Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
Spectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue–Stieltjes measures. A mi...
Uloženo v:
| Vydáno v: | Advances in mathematics (New York. 1965) Ročník 434; s. 109313 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.12.2023
|
| Témata: | |
| ISSN: | 0001-8708, 1090-2082 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Spectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue–Stieltjes measures. A mixed multiple Gauss quadrature formula with corresponding degrees of precision is given. |
|---|---|
| ISSN: | 0001-8708 1090-2082 |
| DOI: | 10.1016/j.aim.2023.109313 |