Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials

Spectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue–Stieltjes measures. A mi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in mathematics (New York. 1965) Ročník 434; s. 109313
Hlavní autoři: Branquinho, Amílcar, Foulquié-Moreno, Ana, Mañas, Manuel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.2023
Témata:
ISSN:0001-8708, 1090-2082
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Spectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue–Stieltjes measures. A mixed multiple Gauss quadrature formula with corresponding degrees of precision is given.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2023.109313