [Display omitted] •A two phase hybrid model based on improved-Binary Particle Swarm Optimization (iBPSO) is proposed for cancer diagnosis and classification...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 203
SubjectTerms Cancer classification
Gene selection
Hybrid model
Improved Binary Particle Swarm Optimization (iBPSO)
Microarray data analysis
Naive–Bayes
Title Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification
URI https://dx.doi.org/10.1016/j.asoc.2017.09.038
Volume 62
WOSCitedRecordID wos000418333500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvFFbHvKBWxQU21nHPpaqVeFQKihob5HjOFKrbbbKPuih9_7tjh_JhgAVPSCtopU3mWTzfZkZO_NA6D0lhpDMqDhjqYxh_qXjwhAVk0Ia8GaNTFnpmk1kx8diOpUno9FNmwuznmV1La6u5OV_hRrGAGybOnsPuDuhMADfAXTYAuyw_Sfg922_jVmIITSubme0cN1u7Ii1WqXNjWzma1PGH3067kmQE337qZqL6AvokYuQoOniEOFkfSEuF87SpYm09b5tuNEG4bambfBvF6DoXeT6atmaSZfb74sX2NYhw7EfZ_W8jFzw9_Cnr6Ze9RcqiOgtVATdykWcyrDiGJRvUMVBeyasZ4ipz_P8Tcf75YbzDwroa2PzMl-oVmwsWvsWf2DouvDDNrLtPLcycisjT2QOMh6gLZpNpBijrb1PB9PP3QspLl2b3u4_hPwrHyo4vJI_-zg9v-X0KXocJhx4zwP8DI1M_Rw9aZt54KDbX6DrHm9w4A3uIMeON3jAG9zyBjve4D5vMPAGW970hABvsOcN_pU3L9H3w4PT_aM4tOaINeN8GZuKpkVVMm5EWgmalQXXgkqVMMVLcNIrUOsJ1QUxutDwobRSqeIVK8ik0EnJXqFxPa_NNoLrFyxV4IZLCbsoWx-QwyRaZ5JUCav4DiLtzcx1qFtv26fM8r_DuIOi7phLX7Xlzr0nLUZ58Du9P5kD5e44bvdeZ3mNHm2eijdovGxW5i16qNfLs0XzLvDtFpOvqso
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+feature+selection+based+improved-Binary+Particle+Swarm+Optimization+for+gene+selection+and+cancer+classification&rft.jtitle=Applied+soft+computing&rft.au=Jain%2C+Indu&rft.au=Jain%2C+Vinod+Kumar&rft.au=Jain%2C+Renu&rft.date=2018-01-01&rft.issn=1568-4946&rft.volume=62&rft.spage=203&rft.epage=215&rft_id=info:doi/10.1016%2Fj.asoc.2017.09.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2017_09_038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon