Greylag Goose Optimization: Nature-inspired optimization algorithm

Nature-inspired metaheuristic approaches draw their core idea from biological evolution in order to create new and powerful competing algorithms. Such algorithms can be divided into evolution-based and swarm-based algorithms. This paper proposed a new nature-inspired optimizer called the Greylag Goo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 238; s. 122147
Hlavní autori: El-kenawy, El-Sayed M., Khodadadi, Nima, Mirjalili, Seyedali, Abdelhamid, Abdelaziz A., Eid, Marwa M., Ibrahim, Abdelhameed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.03.2024
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Nature-inspired metaheuristic approaches draw their core idea from biological evolution in order to create new and powerful competing algorithms. Such algorithms can be divided into evolution-based and swarm-based algorithms. This paper proposed a new nature-inspired optimizer called the Greylag Goose Optimization (GGO) algorithm. The proposed algorithm (GGO) belongs to the class of swarm-based algorithms and is inspired by the Greylag Goose. Geese are excellent flyers and during their seasonal migrations, they fly in a group and can cover thousands of kilometers in a single flight. While flying, a group of geese forms themselves as a “V” configuration. In this way, the geese in the front can minimize the air resistance of the ones in the back. This allows the geese to fly around 70% farther as a group than they could individually. The GGO algorithm is first validated by being applied to nineteen datasets retrieved from the UCI Machine Learning Repository. Each dataset contains a varied amount of characteristics, instances, and classes that are used to choose features. After that, it is put to use in the process of solving a number of engineering benchmark functions and case studies. Several case studies are solved using the proposed algorithm too, including the pressure vessel design and the tension/compression spring design. The findings demonstrate that the GGO method outperforms numerous other comparative optimization algorithms and delivers superior accuracy compared to other algorithms. The results of the statistical analysis tests, such as Wilcoxon’s rank-sum and one-way analysis of variance (ANOVA), demonstrate that the GGO algorithm achieves superior results. •Greylag Goose Optimization (GGO) algorithm inspired by nature is proposed.•A binary version of the GGO algorithm is designed for feature selection.•The GGO algorithm is tested on 19 datasets from UCI Machine Learning Repository.•The GGO algorithm is applied to engineering problems and benchmark functions.•The statistical significance of the GGO algorithm has been evaluated.
AbstractList Nature-inspired metaheuristic approaches draw their core idea from biological evolution in order to create new and powerful competing algorithms. Such algorithms can be divided into evolution-based and swarm-based algorithms. This paper proposed a new nature-inspired optimizer called the Greylag Goose Optimization (GGO) algorithm. The proposed algorithm (GGO) belongs to the class of swarm-based algorithms and is inspired by the Greylag Goose. Geese are excellent flyers and during their seasonal migrations, they fly in a group and can cover thousands of kilometers in a single flight. While flying, a group of geese forms themselves as a “V” configuration. In this way, the geese in the front can minimize the air resistance of the ones in the back. This allows the geese to fly around 70% farther as a group than they could individually. The GGO algorithm is first validated by being applied to nineteen datasets retrieved from the UCI Machine Learning Repository. Each dataset contains a varied amount of characteristics, instances, and classes that are used to choose features. After that, it is put to use in the process of solving a number of engineering benchmark functions and case studies. Several case studies are solved using the proposed algorithm too, including the pressure vessel design and the tension/compression spring design. The findings demonstrate that the GGO method outperforms numerous other comparative optimization algorithms and delivers superior accuracy compared to other algorithms. The results of the statistical analysis tests, such as Wilcoxon’s rank-sum and one-way analysis of variance (ANOVA), demonstrate that the GGO algorithm achieves superior results. •Greylag Goose Optimization (GGO) algorithm inspired by nature is proposed.•A binary version of the GGO algorithm is designed for feature selection.•The GGO algorithm is tested on 19 datasets from UCI Machine Learning Repository.•The GGO algorithm is applied to engineering problems and benchmark functions.•The statistical significance of the GGO algorithm has been evaluated.
ArticleNumber 122147
Author Abdelhamid, Abdelaziz A.
Khodadadi, Nima
El-kenawy, El-Sayed M.
Ibrahim, Abdelhameed
Eid, Marwa M.
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: El-Sayed M.
  orcidid: 0000-0002-9221-7658
  surname: El-kenawy
  fullname: El-kenawy, El-Sayed M.
  email: skenawy@ieee.org
  organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura, 35111, Egypt
– sequence: 2
  givenname: Nima
  orcidid: 0000-0002-8348-6530
  surname: Khodadadi
  fullname: Khodadadi, Nima
  email: nima.khodadadi@miami.edu
  organization: Department of Civil, Architectural and Environmental Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL, USA
– sequence: 3
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  email: ali.mirjalili@torrens.edu.au
  organization: Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, QLD 4006, 35516, Australia
– sequence: 4
  givenname: Abdelaziz A.
  orcidid: 0000-0001-7080-1979
  surname: Abdelhamid
  fullname: Abdelhamid, Abdelaziz A.
  email: abdelaziz@cis.asu.edu.eg
  organization: Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt
– sequence: 5
  givenname: Marwa M.
  orcidid: 0000-0002-8557-3566
  surname: Eid
  fullname: Eid, Marwa M.
  email: mmm@ieee.org
  organization: Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura, Egypt
– sequence: 6
  givenname: Abdelhameed
  orcidid: 0000-0002-8352-6731
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
  email: afai79@mans.edu.eg
  organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
BookMark eNp9kL1OwzAUhS1UJNrCCzDlBRL8k9gOYoEKAlJFF5gtx7kpjtK4sg2oPD0pZUAMnc5w9V2d883QZHADIHRJcEYw4VddBuFTZxRTlhFKSS5O0JRIwVIuSjZBU1wWIs2JyM_QLIQOYyIwFlN0V3nY9XqdVM4FSFbbaDf2S0frhuvkWcd3D6kdwtZ6aBL355rofu28jW-bc3Ta6j7AxW_O0evD_cviMV2uqqfF7TI1jPOYAi1JI00BGNe0KBiwsR8ppMCUNkxq3vK8NZzlYArDasIMbnkpAQgYWeeSzZE8_DXeheChVcbGny7Ra9srgtXeherU3oXau1AHFyNK_6Fbbzfa745DNwcIxlEfFrwKxsJgoBllmKgaZ4_h37iyeuw
CitedBy_id crossref_primary_10_1007_s10922_025_09969_2
crossref_primary_10_32604_cmc_2024_053189
crossref_primary_10_1038_s41598_024_83543_9
crossref_primary_10_32604_cmc_2024_049001
crossref_primary_10_1007_s42452_025_07562_5
crossref_primary_10_1016_j_advengsoft_2025_103883
crossref_primary_10_1007_s11760_025_04235_z
crossref_primary_10_1038_s41598_025_03868_x
crossref_primary_10_1038_s41598_025_04622_z
crossref_primary_10_1007_s13278_025_01508_w
crossref_primary_10_1016_j_bspc_2025_108357
crossref_primary_10_1088_1402_4896_ad91f2
crossref_primary_10_1016_j_imu_2025_101669
crossref_primary_10_1002_wer_70143
crossref_primary_10_1016_j_istruc_2025_108519
crossref_primary_10_1007_s10586_024_04618_w
crossref_primary_10_1109_JSEN_2025_3554645
crossref_primary_10_1016_j_swevo_2025_102100
crossref_primary_10_1109_JIOT_2025_3566202
crossref_primary_10_1111_jph_70160
crossref_primary_10_1080_10106049_2025_2480298
crossref_primary_10_1016_j_cscm_2025_e05251
crossref_primary_10_1007_s44196_025_00901_9
crossref_primary_10_1007_s44196_025_00909_1
crossref_primary_10_1007_s00704_025_05505_z
crossref_primary_10_3390_automation6020013
crossref_primary_10_1016_j_compag_2025_110893
crossref_primary_10_1016_j_measurement_2025_118440
crossref_primary_10_1186_s40537_025_01217_3
crossref_primary_10_1007_s10791_025_09561_x
crossref_primary_10_1007_s44196_025_00777_9
crossref_primary_10_1007_s12065_025_01067_1
crossref_primary_10_1016_j_jer_2025_02_006
crossref_primary_10_1038_s41598_025_86251_0
crossref_primary_10_1038_s41598_025_03058_9
crossref_primary_10_1038_s41598_025_09368_2
crossref_primary_10_1016_j_engappai_2025_112139
crossref_primary_10_1016_j_envint_2024_109244
crossref_primary_10_1016_j_cose_2025_104539
crossref_primary_10_1109_ACCESS_2025_3562367
crossref_primary_10_1109_ACCESS_2025_3560624
crossref_primary_10_3390_biomimetics10070445
crossref_primary_10_1016_j_engappai_2025_110094
crossref_primary_10_1186_s12889_025_23318_7
crossref_primary_10_1049_elp2_70053
crossref_primary_10_1371_journal_pone_0330072
crossref_primary_10_1038_s41598_025_94642_6
crossref_primary_10_1007_s10586_025_05229_9
crossref_primary_10_1109_ACCESS_2025_3535667
crossref_primary_10_1016_j_engappai_2025_111854
crossref_primary_10_1007_s11760_025_04601_x
crossref_primary_10_1038_s41598_024_79426_8
crossref_primary_10_1002_eng2_70154
crossref_primary_10_1038_s41598_025_92459_x
crossref_primary_10_1016_j_measurement_2025_116912
crossref_primary_10_1038_s41598_025_14668_8
crossref_primary_10_1007_s44196_025_00827_2
crossref_primary_10_1038_s41598_025_11626_2
crossref_primary_10_1093_jom_ufae020
crossref_primary_10_1186_s40537_025_01169_8
crossref_primary_10_1007_s10586_024_04678_y
crossref_primary_10_1007_s11540_024_09763_8
crossref_primary_10_32604_cmc_2024_051336
crossref_primary_10_1038_s41598_025_02575_x
crossref_primary_10_1088_2631_8695_adb378
crossref_primary_10_1007_s41060_025_00785_0
crossref_primary_10_1016_j_compag_2025_110798
crossref_primary_10_1007_s11760_025_04233_1
crossref_primary_10_1016_j_neucom_2025_130949
crossref_primary_10_1088_1361_6501_ae0068
crossref_primary_10_1016_j_cscm_2025_e04939
crossref_primary_10_1016_j_ijepes_2024_110178
crossref_primary_10_1186_s40537_025_01184_9
crossref_primary_10_1038_s41598_025_90062_8
crossref_primary_10_1016_j_cscm_2025_e04995
crossref_primary_10_1007_s42417_025_01796_8
crossref_primary_10_1109_ACCESS_2024_3483457
crossref_primary_10_1155_2024_6661599
crossref_primary_10_1007_s00500_025_10404_6
crossref_primary_10_1038_s41598_025_01516_y
crossref_primary_10_1038_s41598_025_97506_1
crossref_primary_10_1016_j_suscom_2025_101175
crossref_primary_10_1186_s44147_025_00740_7
crossref_primary_10_1186_s12872_025_04522_0
crossref_primary_10_1007_s10479_025_06541_8
crossref_primary_10_1016_j_conbuildmat_2025_143050
crossref_primary_10_1038_s41598_025_97582_3
crossref_primary_10_3389_fenrg_2024_1401330
crossref_primary_10_1109_TIA_2025_3537060
crossref_primary_10_1016_j_engappai_2025_111912
crossref_primary_10_1186_s40537_025_01175_w
crossref_primary_10_1371_journal_pone_0317554
crossref_primary_10_1007_s11760_025_04602_w
crossref_primary_10_1109_TCE_2024_3510812
crossref_primary_10_1371_journal_pone_0326035
crossref_primary_10_3390_electronics13101930
crossref_primary_10_1007_s10586_024_04927_0
crossref_primary_10_1016_j_suscom_2025_101164
crossref_primary_10_1038_s41598_025_04638_5
crossref_primary_10_1038_s41598_024_83636_5
crossref_primary_10_1016_j_aei_2025_103820
crossref_primary_10_1016_j_isci_2025_112360
crossref_primary_10_1038_s41598_025_08517_x
crossref_primary_10_1007_s10462_025_11289_5
crossref_primary_10_1007_s41060_025_00723_0
crossref_primary_10_1038_s41598_025_01817_2
crossref_primary_10_1016_j_mex_2025_103540
crossref_primary_10_1038_s41598_025_91911_2
crossref_primary_10_1038_s41598_025_86418_9
crossref_primary_10_1109_JSEN_2025_3565725
crossref_primary_10_3390_biomimetics10060411
crossref_primary_10_1016_j_array_2025_100386
crossref_primary_10_1016_j_egyai_2025_100556
crossref_primary_10_1007_s00521_024_09669_z
crossref_primary_10_1007_s00432_024_05968_z
crossref_primary_10_1007_s13278_025_01484_1
crossref_primary_10_1016_j_asej_2025_103414
crossref_primary_10_1007_s10462_024_10975_0
crossref_primary_10_1016_j_suscom_2025_101199
crossref_primary_10_1007_s12145_025_01769_1
crossref_primary_10_21595_jve_2025_24806
crossref_primary_10_1016_j_engappai_2025_112102
crossref_primary_10_1038_s41598_025_00509_1
crossref_primary_10_1016_j_iotcps_2025_05_002
crossref_primary_10_1016_j_slast_2025_100314
crossref_primary_10_1016_j_envint_2024_109162
crossref_primary_10_1109_ACCESS_2025_3569078
crossref_primary_10_1016_j_est_2025_118250
crossref_primary_10_1016_j_swevo_2025_102089
crossref_primary_10_1080_13467581_2025_2546395
crossref_primary_10_1038_s41598_025_00085_4
crossref_primary_10_1186_s12880_025_01721_1
crossref_primary_10_3390_biomimetics10070471
crossref_primary_10_1007_s12530_024_09619_z
crossref_primary_10_1007_s12559_025_10443_z
crossref_primary_10_32604_cmc_2024_049874
crossref_primary_10_1016_j_ifacol_2024_07_587
crossref_primary_10_1038_s41598_025_15218_y
crossref_primary_10_1016_j_jer_2025_05_011
crossref_primary_10_1186_s12872_025_04550_w
crossref_primary_10_1016_j_compag_2025_110511
crossref_primary_10_1038_s41598_024_83592_0
crossref_primary_10_1109_ACCESS_2025_3548146
crossref_primary_10_1016_j_eswa_2024_124190
crossref_primary_10_1016_j_nexres_2025_100669
crossref_primary_10_1038_s41598_024_70497_1
crossref_primary_10_1080_03772063_2025_2505108
crossref_primary_10_1007_s00202_024_02653_9
crossref_primary_10_1016_j_csite_2025_105999
crossref_primary_10_1016_j_ymssp_2025_112451
crossref_primary_10_1016_j_aej_2025_02_032
crossref_primary_10_1038_s41598_025_87285_0
crossref_primary_10_1016_j_energy_2025_136952
crossref_primary_10_1016_j_swevo_2025_102053
crossref_primary_10_1186_s41043_025_00971_7
crossref_primary_10_3390_app142311116
crossref_primary_10_1007_s11760_025_04340_z
crossref_primary_10_1007_s13278_025_01420_3
crossref_primary_10_1016_j_joitmc_2024_100379
crossref_primary_10_1007_s44163_025_00339_0
crossref_primary_10_1002_cae_70046
crossref_primary_10_1016_j_heliyon_2025_e42862
crossref_primary_10_1016_j_wateco_2025_100003
crossref_primary_10_1016_j_aei_2025_103610
crossref_primary_10_1038_s41598_025_14073_1
crossref_primary_10_1038_s41598_025_91270_y
crossref_primary_10_1371_journal_pone_0328005
crossref_primary_10_1016_j_knosys_2025_114465
crossref_primary_10_1080_19648189_2025_2525454
crossref_primary_10_1016_j_egyai_2025_100584
crossref_primary_10_1002_eng2_13057
crossref_primary_10_1016_j_slast_2025_100336
crossref_primary_10_1002_smr_70013
crossref_primary_10_1007_s12065_025_01052_8
crossref_primary_10_1007_s12065_024_01011_9
crossref_primary_10_1016_j_engappai_2025_111316
crossref_primary_10_1007_s12145_024_01610_1
crossref_primary_10_1007_s44196_025_00846_z
crossref_primary_10_1093_jcde_qwae080
crossref_primary_10_21595_mme_2025_24893
crossref_primary_10_1038_s41598_025_00796_8
crossref_primary_10_1177_20552076251361745
crossref_primary_10_1007_s12145_025_01710_6
crossref_primary_10_1038_s41598_024_83222_9
crossref_primary_10_1016_j_mex_2025_103466
crossref_primary_10_3389_fenrg_2024_1391085
crossref_primary_10_1007_s44196_025_00966_6
crossref_primary_10_32604_cmc_2024_055080
crossref_primary_10_1016_j_compag_2025_110496
crossref_primary_10_1016_j_rineng_2024_103670
crossref_primary_10_1007_s11227_024_06291_7
crossref_primary_10_1016_j_rineng_2025_106444
crossref_primary_10_1016_j_asej_2025_103383
crossref_primary_10_1016_j_eswa_2025_126693
crossref_primary_10_1016_j_ins_2024_121861
crossref_primary_10_1007_s10825_025_02284_8
crossref_primary_10_3390_math13040668
crossref_primary_10_1007_s11227_024_06713_6
crossref_primary_10_1007_s10668_025_06233_0
crossref_primary_10_1007_s13278_025_01482_3
crossref_primary_10_1016_j_jer_2024_11_012
crossref_primary_10_1038_s41598_025_09409_w
crossref_primary_10_1002_ett_70056
crossref_primary_10_1007_s11540_024_09755_8
crossref_primary_10_1016_j_energy_2025_137225
crossref_primary_10_1186_s12872_025_04587_x
crossref_primary_10_1007_s42452_025_07390_7
crossref_primary_10_1016_j_knosys_2025_113708
crossref_primary_10_1007_s10586_024_04954_x
crossref_primary_10_1109_JIOT_2024_3404666
crossref_primary_10_1016_j_compstruct_2025_118921
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_1007_s10462_025_11239_1
crossref_primary_10_1016_j_knosys_2025_113830
crossref_primary_10_1007_s13369_025_10296_6
crossref_primary_10_1038_s41598_025_08362_y
crossref_primary_10_1016_j_jer_2025_08_001
crossref_primary_10_1016_j_rineng_2025_105247
crossref_primary_10_3390_app15126806
crossref_primary_10_1016_j_measurement_2024_116231
crossref_primary_10_1186_s40537_025_01192_9
crossref_primary_10_1038_s41598_025_87826_7
crossref_primary_10_1016_j_ymssp_2025_113212
crossref_primary_10_1016_j_eswa_2025_128640
crossref_primary_10_1016_j_swevo_2025_101990
crossref_primary_10_1515_mt_2024_0516
crossref_primary_10_1515_mt_2025_0043
crossref_primary_10_1515_mt_2024_0519
crossref_primary_10_1088_2631_8695_ade368
crossref_primary_10_1038_s41598_025_12775_0
crossref_primary_10_1007_s10661_025_13629_y
crossref_primary_10_1016_j_aei_2025_103722
crossref_primary_10_1016_j_asoc_2025_113660
crossref_primary_10_1016_j_engappai_2025_110257
crossref_primary_10_1016_j_asoc_2025_113896
crossref_primary_10_1038_s41598_025_85866_7
crossref_primary_10_1515_mt_2024_0075
crossref_primary_10_1016_j_aei_2025_103609
crossref_primary_10_1016_j_cmpbup_2025_100207
crossref_primary_10_1186_s13640_024_00662_z
crossref_primary_10_1016_j_compeleceng_2025_110443
crossref_primary_10_3390_biomimetics9030137
crossref_primary_10_1016_j_cscm_2025_e04357
crossref_primary_10_3390_biomimetics10080545
crossref_primary_10_1007_s10586_024_05024_y
crossref_primary_10_21595_jme_2025_24747
crossref_primary_10_1109_TGRS_2025_3602639
crossref_primary_10_3934_jimo_2025119
crossref_primary_10_1038_s41598_025_18014_w
crossref_primary_10_1186_s12888_025_07178_4
crossref_primary_10_1155_atr_5584617
crossref_primary_10_1016_j_envint_2025_109389
crossref_primary_10_1016_j_compbiomed_2025_109958
crossref_primary_10_1142_S1469026825500063
crossref_primary_10_1016_j_iot_2024_101422
crossref_primary_10_3390_biomimetics10060380
crossref_primary_10_1038_s41598_025_92324_x
crossref_primary_10_3390_su17136178
crossref_primary_10_1016_j_compag_2025_110680
crossref_primary_10_1016_j_engappai_2025_111078
crossref_primary_10_1016_j_compbiomed_2025_110709
crossref_primary_10_1007_s10462_025_11117_w
crossref_primary_10_1155_etep_3382601
crossref_primary_10_1002_ese3_70055
crossref_primary_10_1007_s10462_024_10716_3
crossref_primary_10_1007_s10586_025_05241_z
crossref_primary_10_1016_j_advengsoft_2024_103696
crossref_primary_10_1007_s44196_025_00866_9
crossref_primary_10_1038_s41598_024_72013_x
crossref_primary_10_1016_j_compbiomed_2024_108996
crossref_primary_10_1016_j_dsp_2025_105463
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126365
crossref_primary_10_1016_j_jclepro_2025_146515
crossref_primary_10_1007_s11082_025_08300_2
crossref_primary_10_1016_j_suscom_2025_101201
crossref_primary_10_1007_s10586_024_04969_4
crossref_primary_10_1186_s12872_025_04955_7
crossref_primary_10_1061_JSUED2_SUENG_1603
crossref_primary_10_1016_j_measurement_2025_118361
crossref_primary_10_1007_s41060_025_00778_z
crossref_primary_10_1016_j_suscom_2025_101209
crossref_primary_10_1038_s41598_024_78021_1
crossref_primary_10_1016_j_enconman_2025_119808
crossref_primary_10_1186_s12911_025_03127_z
crossref_primary_10_3390_biomimetics10060373
crossref_primary_10_1016_j_energy_2025_136498
crossref_primary_10_1186_s40537_025_01143_4
crossref_primary_10_1007_s41060_025_00852_6
crossref_primary_10_1038_s41598_025_99908_7
crossref_primary_10_1016_j_cma_2025_117825
crossref_primary_10_1038_s41598_025_98823_1
crossref_primary_10_1007_s12145_025_01728_w
crossref_primary_10_1038_s41598_025_91418_w
crossref_primary_10_1007_s10791_025_09699_8
crossref_primary_10_1007_s10586_025_05460_4
crossref_primary_10_1007_s13042_025_02743_5
crossref_primary_10_1002_cpe_8254
crossref_primary_10_1007_s12065_025_01027_9
crossref_primary_10_1038_s41598_025_04370_0
crossref_primary_10_1016_j_jksus_2024_103550
crossref_primary_10_1007_s10462_024_11023_7
crossref_primary_10_1007_s40998_025_00874_7
crossref_primary_10_1155_acis_1922567
crossref_primary_10_1016_j_knosys_2024_112589
crossref_primary_10_1016_j_compbiomed_2025_110924
crossref_primary_10_1007_s12065_025_01053_7
crossref_primary_10_1016_j_measurement_2025_117484
crossref_primary_10_1016_j_advengsoft_2025_104038
crossref_primary_10_1016_j_csite_2025_106445
crossref_primary_10_1063_5_0222940
crossref_primary_10_25259_JKSUS_700_2025
crossref_primary_10_1007_s41060_025_00848_2
crossref_primary_10_1016_j_advengsoft_2024_103671
crossref_primary_10_1016_j_chemolab_2025_105378
crossref_primary_10_1007_s44196_025_00928_y
crossref_primary_10_1007_s11581_025_06661_y
crossref_primary_10_1109_ACCESS_2025_3543410
crossref_primary_10_1080_10942912_2025_2558009
crossref_primary_10_1007_s12083_025_01983_0
crossref_primary_10_1016_j_engappai_2025_111780
crossref_primary_10_1038_s41598_024_82062_x
crossref_primary_10_1038_s41598_025_99472_0
crossref_primary_10_1016_j_engappai_2025_112198
crossref_primary_10_7717_peerj_cs_2652
crossref_primary_10_1002_ett_5019
crossref_primary_10_1016_j_swevo_2025_102117
crossref_primary_10_48084_etasr_9949
crossref_primary_10_1016_j_asej_2025_103485
crossref_primary_10_1016_j_engappai_2025_110577
crossref_primary_10_1186_s44147_025_00717_6
Cites_doi 10.4249/scholarpedia.6915
10.1016/j.asoc.2016.01.044
10.1016/j.matcom.2021.09.014
10.1109/ACCESS.2019.2906757
10.3390/math10173144
10.1007/s00521-015-1870-7
10.1016/j.chemolab.2020.104104
10.1016/j.eswa.2017.07.043
10.1007/s00500-016-2385-6
10.32604/csse.2023.032497
10.1016/j.camwa.2011.01.029
10.1016/j.knosys.2014.07.025
10.1016/j.cma.2021.114194
10.1016/j.ecolmodel.2010.04.021
10.1108/02644401011008577
10.1109/ACCESS.2019.2897580
10.1109/MCI.2006.329691
10.1016/j.ins.2011.07.026
10.1007/s11071-021-06983-2
10.3390/a14040122
10.1016/j.asoc.2013.09.018
10.1016/j.cma.2022.115223
10.1016/j.eswa.2015.07.007
10.1109/ACCESS.2018.2889854
10.1109/ACCESS.2020.3001151
10.1016/j.advengsoft.2022.103282
10.1016/j.knosys.2022.108306
10.1007/s00366-018-0668-5
10.1016/j.advengsoft.2013.12.007
10.1109/ACCESS.2020.3015892
10.1016/j.neucom.2011.03.034
10.33889/IJMEMS.2020.5.4.056
10.1201/9781003205326-3
10.1007/s40996-019-00280-0
10.1007/978-3-030-44289-7_16
10.1016/j.swevo.2012.01.001
10.1016/j.ins.2009.03.004
10.1016/j.renene.2022.04.162
10.1186/1687-5281-2013-47
10.1109/ACCESS.2020.3028012
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2019.112824
10.1109/ACCESS.2022.3146374
10.1016/j.ygeno.2020.07.027
10.1016/j.engappai.2017.01.006
10.1109/ICNN.1995.488968
10.1016/j.asoc.2018.11.047
10.1109/ACCESS.2021.3106269
10.1109/ACCESS.2022.3147821
10.1016/j.ygeno.2019.01.006
10.1007/s00366-020-00955-7
10.1016/j.neucom.2015.06.083
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.122147
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_122147
S0957417423026490
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABMYL
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c366t-e291d8c5e00b2553e31871587022d38a6f64fc634ec5c3b13c0f698ee1ec8b483
ISICitedReferencesCount 383
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001096431500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:05:42 EST 2025
Tue Nov 18 21:32:28 EST 2025
Sat Mar 23 16:41:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Swarm-based algorithms
Meta-heuristic
Algorithm
Engineering optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-e291d8c5e00b2553e31871587022d38a6f64fc634ec5c3b13c0f698ee1ec8b483
ORCID 0000-0002-8557-3566
0000-0002-9221-7658
0000-0002-8352-6731
0000-0002-8348-6530
0000-0002-1443-9458
0000-0001-7080-1979
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_122147
crossref_primary_10_1016_j_eswa_2023_122147
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_122147
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mirjalili, Mirjalili, Lewis (b49) 2014; 69
Ye, Wang, Wang, Cui, Wang, Zhao (b68) 2022; 241
Indiana DNR (b34) 2022
Zou, Liu, Gao, Li (b72) 2011; 61
Green (b28) 2004; 92
El-Kenawy, Eid (b21) 2020; 16
Khodadadi, Talatahari, Dadras Eslamlou (b45) 2022
Kabir, Shahjahan, Murase (b36) 2011; 74
Kaveh, Eslamlou, Khodadadi (b38) 2020; 64
Mirjalili, Mirjalili, Hatamlou (b48) 2016; 27
Valdez, Castillo, Melin (b64) 2021; 14
Tu, Chen, Liu (b63) 2019; 76
Gandomi, Alavi (b27) 2011; 181
Mendil, Benmahammed (b46) 1999
Şenel, Gokçe, Yuksel, Yigit (b62) 2019; 35
Khodadadi, Soleimanian Gharehchopogh, Mirjalili (b44) 2022
Nematzadeh, Enayatifar, Mahmud, Akbari (b51) 2019; 111
Awad, A. A., Ali, A. F., Gaber, T., et al. (2020). Feature Selection Method Based on Chaotic Maps and Butterfly Optimization Algorithm. In
El-kenawy, Abdelhamid, Ibrahim, Mirjalili, Khodadad, duailij (b19) 2023; 45
Dorigo, Birattari, Stutzle (b17) 2006; 1
Kaveh, Talatahari, Khodadadi (b42) 2020
Rashedi, Nezamabadi-pour, Saryazdi (b57) 2009; 179
.
Zhao, Zhang, Mirjalili, Wang, Khodadadi, Mirjalili (b71) 2022; 398
Al-Tashi, Mirjalili, Wu, Abdulkadir, Shami, Khodadadi (b5) 2022
Hafez, Zawbaa, Emary, Mahmoud, Hassanien (b30) 2015
Fouad, El-Desouky, Al-Hajj, El-Kenawy (b26) 2020; 8
Birdfact (b10) 2022
Qasim, Algamal (b56) 2020; 5
He, Zhu, Wang, Yu, Yao (b31) 2019; 7
Abdollahzadeh, Gharehchopogh, Khodadadi, Mirjalili (b3) 2022; 174
Bennasar, Hicks, Setchi (b9) 2015; 42
Celik, Y., & Kutucu, H. (2018). Solving the Tension/Compression Spring Design Problem by an Improved Firefly Algorithm. In
Onay, Aydemıṙ (b52) 2022; 192
Rostami, Forouzandeh, Berahmand, Soltani (b58) 2020; 112
Brownlee (b11) 2011
Kaveh, Talatahari (b40) 2010
Pereira, Oliver, Francisco, Cunha, Gomes (b54) 2022; 187
Confalonieri, Bellocchi, Bregaglio, Donatelli, Acutis (b14) 2010; 221
Mirjalili, Lewis (b47) 2016; 95
El-Kenawy, Eid, Saber, Ibrahim (b22) 2020; 8
Horton (b32) 2008
Deng, Xu, Zhao (b16) 2019; 7
Yang, Gandomi, Talatahari, Alavi (b67) 2012
Yang (b66) 2008
(pp. 1942–1948).
Karaboga (b37) 2010; 5
El-kenawy, Albalawi, Ward, Ghoneim, Eid, Abdelhamid (b20) 2022; 10
Zhao, Wang, Mirjalili (b70) 2022; 388
Moradi, Gholampour (b50) 2016; 43
Qasim, Al-Thanoon, Algamal (b55) 2020; 204
Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In
Gu, Cheng, Jin (b29) 2018; 22
Xue, Zhang, Browne (b65) 2014; 18
Emary, Zawbaa, Hassanien (b24) 2016; 172
(pp. 159–169).
Khodadadi, Snasel, Mirjalili (b43) 2022; 10
Salimi (b59) 2015; 75
Jianhua, Zhiheng (b35) 2021; 9
Abd Elaziz, Oliva, Xiong (b1) 2017; 90
URL: , Comments: 14 pages; Bioinspired Optimization Methods and their Applications (BIOMA 2012).
Yıldız (b69) 2009
Abdel-Basset, El-Shahat, El-henawy, de Albuquerque, Mirjalili (b2) 2020; 139
Cui, Hu, Rahmani (b15) 2022; 107
Bello, Gomez, Nowe, Garcia (b8) 2007
Kaveh, Talatahari, Khodadadi (b41) 2020; 44
Ibrahim, Ali, Eid, El-kenawy (b33) 2020
Schiezaro, Pedrini (b61) 2013; 2013
Fister, I., Yang, X.-S., Fister, I., & Brest, J. (2012). Memetic firefly algorithm for combinatorial optimization.
Kaveh, Khodadadi, Azar, Talatahari (b39) 2021; 37
Chandrasekaran, Simon (b13) 2012; 5
Oyelade, Ezugwu, Mohamed, Abualigah (b53) 2022; 10
Samareh Moosavi, Khatibi Bardsiri (b60) 2017; 60
Al-Tashi, Abdul Kadir, Rais, Mirjalili, Alhussian (b4) 2019; 7
Arrif, Hassani, Guermoui, Sánchez-González, Taylor, Belaid (b6) 2022; 192
El-kenawy, Ibrahim, Mirjalili, Eid, Hussein (b23) 2020; 8
Gu (10.1016/j.eswa.2023.122147_b29) 2018; 22
Oyelade (10.1016/j.eswa.2023.122147_b53) 2022; 10
Qasim (10.1016/j.eswa.2023.122147_b55) 2020; 204
Şenel (10.1016/j.eswa.2023.122147_b62) 2019; 35
Arrif (10.1016/j.eswa.2023.122147_b6) 2022; 192
Al-Tashi (10.1016/j.eswa.2023.122147_b4) 2019; 7
Mirjalili (10.1016/j.eswa.2023.122147_b49) 2014; 69
10.1016/j.eswa.2023.122147_b25
Kaveh (10.1016/j.eswa.2023.122147_b41) 2020; 44
Tu (10.1016/j.eswa.2023.122147_b63) 2019; 76
Abd Elaziz (10.1016/j.eswa.2023.122147_b1) 2017; 90
Moradi (10.1016/j.eswa.2023.122147_b50) 2016; 43
Green (10.1016/j.eswa.2023.122147_b28) 2004; 92
Yıldız (10.1016/j.eswa.2023.122147_b69) 2009
He (10.1016/j.eswa.2023.122147_b31) 2019; 7
Chandrasekaran (10.1016/j.eswa.2023.122147_b13) 2012; 5
Salimi (10.1016/j.eswa.2023.122147_b59) 2015; 75
Gandomi (10.1016/j.eswa.2023.122147_b27) 2011; 181
Kabir (10.1016/j.eswa.2023.122147_b36) 2011; 74
Kaveh (10.1016/j.eswa.2023.122147_b42) 2020
Mirjalili (10.1016/j.eswa.2023.122147_b48) 2016; 27
El-Kenawy (10.1016/j.eswa.2023.122147_b22) 2020; 8
Confalonieri (10.1016/j.eswa.2023.122147_b14) 2010; 221
Zou (10.1016/j.eswa.2023.122147_b72) 2011; 61
Samareh Moosavi (10.1016/j.eswa.2023.122147_b60) 2017; 60
Birdfact (10.1016/j.eswa.2023.122147_b10) 2022
Rostami (10.1016/j.eswa.2023.122147_b58) 2020; 112
Nematzadeh (10.1016/j.eswa.2023.122147_b51) 2019; 111
Schiezaro (10.1016/j.eswa.2023.122147_b61) 2013; 2013
Yang (10.1016/j.eswa.2023.122147_b66) 2008
Zhao (10.1016/j.eswa.2023.122147_b71) 2022; 398
Indiana DNR (10.1016/j.eswa.2023.122147_b34) 2022
Horton (10.1016/j.eswa.2023.122147_b32) 2008
Brownlee (10.1016/j.eswa.2023.122147_b11) 2011
El-kenawy (10.1016/j.eswa.2023.122147_b20) 2022; 10
Khodadadi (10.1016/j.eswa.2023.122147_b43) 2022; 10
Jianhua (10.1016/j.eswa.2023.122147_b35) 2021; 9
Hafez (10.1016/j.eswa.2023.122147_b30) 2015
Ye (10.1016/j.eswa.2023.122147_b68) 2022; 241
Abdel-Basset (10.1016/j.eswa.2023.122147_b2) 2020; 139
Khodadadi (10.1016/j.eswa.2023.122147_b45) 2022
Bennasar (10.1016/j.eswa.2023.122147_b9) 2015; 42
Fouad (10.1016/j.eswa.2023.122147_b26) 2020; 8
Kaveh (10.1016/j.eswa.2023.122147_b40) 2010
10.1016/j.eswa.2023.122147_b7
Onay (10.1016/j.eswa.2023.122147_b52) 2022; 192
El-kenawy (10.1016/j.eswa.2023.122147_b19) 2023; 45
Abdollahzadeh (10.1016/j.eswa.2023.122147_b3) 2022; 174
Dorigo (10.1016/j.eswa.2023.122147_b17) 2006; 1
Kaveh (10.1016/j.eswa.2023.122147_b38) 2020; 64
Deng (10.1016/j.eswa.2023.122147_b16) 2019; 7
Kaveh (10.1016/j.eswa.2023.122147_b39) 2021; 37
Emary (10.1016/j.eswa.2023.122147_b24) 2016; 172
Rashedi (10.1016/j.eswa.2023.122147_b57) 2009; 179
Cui (10.1016/j.eswa.2023.122147_b15) 2022; 107
Pereira (10.1016/j.eswa.2023.122147_b54) 2022; 187
Xue (10.1016/j.eswa.2023.122147_b65) 2014; 18
Al-Tashi (10.1016/j.eswa.2023.122147_b5) 2022
10.1016/j.eswa.2023.122147_b18
El-Kenawy (10.1016/j.eswa.2023.122147_b21) 2020; 16
Mendil (10.1016/j.eswa.2023.122147_b46) 1999
Qasim (10.1016/j.eswa.2023.122147_b56) 2020; 5
Yang (10.1016/j.eswa.2023.122147_b67) 2012
Khodadadi (10.1016/j.eswa.2023.122147_b44) 2022
Valdez (10.1016/j.eswa.2023.122147_b64) 2021; 14
Zhao (10.1016/j.eswa.2023.122147_b70) 2022; 388
Bello (10.1016/j.eswa.2023.122147_b8) 2007
10.1016/j.eswa.2023.122147_b12
Karaboga (10.1016/j.eswa.2023.122147_b37) 2010; 5
El-kenawy (10.1016/j.eswa.2023.122147_b23) 2020; 8
Ibrahim (10.1016/j.eswa.2023.122147_b33) 2020
Mirjalili (10.1016/j.eswa.2023.122147_b47) 2016; 95
References_xml – volume: 192
  start-page: 745
  year: 2022
  end-page: 758
  ident: b6
  article-title: GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design
  publication-title: Renewable Energy
– volume: 398
  year: 2022
  ident: b71
  article-title: An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 64
  start-page: 904
  year: 2020
  end-page: 916
  ident: b38
  article-title: Dynamic water strider algorithm for optimal design of skeletal structures
  publication-title: Periodica Polytechnica Civil Engineering
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b47
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: 8
  start-page: 107635
  year: 2020
  end-page: 107649
  ident: b22
  article-title: MbGWO-SFS: Modified binary grey wolf optimizer based on stochastic fractal search for feature selection
  publication-title: IEEE Access
– volume: 75
  start-page: 1
  year: 2015
  end-page: 18
  ident: b59
  article-title: Stochastic fractal search: A powerful metaheuristic algorithm
  publication-title: Knowledge-Based Systems
– volume: 43
  start-page: 117
  year: 2016
  end-page: 130
  ident: b50
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Applied Soft Computing
– year: 2022
  ident: b10
  article-title: What is a group of geese called?
– volume: 139
  year: 2020
  ident: b2
  article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection
  publication-title: Expert Systems with Applications
– volume: 9
  start-page: 117581
  year: 2021
  end-page: 117595
  ident: b35
  article-title: A hybrid sparrow search algorithm based on constructing similarity
  publication-title: IEEE Access
– year: 2010
  ident: b40
  article-title: An improved ant colony optimization for constrained engineering design problems
  publication-title: Engineering Computations
– reference: (pp. 1942–1948).
– volume: 22
  start-page: 811
  year: 2018
  end-page: 822
  ident: b29
  article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer
  publication-title: Soft Computing
– volume: 60
  start-page: 1
  year: 2017
  end-page: 15
  ident: b60
  article-title: Satin bowerbird optimizer
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 14
  start-page: 122
  year: 2021
  ident: b64
  article-title: Bio-inspired algorithms and its applications for optimization in fuzzy clustering
  publication-title: Algorithms
– volume: 5
  start-page: 1
  year: 2012
  end-page: 16
  ident: b13
  article-title: Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm
  publication-title: Swarm and Evolutionary Computation
– volume: 10
  start-page: 16150
  year: 2022
  end-page: 16177
  ident: b53
  article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm
  publication-title: IEEE Access
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 8
  ident: b61
  article-title: Data feature selection based on artificial bee colony algorithm
  publication-title: EURASIP Journal on Image and Video Processing
– volume: 61
  start-page: 1608
  year: 2011
  end-page: 1623
  ident: b72
  article-title: A novel modified differential evolution algorithm for constrained optimization problems
  publication-title: Computers & Mathematics with Applications
– volume: 37
  start-page: 2521
  year: 2021
  end-page: 2541
  ident: b39
  article-title: Optimal design of large-scale frames with an advanced charged system search algorithm using box-shaped sections
  publication-title: Engineering with Computers
– volume: 241
  year: 2022
  ident: b68
  article-title: Artificial bee colony algorithm with efficient search strategy based on random neighborhood structure
  publication-title: Knowledge-Based Systems
– year: 2008
  ident: b66
  article-title: Introduction to mathematical optimization
  publication-title: From linear programming to metaheuristics
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b48
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
– volume: 8
  start-page: 148378
  year: 2020
  end-page: 148403
  ident: b26
  article-title: Dynamic group-based cooperative optimization algorithm
  publication-title: IEEE Access
– volume: 74
  start-page: 2914
  year: 2011
  end-page: 2928
  ident: b36
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
– start-page: 1
  year: 2022
  end-page: 39
  ident: b44
  article-title: MOAVOA: a new multi-objective artificial vultures optimization algorithm
  publication-title: Neural Computing and Applications
– year: 2012
  ident: b67
  article-title: Metaheuristics in water, geotechnical and transport engineering
– volume: 44
  start-page: 405
  year: 2020
  end-page: 420
  ident: b41
  article-title: Hybrid invasive weed optimization-shuffled frog-leaping algorithm for optimal design of truss structures
  publication-title: Iranian Journal of Science and Technology, Transactions of Civil Engineering
– year: 1999
  ident: b46
  article-title: FEP learning algorithm: application to direct self-learning control
  publication-title: Proceedings of the 1999 IEEE international conference on control applications (Cat. no.99CH36328)
– start-page: 19
  year: 2015
  end-page: 24
  ident: b30
  article-title: An innovative approach for feature selection based on chicken swarm optimization
  publication-title: 2015 7th international conference of soft computing and pattern recognition
– volume: 7
  start-page: 39496
  year: 2019
  end-page: 39508
  ident: b4
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
– volume: 16
  start-page: 831
  year: 2020
  end-page: 844
  ident: b21
  article-title: Hybrid gray wolf and particle swarm optimization for feature selection
  publication-title: International Journal Innovation Information Control
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b57
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
– volume: 107
  start-page: 743
  year: 2022
  end-page: 760
  ident: b15
  article-title: Improved artificial bee colony algorithm with dynamic population composition for optimization problems
  publication-title: Nonlinear Dynamics
– volume: 388
  year: 2022
  ident: b70
  article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 111
  start-page: 1946
  year: 2019
  end-page: 1955
  ident: b51
  article-title: Frequency based feature selection method using whale algorithm
  publication-title: Genomics
– volume: 187
  year: 2022
  ident: b54
  article-title: Multi-objective lichtenberg algorithm: A hybrid physics-based meta-heuristic for solving engineering problems
  publication-title: Expert Systems with Applications
– year: 2011
  ident: b11
  article-title: Clever algorithms: Nature-inspired programming recipes
– volume: 5
  start-page: 6915
  year: 2010
  ident: b37
  article-title: Artificial bee colony algorithm
  publication-title: Scholarpedia
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b49
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– year: 2009
  ident: b69
  article-title: An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry
– volume: 174
  year: 2022
  ident: b3
  article-title: Mountain gazelle optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Advances in Engineering Software
– volume: 35
  start-page: 1359
  year: 2019
  end-page: 1373
  ident: b62
  article-title: A novel hybrid PSO–GWO algorithm for optimization problems
  publication-title: Engineering with Computers
– start-page: 11
  year: 2022
  end-page: 34
  ident: b5
  article-title: Moth-flame optimization algorithm for feature selection: A review and future trends
  publication-title: Handbook of Moth-Flame Optimization Algorithm
– volume: 221
  start-page: 1897
  year: 2010
  end-page: 1906
  ident: b14
  article-title: Comparison of sensitivity analysis techniques: A case study with the rice model WARM
  publication-title: Ecological Modelling
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: b17
  article-title: Ant colony optimization
  publication-title: IEEE Computational Intelligence Magazine
– start-page: 1
  year: 2022
  end-page: 26
  ident: b45
  article-title: MOTEO: a novel multi-objective thermal exchange optimization algorithm for engineering problems
  publication-title: Soft Computing
– reference: Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In
– volume: 192
  start-page: 514
  year: 2022
  end-page: 536
  ident: b52
  article-title: Chaotic hunger games search optimization algorithm for global optimization and engineering problems
  publication-title: Mathematics and Computers in Simulation
– volume: 42
  start-page: 8520
  year: 2015
  end-page: 8532
  ident: b9
  article-title: Feature selection using joint mutual information maximisation
  publication-title: Expert Systems with Applications
– volume: 10
  start-page: 16188
  year: 2022
  end-page: 16208
  ident: b43
  article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints
  publication-title: IEEE Access
– volume: 204
  year: 2020
  ident: b55
  article-title: Feature selection based on chaotic binary black hole algorithm for data classification
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 7
  start-page: 5984
  year: 2019
  end-page: 5993
  ident: b31
  article-title: A modified gravitational search algorithm for function optimization
  publication-title: IEEE Access
– volume: 112
  start-page: 4370
  year: 2020
  end-page: 4384
  ident: b58
  article-title: Integration of multi-objective PSO based feature selection and node centrality for medical datasets
  publication-title: Genomics
– reference: Awad, A. A., Ali, A. F., Gaber, T., et al. (2020). Feature Selection Method Based on Chaotic Maps and Butterfly Optimization Algorithm. In
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: b24
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– reference: (pp. 159–169).
– volume: 90
  start-page: 484
  year: 2017
  end-page: 500
  ident: b1
  article-title: An improved opposition-based sine cosine algorithm for global optimization
  publication-title: Expert Systems with Applications
– volume: 10
  start-page: 3144
  year: 2022
  ident: b20
  article-title: Feature selection and classification of transformer faults based on novel meta-heuristic algorithm
  publication-title: Mathematics
– volume: 92
  start-page: 145
  year: 2004
  end-page: 159
  ident: b28
  article-title: Flying with the wind - Spring migration of arctic-breeding waders and geese over South Sweden
  publication-title: Ardea
– reference: , URL: , Comments: 14 pages; Bioinspired Optimization Methods and their Applications (BIOMA 2012).
– volume: 5
  start-page: 697
  year: 2020
  end-page: 706
  ident: b56
  article-title: Feature selection using different transfer functions for binary bat algorithm
  publication-title: International Journal of Mathematical, Engineering and Management Sciences
– reference: Fister, I., Yang, X.-S., Fister, I., & Brest, J. (2012). Memetic firefly algorithm for combinatorial optimization.
– volume: 18
  start-page: 261
  year: 2014
  end-page: 276
  ident: b65
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Applied Soft Computing
– volume: 8
  start-page: 179317
  year: 2020
  end-page: 179335
  ident: b23
  article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images
  publication-title: IEEE Access
– start-page: 691
  year: 2007
  end-page: 696
  ident: b8
  article-title: Two-step particle swarm optimization to solve the feature selection problem
  publication-title: Seventh international conference on intelligent systems design and applications
– volume: 7
  start-page: 20281
  year: 2019
  end-page: 20292
  ident: b16
  article-title: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem
  publication-title: IEEE Access
– reference: .
– volume: 76
  start-page: 16
  year: 2019
  end-page: 30
  ident: b63
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Applied Soft Computing
– year: 2008
  ident: b32
  article-title: Why do geese mate for life?
– volume: 45
  start-page: 1917
  year: 2023
  end-page: 1934
  ident: b19
  article-title: Al-biruni earth radius (BER) metaheuristic search optimization algorithm
  publication-title: Computer Systems Science and Engineering
– year: 2022
  ident: b34
  article-title: Canada geese behavior & biology
– volume: 181
  start-page: 5227
  year: 2011
  end-page: 5239
  ident: b27
  article-title: Multi-stage genetic programming: a new strategy to nonlinear system modeling
  publication-title: Information Sciences
– start-page: 153
  year: 2020
  end-page: 158
  ident: b33
  article-title: Chaotic harris hawks optimization for unconstrained function optimization
  publication-title: 2020 16th international computer engineering conference
– start-page: 1
  year: 2020
  end-page: 32
  ident: b42
  article-title: Stochastic paint optimizer: theory and application in civil engineering
  publication-title: Engineering with Computers
– reference: Celik, Y., & Kutucu, H. (2018). Solving the Tension/Compression Spring Design Problem by an Improved Firefly Algorithm. In
– volume: 5
  start-page: 6915
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2023.122147_b37
  article-title: Artificial bee colony algorithm
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.6915
– volume: 43
  start-page: 117
  year: 2016
  ident: 10.1016/j.eswa.2023.122147_b50
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.01.044
– volume: 192
  start-page: 514
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b52
  article-title: Chaotic hunger games search optimization algorithm for global optimization and engineering problems
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2021.09.014
– volume: 7
  start-page: 39496
  year: 2019
  ident: 10.1016/j.eswa.2023.122147_b4
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– volume: 10
  start-page: 3144
  issue: 17
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b20
  article-title: Feature selection and classification of transformer faults based on novel meta-heuristic algorithm
  publication-title: Mathematics
  doi: 10.3390/math10173144
– year: 2012
  ident: 10.1016/j.eswa.2023.122147_b67
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2023.122147_b48
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1870-7
– volume: 204
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b55
  article-title: Feature selection based on chaotic binary black hole algorithm for data classification
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2020.104104
– year: 2009
  ident: 10.1016/j.eswa.2023.122147_b69
– volume: 90
  start-page: 484
  year: 2017
  ident: 10.1016/j.eswa.2023.122147_b1
  article-title: An improved opposition-based sine cosine algorithm for global optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.07.043
– volume: 22
  start-page: 811
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2023.122147_b29
  article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2385-6
– year: 2008
  ident: 10.1016/j.eswa.2023.122147_b66
  article-title: Introduction to mathematical optimization
– volume: 45
  start-page: 1917
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2023.122147_b19
  article-title: Al-biruni earth radius (BER) metaheuristic search optimization algorithm
  publication-title: Computer Systems Science and Engineering
  doi: 10.32604/csse.2023.032497
– volume: 61
  start-page: 1608
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2023.122147_b72
  article-title: A novel modified differential evolution algorithm for constrained optimization problems
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2011.01.029
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b42
  article-title: Stochastic paint optimizer: theory and application in civil engineering
  publication-title: Engineering with Computers
– volume: 75
  start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2023.122147_b59
  article-title: Stochastic fractal search: A powerful metaheuristic algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.07.025
– year: 2022
  ident: 10.1016/j.eswa.2023.122147_b10
– volume: 92
  start-page: 145
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2023.122147_b28
  article-title: Flying with the wind - Spring migration of arctic-breeding waders and geese over South Sweden
  publication-title: Ardea
– start-page: 19
  year: 2015
  ident: 10.1016/j.eswa.2023.122147_b30
  article-title: An innovative approach for feature selection based on chicken swarm optimization
– year: 2022
  ident: 10.1016/j.eswa.2023.122147_b34
– start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b45
  article-title: MOTEO: a novel multi-objective thermal exchange optimization algorithm for engineering problems
  publication-title: Soft Computing
– volume: 388
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b70
  article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2021.114194
– year: 2011
  ident: 10.1016/j.eswa.2023.122147_b11
– volume: 221
  start-page: 1897
  issue: 16
  year: 2010
  ident: 10.1016/j.eswa.2023.122147_b14
  article-title: Comparison of sensitivity analysis techniques: A case study with the rice model WARM
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2010.04.021
– year: 2010
  ident: 10.1016/j.eswa.2023.122147_b40
  article-title: An improved ant colony optimization for constrained engineering design problems
  publication-title: Engineering Computations
  doi: 10.1108/02644401011008577
– volume: 187
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b54
  article-title: Multi-objective lichtenberg algorithm: A hybrid physics-based meta-heuristic for solving engineering problems
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 20281
  year: 2019
  ident: 10.1016/j.eswa.2023.122147_b16
  article-title: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897580
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.eswa.2023.122147_b17
  article-title: Ant colony optimization
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2006.329691
– volume: 181
  start-page: 5227
  issue: 23
  year: 2011
  ident: 10.1016/j.eswa.2023.122147_b27
  article-title: Multi-stage genetic programming: a new strategy to nonlinear system modeling
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.07.026
– volume: 107
  start-page: 743
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b15
  article-title: Improved artificial bee colony algorithm with dynamic population composition for optimization problems
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-021-06983-2
– year: 2008
  ident: 10.1016/j.eswa.2023.122147_b32
– volume: 14
  start-page: 122
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2023.122147_b64
  article-title: Bio-inspired algorithms and its applications for optimization in fuzzy clustering
  publication-title: Algorithms
  doi: 10.3390/a14040122
– volume: 18
  start-page: 261
  year: 2014
  ident: 10.1016/j.eswa.2023.122147_b65
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.09.018
– volume: 398
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b71
  article-title: An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2022.115223
– volume: 42
  start-page: 8520
  issue: 22
  year: 2015
  ident: 10.1016/j.eswa.2023.122147_b9
  article-title: Feature selection using joint mutual information maximisation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.07.007
– start-page: 153
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b33
  article-title: Chaotic harris hawks optimization for unconstrained function optimization
– start-page: 691
  year: 2007
  ident: 10.1016/j.eswa.2023.122147_b8
  article-title: Two-step particle swarm optimization to solve the feature selection problem
– volume: 7
  start-page: 5984
  year: 2019
  ident: 10.1016/j.eswa.2023.122147_b31
  article-title: A modified gravitational search algorithm for function optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2889854
– volume: 16
  start-page: 831
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b21
  article-title: Hybrid gray wolf and particle swarm optimization for feature selection
  publication-title: International Journal Innovation Information Control
– volume: 64
  start-page: 904
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b38
  article-title: Dynamic water strider algorithm for optimal design of skeletal structures
  publication-title: Periodica Polytechnica Civil Engineering
– volume: 8
  start-page: 107635
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b22
  article-title: MbGWO-SFS: Modified binary grey wolf optimizer based on stochastic fractal search for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001151
– volume: 174
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b3
  article-title: Mountain gazelle optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2022.103282
– volume: 241
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b68
  article-title: Artificial bee colony algorithm with efficient search strategy based on random neighborhood structure
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.108306
– ident: 10.1016/j.eswa.2023.122147_b12
– volume: 35
  start-page: 1359
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2023.122147_b62
  article-title: A novel hybrid PSO–GWO algorithm for optimization problems
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-0668-5
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2023.122147_b49
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 8
  start-page: 148378
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b26
  article-title: Dynamic group-based cooperative optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015892
– volume: 74
  start-page: 2914
  issue: 17
  year: 2011
  ident: 10.1016/j.eswa.2023.122147_b36
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.034
– volume: 5
  start-page: 697
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b56
  article-title: Feature selection using different transfer functions for binary bat algorithm
  publication-title: International Journal of Mathematical, Engineering and Management Sciences
  doi: 10.33889/IJMEMS.2020.5.4.056
– start-page: 11
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b5
  article-title: Moth-flame optimization algorithm for feature selection: A review and future trends
  publication-title: Handbook of Moth-Flame Optimization Algorithm
  doi: 10.1201/9781003205326-3
– volume: 44
  start-page: 405
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b41
  article-title: Hybrid invasive weed optimization-shuffled frog-leaping algorithm for optimal design of truss structures
  publication-title: Iranian Journal of Science and Technology, Transactions of Civil Engineering
  doi: 10.1007/s40996-019-00280-0
– ident: 10.1016/j.eswa.2023.122147_b7
  doi: 10.1007/978-3-030-44289-7_16
– volume: 5
  start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2023.122147_b13
  article-title: Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2012.01.001
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2023.122147_b57
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 192
  start-page: 745
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b6
  article-title: GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2022.04.162
– year: 1999
  ident: 10.1016/j.eswa.2023.122147_b46
  article-title: FEP learning algorithm: application to direct self-learning control
– volume: 2013
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2023.122147_b61
  article-title: Data feature selection based on artificial bee colony algorithm
  publication-title: EURASIP Journal on Image and Video Processing
  doi: 10.1186/1687-5281-2013-47
– volume: 8
  start-page: 179317
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b23
  article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028012
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2023.122147_b47
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 139
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b2
  article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112824
– volume: 10
  start-page: 16188
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b43
  article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3146374
– volume: 112
  start-page: 4370
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2023.122147_b58
  article-title: Integration of multi-objective PSO based feature selection and node centrality for medical datasets
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.07.027
– volume: 60
  start-page: 1
  issue: C
  year: 2017
  ident: 10.1016/j.eswa.2023.122147_b60
  article-title: Satin bowerbird optimizer
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.01.006
– ident: 10.1016/j.eswa.2023.122147_b18
  doi: 10.1109/ICNN.1995.488968
– volume: 76
  start-page: 16
  year: 2019
  ident: 10.1016/j.eswa.2023.122147_b63
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.11.047
– ident: 10.1016/j.eswa.2023.122147_b25
– volume: 9
  start-page: 117581
  year: 2021
  ident: 10.1016/j.eswa.2023.122147_b35
  article-title: A hybrid sparrow search algorithm based on constructing similarity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3106269
– volume: 10
  start-page: 16150
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b53
  article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147821
– start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.122147_b44
  article-title: MOAVOA: a new multi-objective artificial vultures optimization algorithm
  publication-title: Neural Computing and Applications
– volume: 111
  start-page: 1946
  issue: 6
  year: 2019
  ident: 10.1016/j.eswa.2023.122147_b51
  article-title: Frequency based feature selection method using whale algorithm
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.01.006
– volume: 37
  start-page: 2521
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2023.122147_b39
  article-title: Optimal design of large-scale frames with an advanced charged system search algorithm using box-shaped sections
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-020-00955-7
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.eswa.2023.122147_b24
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
SSID ssj0017007
Score 2.7488484
Snippet Nature-inspired metaheuristic approaches draw their core idea from biological evolution in order to create new and powerful competing algorithms. Such...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122147
SubjectTerms Algorithm
Engineering optimization
Meta-heuristic
Swarm-based algorithms
Title Greylag Goose Optimization: Nature-inspired optimization algorithm
URI https://dx.doi.org/10.1016/j.eswa.2023.122147
Volume 238
WOSCitedRecordID wos001096431500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoELjC9twFAO3CpXifNhm1tB2wCxgrQh9RY5jrOltMnUhW3dmT-c59j5WDUmdkCVoiaNX6O8n57f90PonQikTFw_wWmUpDhIwghzLlJcbw-Egk6R1Zz-SicTNp3y74PB76YW5mJOi4JdXfGz_8pquAbM1qWz92B3SxQuwHdgOhyB7XD8J8aD0b-ai5PhQalT0b-BSFjYWktt_U_qRp44L3SEHZTNsvf7UMxPymVenS5u-Ot1M-TKtnxuiuF6Ye8u-wP_VIW4XJlsMXwkVkD_cNSK9NMyFfDJDQC7_eAwX87AGjB12kcKVsFZF5ZKdUx_kRv_tz4T1_n1cDzq-ytIoBO2TMVm63ikOPDMbJ5GBhPT4sVKUY_o6Um3Cnjja5iN1Pml7hpF_FF3881u2mu7XJt72KS1zWJNI9Y0YkPjAdokNOQgGzfHn_emX9poFHVN2X3z5Lb4yuQJrj_J7QpOT2k53kKPrbXhjA1KnqKBKp6hJ80kD8cK9ufogwWNU4PG6YPmvbMGGacPGaeFzAv0Y3_v-OMnbKdrYOlHUYUV4V7KZKhcNwG7snaGUy8E-U1I6jMRZVGQycgPlAyln3i-dLOIM6U8JVkSMP8l2ijKQm0jJxEhYS7hivtuIDLFPZ5yBkoRT4Wg1N1BXvNKYmlbz-sJKPP478zYQcN2zZlpvHLn3WHzpmOrOhqVMAbg3LHu1b3-5TV61CH6Ddqolr_ULnooL6r8fPnWouYPAEiQLQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greylag+Goose+Optimization%3A+Nature-inspired+optimization+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=El-kenawy%2C+El-Sayed+M.&rft.au=Khodadadi%2C+Nima&rft.au=Mirjalili%2C+Seyedali&rft.au=Abdelhamid%2C+Abdelaziz+A.&rft.date=2024-03-15&rft.issn=0957-4174&rft.volume=238&rft.spage=122147&rft_id=info:doi/10.1016%2Fj.eswa.2023.122147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_122147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon