Greylag Goose Optimization: Nature-inspired optimization algorithm
Nature-inspired metaheuristic approaches draw their core idea from biological evolution in order to create new and powerful competing algorithms. Such algorithms can be divided into evolution-based and swarm-based algorithms. This paper proposed a new nature-inspired optimizer called the Greylag Goo...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 238; s. 122147 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
15.03.2024
|
| Predmet: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Nature-inspired metaheuristic approaches draw their core idea from biological evolution in order to create new and powerful competing algorithms. Such algorithms can be divided into evolution-based and swarm-based algorithms. This paper proposed a new nature-inspired optimizer called the Greylag Goose Optimization (GGO) algorithm. The proposed algorithm (GGO) belongs to the class of swarm-based algorithms and is inspired by the Greylag Goose. Geese are excellent flyers and during their seasonal migrations, they fly in a group and can cover thousands of kilometers in a single flight. While flying, a group of geese forms themselves as a “V” configuration. In this way, the geese in the front can minimize the air resistance of the ones in the back. This allows the geese to fly around 70% farther as a group than they could individually. The GGO algorithm is first validated by being applied to nineteen datasets retrieved from the UCI Machine Learning Repository. Each dataset contains a varied amount of characteristics, instances, and classes that are used to choose features. After that, it is put to use in the process of solving a number of engineering benchmark functions and case studies. Several case studies are solved using the proposed algorithm too, including the pressure vessel design and the tension/compression spring design. The findings demonstrate that the GGO method outperforms numerous other comparative optimization algorithms and delivers superior accuracy compared to other algorithms. The results of the statistical analysis tests, such as Wilcoxon’s rank-sum and one-way analysis of variance (ANOVA), demonstrate that the GGO algorithm achieves superior results.
•Greylag Goose Optimization (GGO) algorithm inspired by nature is proposed.•A binary version of the GGO algorithm is designed for feature selection.•The GGO algorithm is tested on 19 datasets from UCI Machine Learning Repository.•The GGO algorithm is applied to engineering problems and benchmark functions.•The statistical significance of the GGO algorithm has been evaluated. |
|---|---|
| AbstractList | Nature-inspired metaheuristic approaches draw their core idea from biological evolution in order to create new and powerful competing algorithms. Such algorithms can be divided into evolution-based and swarm-based algorithms. This paper proposed a new nature-inspired optimizer called the Greylag Goose Optimization (GGO) algorithm. The proposed algorithm (GGO) belongs to the class of swarm-based algorithms and is inspired by the Greylag Goose. Geese are excellent flyers and during their seasonal migrations, they fly in a group and can cover thousands of kilometers in a single flight. While flying, a group of geese forms themselves as a “V” configuration. In this way, the geese in the front can minimize the air resistance of the ones in the back. This allows the geese to fly around 70% farther as a group than they could individually. The GGO algorithm is first validated by being applied to nineteen datasets retrieved from the UCI Machine Learning Repository. Each dataset contains a varied amount of characteristics, instances, and classes that are used to choose features. After that, it is put to use in the process of solving a number of engineering benchmark functions and case studies. Several case studies are solved using the proposed algorithm too, including the pressure vessel design and the tension/compression spring design. The findings demonstrate that the GGO method outperforms numerous other comparative optimization algorithms and delivers superior accuracy compared to other algorithms. The results of the statistical analysis tests, such as Wilcoxon’s rank-sum and one-way analysis of variance (ANOVA), demonstrate that the GGO algorithm achieves superior results.
•Greylag Goose Optimization (GGO) algorithm inspired by nature is proposed.•A binary version of the GGO algorithm is designed for feature selection.•The GGO algorithm is tested on 19 datasets from UCI Machine Learning Repository.•The GGO algorithm is applied to engineering problems and benchmark functions.•The statistical significance of the GGO algorithm has been evaluated. |
| ArticleNumber | 122147 |
| Author | Abdelhamid, Abdelaziz A. Khodadadi, Nima El-kenawy, El-Sayed M. Ibrahim, Abdelhameed Eid, Marwa M. Mirjalili, Seyedali |
| Author_xml | – sequence: 1 givenname: El-Sayed M. orcidid: 0000-0002-9221-7658 surname: El-kenawy fullname: El-kenawy, El-Sayed M. email: skenawy@ieee.org organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura, 35111, Egypt – sequence: 2 givenname: Nima orcidid: 0000-0002-8348-6530 surname: Khodadadi fullname: Khodadadi, Nima email: nima.khodadadi@miami.edu organization: Department of Civil, Architectural and Environmental Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL, USA – sequence: 3 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali email: ali.mirjalili@torrens.edu.au organization: Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, QLD 4006, 35516, Australia – sequence: 4 givenname: Abdelaziz A. orcidid: 0000-0001-7080-1979 surname: Abdelhamid fullname: Abdelhamid, Abdelaziz A. email: abdelaziz@cis.asu.edu.eg organization: Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt – sequence: 5 givenname: Marwa M. orcidid: 0000-0002-8557-3566 surname: Eid fullname: Eid, Marwa M. email: mmm@ieee.org organization: Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura, Egypt – sequence: 6 givenname: Abdelhameed orcidid: 0000-0002-8352-6731 surname: Ibrahim fullname: Ibrahim, Abdelhameed email: afai79@mans.edu.eg organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt |
| BookMark | eNp9kL1OwzAUhS1UJNrCCzDlBRL8k9gOYoEKAlJFF5gtx7kpjtK4sg2oPD0pZUAMnc5w9V2d883QZHADIHRJcEYw4VddBuFTZxRTlhFKSS5O0JRIwVIuSjZBU1wWIs2JyM_QLIQOYyIwFlN0V3nY9XqdVM4FSFbbaDf2S0frhuvkWcd3D6kdwtZ6aBL355rofu28jW-bc3Ta6j7AxW_O0evD_cviMV2uqqfF7TI1jPOYAi1JI00BGNe0KBiwsR8ppMCUNkxq3vK8NZzlYArDasIMbnkpAQgYWeeSzZE8_DXeheChVcbGny7Ra9srgtXeherU3oXau1AHFyNK_6Fbbzfa745DNwcIxlEfFrwKxsJgoBllmKgaZ4_h37iyeuw |
| CitedBy_id | crossref_primary_10_1007_s10922_025_09969_2 crossref_primary_10_32604_cmc_2024_053189 crossref_primary_10_1038_s41598_024_83543_9 crossref_primary_10_32604_cmc_2024_049001 crossref_primary_10_1007_s42452_025_07562_5 crossref_primary_10_1016_j_advengsoft_2025_103883 crossref_primary_10_1007_s11760_025_04235_z crossref_primary_10_1038_s41598_025_03868_x crossref_primary_10_1038_s41598_025_04622_z crossref_primary_10_1007_s13278_025_01508_w crossref_primary_10_1016_j_bspc_2025_108357 crossref_primary_10_1088_1402_4896_ad91f2 crossref_primary_10_1016_j_imu_2025_101669 crossref_primary_10_1002_wer_70143 crossref_primary_10_1016_j_istruc_2025_108519 crossref_primary_10_1007_s10586_024_04618_w crossref_primary_10_1109_JSEN_2025_3554645 crossref_primary_10_1016_j_swevo_2025_102100 crossref_primary_10_1109_JIOT_2025_3566202 crossref_primary_10_1111_jph_70160 crossref_primary_10_1080_10106049_2025_2480298 crossref_primary_10_1016_j_cscm_2025_e05251 crossref_primary_10_1007_s44196_025_00901_9 crossref_primary_10_1007_s44196_025_00909_1 crossref_primary_10_1007_s00704_025_05505_z crossref_primary_10_3390_automation6020013 crossref_primary_10_1016_j_compag_2025_110893 crossref_primary_10_1016_j_measurement_2025_118440 crossref_primary_10_1186_s40537_025_01217_3 crossref_primary_10_1007_s10791_025_09561_x crossref_primary_10_1007_s44196_025_00777_9 crossref_primary_10_1007_s12065_025_01067_1 crossref_primary_10_1016_j_jer_2025_02_006 crossref_primary_10_1038_s41598_025_86251_0 crossref_primary_10_1038_s41598_025_03058_9 crossref_primary_10_1038_s41598_025_09368_2 crossref_primary_10_1016_j_engappai_2025_112139 crossref_primary_10_1016_j_envint_2024_109244 crossref_primary_10_1016_j_cose_2025_104539 crossref_primary_10_1109_ACCESS_2025_3562367 crossref_primary_10_1109_ACCESS_2025_3560624 crossref_primary_10_3390_biomimetics10070445 crossref_primary_10_1016_j_engappai_2025_110094 crossref_primary_10_1186_s12889_025_23318_7 crossref_primary_10_1049_elp2_70053 crossref_primary_10_1371_journal_pone_0330072 crossref_primary_10_1038_s41598_025_94642_6 crossref_primary_10_1007_s10586_025_05229_9 crossref_primary_10_1109_ACCESS_2025_3535667 crossref_primary_10_1016_j_engappai_2025_111854 crossref_primary_10_1007_s11760_025_04601_x crossref_primary_10_1038_s41598_024_79426_8 crossref_primary_10_1002_eng2_70154 crossref_primary_10_1038_s41598_025_92459_x crossref_primary_10_1016_j_measurement_2025_116912 crossref_primary_10_1038_s41598_025_14668_8 crossref_primary_10_1007_s44196_025_00827_2 crossref_primary_10_1038_s41598_025_11626_2 crossref_primary_10_1093_jom_ufae020 crossref_primary_10_1186_s40537_025_01169_8 crossref_primary_10_1007_s10586_024_04678_y crossref_primary_10_1007_s11540_024_09763_8 crossref_primary_10_32604_cmc_2024_051336 crossref_primary_10_1038_s41598_025_02575_x crossref_primary_10_1088_2631_8695_adb378 crossref_primary_10_1007_s41060_025_00785_0 crossref_primary_10_1016_j_compag_2025_110798 crossref_primary_10_1007_s11760_025_04233_1 crossref_primary_10_1016_j_neucom_2025_130949 crossref_primary_10_1088_1361_6501_ae0068 crossref_primary_10_1016_j_cscm_2025_e04939 crossref_primary_10_1016_j_ijepes_2024_110178 crossref_primary_10_1186_s40537_025_01184_9 crossref_primary_10_1038_s41598_025_90062_8 crossref_primary_10_1016_j_cscm_2025_e04995 crossref_primary_10_1007_s42417_025_01796_8 crossref_primary_10_1109_ACCESS_2024_3483457 crossref_primary_10_1155_2024_6661599 crossref_primary_10_1007_s00500_025_10404_6 crossref_primary_10_1038_s41598_025_01516_y crossref_primary_10_1038_s41598_025_97506_1 crossref_primary_10_1016_j_suscom_2025_101175 crossref_primary_10_1186_s44147_025_00740_7 crossref_primary_10_1186_s12872_025_04522_0 crossref_primary_10_1007_s10479_025_06541_8 crossref_primary_10_1016_j_conbuildmat_2025_143050 crossref_primary_10_1038_s41598_025_97582_3 crossref_primary_10_3389_fenrg_2024_1401330 crossref_primary_10_1109_TIA_2025_3537060 crossref_primary_10_1016_j_engappai_2025_111912 crossref_primary_10_1186_s40537_025_01175_w crossref_primary_10_1371_journal_pone_0317554 crossref_primary_10_1007_s11760_025_04602_w crossref_primary_10_1109_TCE_2024_3510812 crossref_primary_10_1371_journal_pone_0326035 crossref_primary_10_3390_electronics13101930 crossref_primary_10_1007_s10586_024_04927_0 crossref_primary_10_1016_j_suscom_2025_101164 crossref_primary_10_1038_s41598_025_04638_5 crossref_primary_10_1038_s41598_024_83636_5 crossref_primary_10_1016_j_aei_2025_103820 crossref_primary_10_1016_j_isci_2025_112360 crossref_primary_10_1038_s41598_025_08517_x crossref_primary_10_1007_s10462_025_11289_5 crossref_primary_10_1007_s41060_025_00723_0 crossref_primary_10_1038_s41598_025_01817_2 crossref_primary_10_1016_j_mex_2025_103540 crossref_primary_10_1038_s41598_025_91911_2 crossref_primary_10_1038_s41598_025_86418_9 crossref_primary_10_1109_JSEN_2025_3565725 crossref_primary_10_3390_biomimetics10060411 crossref_primary_10_1016_j_array_2025_100386 crossref_primary_10_1016_j_egyai_2025_100556 crossref_primary_10_1007_s00521_024_09669_z crossref_primary_10_1007_s00432_024_05968_z crossref_primary_10_1007_s13278_025_01484_1 crossref_primary_10_1016_j_asej_2025_103414 crossref_primary_10_1007_s10462_024_10975_0 crossref_primary_10_1016_j_suscom_2025_101199 crossref_primary_10_1007_s12145_025_01769_1 crossref_primary_10_21595_jve_2025_24806 crossref_primary_10_1016_j_engappai_2025_112102 crossref_primary_10_1038_s41598_025_00509_1 crossref_primary_10_1016_j_iotcps_2025_05_002 crossref_primary_10_1016_j_slast_2025_100314 crossref_primary_10_1016_j_envint_2024_109162 crossref_primary_10_1109_ACCESS_2025_3569078 crossref_primary_10_1016_j_est_2025_118250 crossref_primary_10_1016_j_swevo_2025_102089 crossref_primary_10_1080_13467581_2025_2546395 crossref_primary_10_1038_s41598_025_00085_4 crossref_primary_10_1186_s12880_025_01721_1 crossref_primary_10_3390_biomimetics10070471 crossref_primary_10_1007_s12530_024_09619_z crossref_primary_10_1007_s12559_025_10443_z crossref_primary_10_32604_cmc_2024_049874 crossref_primary_10_1016_j_ifacol_2024_07_587 crossref_primary_10_1038_s41598_025_15218_y crossref_primary_10_1016_j_jer_2025_05_011 crossref_primary_10_1186_s12872_025_04550_w crossref_primary_10_1016_j_compag_2025_110511 crossref_primary_10_1038_s41598_024_83592_0 crossref_primary_10_1109_ACCESS_2025_3548146 crossref_primary_10_1016_j_eswa_2024_124190 crossref_primary_10_1016_j_nexres_2025_100669 crossref_primary_10_1038_s41598_024_70497_1 crossref_primary_10_1080_03772063_2025_2505108 crossref_primary_10_1007_s00202_024_02653_9 crossref_primary_10_1016_j_csite_2025_105999 crossref_primary_10_1016_j_ymssp_2025_112451 crossref_primary_10_1016_j_aej_2025_02_032 crossref_primary_10_1038_s41598_025_87285_0 crossref_primary_10_1016_j_energy_2025_136952 crossref_primary_10_1016_j_swevo_2025_102053 crossref_primary_10_1186_s41043_025_00971_7 crossref_primary_10_3390_app142311116 crossref_primary_10_1007_s11760_025_04340_z crossref_primary_10_1007_s13278_025_01420_3 crossref_primary_10_1016_j_joitmc_2024_100379 crossref_primary_10_1007_s44163_025_00339_0 crossref_primary_10_1002_cae_70046 crossref_primary_10_1016_j_heliyon_2025_e42862 crossref_primary_10_1016_j_wateco_2025_100003 crossref_primary_10_1016_j_aei_2025_103610 crossref_primary_10_1038_s41598_025_14073_1 crossref_primary_10_1038_s41598_025_91270_y crossref_primary_10_1371_journal_pone_0328005 crossref_primary_10_1016_j_knosys_2025_114465 crossref_primary_10_1080_19648189_2025_2525454 crossref_primary_10_1016_j_egyai_2025_100584 crossref_primary_10_1002_eng2_13057 crossref_primary_10_1016_j_slast_2025_100336 crossref_primary_10_1002_smr_70013 crossref_primary_10_1007_s12065_025_01052_8 crossref_primary_10_1007_s12065_024_01011_9 crossref_primary_10_1016_j_engappai_2025_111316 crossref_primary_10_1007_s12145_024_01610_1 crossref_primary_10_1007_s44196_025_00846_z crossref_primary_10_1093_jcde_qwae080 crossref_primary_10_21595_mme_2025_24893 crossref_primary_10_1038_s41598_025_00796_8 crossref_primary_10_1177_20552076251361745 crossref_primary_10_1007_s12145_025_01710_6 crossref_primary_10_1038_s41598_024_83222_9 crossref_primary_10_1016_j_mex_2025_103466 crossref_primary_10_3389_fenrg_2024_1391085 crossref_primary_10_1007_s44196_025_00966_6 crossref_primary_10_32604_cmc_2024_055080 crossref_primary_10_1016_j_compag_2025_110496 crossref_primary_10_1016_j_rineng_2024_103670 crossref_primary_10_1007_s11227_024_06291_7 crossref_primary_10_1016_j_rineng_2025_106444 crossref_primary_10_1016_j_asej_2025_103383 crossref_primary_10_1016_j_eswa_2025_126693 crossref_primary_10_1016_j_ins_2024_121861 crossref_primary_10_1007_s10825_025_02284_8 crossref_primary_10_3390_math13040668 crossref_primary_10_1007_s11227_024_06713_6 crossref_primary_10_1007_s10668_025_06233_0 crossref_primary_10_1007_s13278_025_01482_3 crossref_primary_10_1016_j_jer_2024_11_012 crossref_primary_10_1038_s41598_025_09409_w crossref_primary_10_1002_ett_70056 crossref_primary_10_1007_s11540_024_09755_8 crossref_primary_10_1016_j_energy_2025_137225 crossref_primary_10_1186_s12872_025_04587_x crossref_primary_10_1007_s42452_025_07390_7 crossref_primary_10_1016_j_knosys_2025_113708 crossref_primary_10_1007_s10586_024_04954_x crossref_primary_10_1109_JIOT_2024_3404666 crossref_primary_10_1016_j_compstruct_2025_118921 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_1007_s10462_025_11239_1 crossref_primary_10_1016_j_knosys_2025_113830 crossref_primary_10_1007_s13369_025_10296_6 crossref_primary_10_1038_s41598_025_08362_y crossref_primary_10_1016_j_jer_2025_08_001 crossref_primary_10_1016_j_rineng_2025_105247 crossref_primary_10_3390_app15126806 crossref_primary_10_1016_j_measurement_2024_116231 crossref_primary_10_1186_s40537_025_01192_9 crossref_primary_10_1038_s41598_025_87826_7 crossref_primary_10_1016_j_ymssp_2025_113212 crossref_primary_10_1016_j_eswa_2025_128640 crossref_primary_10_1016_j_swevo_2025_101990 crossref_primary_10_1515_mt_2024_0516 crossref_primary_10_1515_mt_2025_0043 crossref_primary_10_1515_mt_2024_0519 crossref_primary_10_1088_2631_8695_ade368 crossref_primary_10_1038_s41598_025_12775_0 crossref_primary_10_1007_s10661_025_13629_y crossref_primary_10_1016_j_aei_2025_103722 crossref_primary_10_1016_j_asoc_2025_113660 crossref_primary_10_1016_j_engappai_2025_110257 crossref_primary_10_1016_j_asoc_2025_113896 crossref_primary_10_1038_s41598_025_85866_7 crossref_primary_10_1515_mt_2024_0075 crossref_primary_10_1016_j_aei_2025_103609 crossref_primary_10_1016_j_cmpbup_2025_100207 crossref_primary_10_1186_s13640_024_00662_z crossref_primary_10_1016_j_compeleceng_2025_110443 crossref_primary_10_3390_biomimetics9030137 crossref_primary_10_1016_j_cscm_2025_e04357 crossref_primary_10_3390_biomimetics10080545 crossref_primary_10_1007_s10586_024_05024_y crossref_primary_10_21595_jme_2025_24747 crossref_primary_10_1109_TGRS_2025_3602639 crossref_primary_10_3934_jimo_2025119 crossref_primary_10_1038_s41598_025_18014_w crossref_primary_10_1186_s12888_025_07178_4 crossref_primary_10_1155_atr_5584617 crossref_primary_10_1016_j_envint_2025_109389 crossref_primary_10_1016_j_compbiomed_2025_109958 crossref_primary_10_1142_S1469026825500063 crossref_primary_10_1016_j_iot_2024_101422 crossref_primary_10_3390_biomimetics10060380 crossref_primary_10_1038_s41598_025_92324_x crossref_primary_10_3390_su17136178 crossref_primary_10_1016_j_compag_2025_110680 crossref_primary_10_1016_j_engappai_2025_111078 crossref_primary_10_1016_j_compbiomed_2025_110709 crossref_primary_10_1007_s10462_025_11117_w crossref_primary_10_1155_etep_3382601 crossref_primary_10_1002_ese3_70055 crossref_primary_10_1007_s10462_024_10716_3 crossref_primary_10_1007_s10586_025_05241_z crossref_primary_10_1016_j_advengsoft_2024_103696 crossref_primary_10_1007_s44196_025_00866_9 crossref_primary_10_1038_s41598_024_72013_x crossref_primary_10_1016_j_compbiomed_2024_108996 crossref_primary_10_1016_j_dsp_2025_105463 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126365 crossref_primary_10_1016_j_jclepro_2025_146515 crossref_primary_10_1007_s11082_025_08300_2 crossref_primary_10_1016_j_suscom_2025_101201 crossref_primary_10_1007_s10586_024_04969_4 crossref_primary_10_1186_s12872_025_04955_7 crossref_primary_10_1061_JSUED2_SUENG_1603 crossref_primary_10_1016_j_measurement_2025_118361 crossref_primary_10_1007_s41060_025_00778_z crossref_primary_10_1016_j_suscom_2025_101209 crossref_primary_10_1038_s41598_024_78021_1 crossref_primary_10_1016_j_enconman_2025_119808 crossref_primary_10_1186_s12911_025_03127_z crossref_primary_10_3390_biomimetics10060373 crossref_primary_10_1016_j_energy_2025_136498 crossref_primary_10_1186_s40537_025_01143_4 crossref_primary_10_1007_s41060_025_00852_6 crossref_primary_10_1038_s41598_025_99908_7 crossref_primary_10_1016_j_cma_2025_117825 crossref_primary_10_1038_s41598_025_98823_1 crossref_primary_10_1007_s12145_025_01728_w crossref_primary_10_1038_s41598_025_91418_w crossref_primary_10_1007_s10791_025_09699_8 crossref_primary_10_1007_s10586_025_05460_4 crossref_primary_10_1007_s13042_025_02743_5 crossref_primary_10_1002_cpe_8254 crossref_primary_10_1007_s12065_025_01027_9 crossref_primary_10_1038_s41598_025_04370_0 crossref_primary_10_1016_j_jksus_2024_103550 crossref_primary_10_1007_s10462_024_11023_7 crossref_primary_10_1007_s40998_025_00874_7 crossref_primary_10_1155_acis_1922567 crossref_primary_10_1016_j_knosys_2024_112589 crossref_primary_10_1016_j_compbiomed_2025_110924 crossref_primary_10_1007_s12065_025_01053_7 crossref_primary_10_1016_j_measurement_2025_117484 crossref_primary_10_1016_j_advengsoft_2025_104038 crossref_primary_10_1016_j_csite_2025_106445 crossref_primary_10_1063_5_0222940 crossref_primary_10_25259_JKSUS_700_2025 crossref_primary_10_1007_s41060_025_00848_2 crossref_primary_10_1016_j_advengsoft_2024_103671 crossref_primary_10_1016_j_chemolab_2025_105378 crossref_primary_10_1007_s44196_025_00928_y crossref_primary_10_1007_s11581_025_06661_y crossref_primary_10_1109_ACCESS_2025_3543410 crossref_primary_10_1080_10942912_2025_2558009 crossref_primary_10_1007_s12083_025_01983_0 crossref_primary_10_1016_j_engappai_2025_111780 crossref_primary_10_1038_s41598_024_82062_x crossref_primary_10_1038_s41598_025_99472_0 crossref_primary_10_1016_j_engappai_2025_112198 crossref_primary_10_7717_peerj_cs_2652 crossref_primary_10_1002_ett_5019 crossref_primary_10_1016_j_swevo_2025_102117 crossref_primary_10_48084_etasr_9949 crossref_primary_10_1016_j_asej_2025_103485 crossref_primary_10_1016_j_engappai_2025_110577 crossref_primary_10_1186_s44147_025_00717_6 |
| Cites_doi | 10.4249/scholarpedia.6915 10.1016/j.asoc.2016.01.044 10.1016/j.matcom.2021.09.014 10.1109/ACCESS.2019.2906757 10.3390/math10173144 10.1007/s00521-015-1870-7 10.1016/j.chemolab.2020.104104 10.1016/j.eswa.2017.07.043 10.1007/s00500-016-2385-6 10.32604/csse.2023.032497 10.1016/j.camwa.2011.01.029 10.1016/j.knosys.2014.07.025 10.1016/j.cma.2021.114194 10.1016/j.ecolmodel.2010.04.021 10.1108/02644401011008577 10.1109/ACCESS.2019.2897580 10.1109/MCI.2006.329691 10.1016/j.ins.2011.07.026 10.1007/s11071-021-06983-2 10.3390/a14040122 10.1016/j.asoc.2013.09.018 10.1016/j.cma.2022.115223 10.1016/j.eswa.2015.07.007 10.1109/ACCESS.2018.2889854 10.1109/ACCESS.2020.3001151 10.1016/j.advengsoft.2022.103282 10.1016/j.knosys.2022.108306 10.1007/s00366-018-0668-5 10.1016/j.advengsoft.2013.12.007 10.1109/ACCESS.2020.3015892 10.1016/j.neucom.2011.03.034 10.33889/IJMEMS.2020.5.4.056 10.1201/9781003205326-3 10.1007/s40996-019-00280-0 10.1007/978-3-030-44289-7_16 10.1016/j.swevo.2012.01.001 10.1016/j.ins.2009.03.004 10.1016/j.renene.2022.04.162 10.1186/1687-5281-2013-47 10.1109/ACCESS.2020.3028012 10.1016/j.advengsoft.2016.01.008 10.1016/j.eswa.2019.112824 10.1109/ACCESS.2022.3146374 10.1016/j.ygeno.2020.07.027 10.1016/j.engappai.2017.01.006 10.1109/ICNN.1995.488968 10.1016/j.asoc.2018.11.047 10.1109/ACCESS.2021.3106269 10.1109/ACCESS.2022.3147821 10.1016/j.ygeno.2019.01.006 10.1007/s00366-020-00955-7 10.1016/j.neucom.2015.06.083 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2023.122147 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2023_122147 S0957417423026490 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABMYL ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c366t-e291d8c5e00b2553e31871587022d38a6f64fc634ec5c3b13c0f698ee1ec8b483 |
| ISICitedReferencesCount | 383 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001096431500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 07:05:42 EST 2025 Tue Nov 18 21:32:28 EST 2025 Sat Mar 23 16:41:21 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Swarm-based algorithms Meta-heuristic Algorithm Engineering optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c366t-e291d8c5e00b2553e31871587022d38a6f64fc634ec5c3b13c0f698ee1ec8b483 |
| ORCID | 0000-0002-8557-3566 0000-0002-9221-7658 0000-0002-8352-6731 0000-0002-8348-6530 0000-0002-1443-9458 0000-0001-7080-1979 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_122147 crossref_primary_10_1016_j_eswa_2023_122147 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_122147 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-15 |
| PublicationDateYYYYMMDD | 2024-03-15 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mirjalili, Mirjalili, Lewis (b49) 2014; 69 Ye, Wang, Wang, Cui, Wang, Zhao (b68) 2022; 241 Indiana DNR (b34) 2022 Zou, Liu, Gao, Li (b72) 2011; 61 Green (b28) 2004; 92 El-Kenawy, Eid (b21) 2020; 16 Khodadadi, Talatahari, Dadras Eslamlou (b45) 2022 Kabir, Shahjahan, Murase (b36) 2011; 74 Kaveh, Eslamlou, Khodadadi (b38) 2020; 64 Mirjalili, Mirjalili, Hatamlou (b48) 2016; 27 Valdez, Castillo, Melin (b64) 2021; 14 Tu, Chen, Liu (b63) 2019; 76 Gandomi, Alavi (b27) 2011; 181 Mendil, Benmahammed (b46) 1999 Şenel, Gokçe, Yuksel, Yigit (b62) 2019; 35 Khodadadi, Soleimanian Gharehchopogh, Mirjalili (b44) 2022 Nematzadeh, Enayatifar, Mahmud, Akbari (b51) 2019; 111 Awad, A. A., Ali, A. F., Gaber, T., et al. (2020). Feature Selection Method Based on Chaotic Maps and Butterfly Optimization Algorithm. In El-kenawy, Abdelhamid, Ibrahim, Mirjalili, Khodadad, duailij (b19) 2023; 45 Dorigo, Birattari, Stutzle (b17) 2006; 1 Kaveh, Talatahari, Khodadadi (b42) 2020 Rashedi, Nezamabadi-pour, Saryazdi (b57) 2009; 179 . Zhao, Zhang, Mirjalili, Wang, Khodadadi, Mirjalili (b71) 2022; 398 Al-Tashi, Mirjalili, Wu, Abdulkadir, Shami, Khodadadi (b5) 2022 Hafez, Zawbaa, Emary, Mahmoud, Hassanien (b30) 2015 Fouad, El-Desouky, Al-Hajj, El-Kenawy (b26) 2020; 8 Birdfact (b10) 2022 Qasim, Algamal (b56) 2020; 5 He, Zhu, Wang, Yu, Yao (b31) 2019; 7 Abdollahzadeh, Gharehchopogh, Khodadadi, Mirjalili (b3) 2022; 174 Bennasar, Hicks, Setchi (b9) 2015; 42 Celik, Y., & Kutucu, H. (2018). Solving the Tension/Compression Spring Design Problem by an Improved Firefly Algorithm. In Onay, Aydemıṙ (b52) 2022; 192 Rostami, Forouzandeh, Berahmand, Soltani (b58) 2020; 112 Brownlee (b11) 2011 Kaveh, Talatahari (b40) 2010 Pereira, Oliver, Francisco, Cunha, Gomes (b54) 2022; 187 Confalonieri, Bellocchi, Bregaglio, Donatelli, Acutis (b14) 2010; 221 Mirjalili, Lewis (b47) 2016; 95 El-Kenawy, Eid, Saber, Ibrahim (b22) 2020; 8 Horton (b32) 2008 Deng, Xu, Zhao (b16) 2019; 7 Yang, Gandomi, Talatahari, Alavi (b67) 2012 Yang (b66) 2008 (pp. 1942–1948). Karaboga (b37) 2010; 5 El-kenawy, Albalawi, Ward, Ghoneim, Eid, Abdelhamid (b20) 2022; 10 Zhao, Wang, Mirjalili (b70) 2022; 388 Moradi, Gholampour (b50) 2016; 43 Qasim, Al-Thanoon, Algamal (b55) 2020; 204 Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In Gu, Cheng, Jin (b29) 2018; 22 Xue, Zhang, Browne (b65) 2014; 18 Emary, Zawbaa, Hassanien (b24) 2016; 172 (pp. 159–169). Khodadadi, Snasel, Mirjalili (b43) 2022; 10 Salimi (b59) 2015; 75 Jianhua, Zhiheng (b35) 2021; 9 Abd Elaziz, Oliva, Xiong (b1) 2017; 90 URL: , Comments: 14 pages; Bioinspired Optimization Methods and their Applications (BIOMA 2012). Yıldız (b69) 2009 Abdel-Basset, El-Shahat, El-henawy, de Albuquerque, Mirjalili (b2) 2020; 139 Cui, Hu, Rahmani (b15) 2022; 107 Bello, Gomez, Nowe, Garcia (b8) 2007 Kaveh, Talatahari, Khodadadi (b41) 2020; 44 Ibrahim, Ali, Eid, El-kenawy (b33) 2020 Schiezaro, Pedrini (b61) 2013; 2013 Fister, I., Yang, X.-S., Fister, I., & Brest, J. (2012). Memetic firefly algorithm for combinatorial optimization. Kaveh, Khodadadi, Azar, Talatahari (b39) 2021; 37 Chandrasekaran, Simon (b13) 2012; 5 Oyelade, Ezugwu, Mohamed, Abualigah (b53) 2022; 10 Samareh Moosavi, Khatibi Bardsiri (b60) 2017; 60 Al-Tashi, Abdul Kadir, Rais, Mirjalili, Alhussian (b4) 2019; 7 Arrif, Hassani, Guermoui, Sánchez-González, Taylor, Belaid (b6) 2022; 192 El-kenawy, Ibrahim, Mirjalili, Eid, Hussein (b23) 2020; 8 Gu (10.1016/j.eswa.2023.122147_b29) 2018; 22 Oyelade (10.1016/j.eswa.2023.122147_b53) 2022; 10 Qasim (10.1016/j.eswa.2023.122147_b55) 2020; 204 Şenel (10.1016/j.eswa.2023.122147_b62) 2019; 35 Arrif (10.1016/j.eswa.2023.122147_b6) 2022; 192 Al-Tashi (10.1016/j.eswa.2023.122147_b4) 2019; 7 Mirjalili (10.1016/j.eswa.2023.122147_b49) 2014; 69 10.1016/j.eswa.2023.122147_b25 Kaveh (10.1016/j.eswa.2023.122147_b41) 2020; 44 Tu (10.1016/j.eswa.2023.122147_b63) 2019; 76 Abd Elaziz (10.1016/j.eswa.2023.122147_b1) 2017; 90 Moradi (10.1016/j.eswa.2023.122147_b50) 2016; 43 Green (10.1016/j.eswa.2023.122147_b28) 2004; 92 Yıldız (10.1016/j.eswa.2023.122147_b69) 2009 He (10.1016/j.eswa.2023.122147_b31) 2019; 7 Chandrasekaran (10.1016/j.eswa.2023.122147_b13) 2012; 5 Salimi (10.1016/j.eswa.2023.122147_b59) 2015; 75 Gandomi (10.1016/j.eswa.2023.122147_b27) 2011; 181 Kabir (10.1016/j.eswa.2023.122147_b36) 2011; 74 Kaveh (10.1016/j.eswa.2023.122147_b42) 2020 Mirjalili (10.1016/j.eswa.2023.122147_b48) 2016; 27 El-Kenawy (10.1016/j.eswa.2023.122147_b22) 2020; 8 Confalonieri (10.1016/j.eswa.2023.122147_b14) 2010; 221 Zou (10.1016/j.eswa.2023.122147_b72) 2011; 61 Samareh Moosavi (10.1016/j.eswa.2023.122147_b60) 2017; 60 Birdfact (10.1016/j.eswa.2023.122147_b10) 2022 Rostami (10.1016/j.eswa.2023.122147_b58) 2020; 112 Nematzadeh (10.1016/j.eswa.2023.122147_b51) 2019; 111 Schiezaro (10.1016/j.eswa.2023.122147_b61) 2013; 2013 Yang (10.1016/j.eswa.2023.122147_b66) 2008 Zhao (10.1016/j.eswa.2023.122147_b71) 2022; 398 Indiana DNR (10.1016/j.eswa.2023.122147_b34) 2022 Horton (10.1016/j.eswa.2023.122147_b32) 2008 Brownlee (10.1016/j.eswa.2023.122147_b11) 2011 El-kenawy (10.1016/j.eswa.2023.122147_b20) 2022; 10 Khodadadi (10.1016/j.eswa.2023.122147_b43) 2022; 10 Jianhua (10.1016/j.eswa.2023.122147_b35) 2021; 9 Hafez (10.1016/j.eswa.2023.122147_b30) 2015 Ye (10.1016/j.eswa.2023.122147_b68) 2022; 241 Abdel-Basset (10.1016/j.eswa.2023.122147_b2) 2020; 139 Khodadadi (10.1016/j.eswa.2023.122147_b45) 2022 Bennasar (10.1016/j.eswa.2023.122147_b9) 2015; 42 Fouad (10.1016/j.eswa.2023.122147_b26) 2020; 8 Kaveh (10.1016/j.eswa.2023.122147_b40) 2010 10.1016/j.eswa.2023.122147_b7 Onay (10.1016/j.eswa.2023.122147_b52) 2022; 192 El-kenawy (10.1016/j.eswa.2023.122147_b19) 2023; 45 Abdollahzadeh (10.1016/j.eswa.2023.122147_b3) 2022; 174 Dorigo (10.1016/j.eswa.2023.122147_b17) 2006; 1 Kaveh (10.1016/j.eswa.2023.122147_b38) 2020; 64 Deng (10.1016/j.eswa.2023.122147_b16) 2019; 7 Kaveh (10.1016/j.eswa.2023.122147_b39) 2021; 37 Emary (10.1016/j.eswa.2023.122147_b24) 2016; 172 Rashedi (10.1016/j.eswa.2023.122147_b57) 2009; 179 Cui (10.1016/j.eswa.2023.122147_b15) 2022; 107 Pereira (10.1016/j.eswa.2023.122147_b54) 2022; 187 Xue (10.1016/j.eswa.2023.122147_b65) 2014; 18 Al-Tashi (10.1016/j.eswa.2023.122147_b5) 2022 10.1016/j.eswa.2023.122147_b18 El-Kenawy (10.1016/j.eswa.2023.122147_b21) 2020; 16 Mendil (10.1016/j.eswa.2023.122147_b46) 1999 Qasim (10.1016/j.eswa.2023.122147_b56) 2020; 5 Yang (10.1016/j.eswa.2023.122147_b67) 2012 Khodadadi (10.1016/j.eswa.2023.122147_b44) 2022 Valdez (10.1016/j.eswa.2023.122147_b64) 2021; 14 Zhao (10.1016/j.eswa.2023.122147_b70) 2022; 388 Bello (10.1016/j.eswa.2023.122147_b8) 2007 10.1016/j.eswa.2023.122147_b12 Karaboga (10.1016/j.eswa.2023.122147_b37) 2010; 5 El-kenawy (10.1016/j.eswa.2023.122147_b23) 2020; 8 Ibrahim (10.1016/j.eswa.2023.122147_b33) 2020 Mirjalili (10.1016/j.eswa.2023.122147_b47) 2016; 95 |
| References_xml | – volume: 192 start-page: 745 year: 2022 end-page: 758 ident: b6 article-title: GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design publication-title: Renewable Energy – volume: 398 year: 2022 ident: b71 article-title: An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 64 start-page: 904 year: 2020 end-page: 916 ident: b38 article-title: Dynamic water strider algorithm for optimal design of skeletal structures publication-title: Periodica Polytechnica Civil Engineering – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b47 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – volume: 8 start-page: 107635 year: 2020 end-page: 107649 ident: b22 article-title: MbGWO-SFS: Modified binary grey wolf optimizer based on stochastic fractal search for feature selection publication-title: IEEE Access – volume: 75 start-page: 1 year: 2015 end-page: 18 ident: b59 article-title: Stochastic fractal search: A powerful metaheuristic algorithm publication-title: Knowledge-Based Systems – volume: 43 start-page: 117 year: 2016 end-page: 130 ident: b50 article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy publication-title: Applied Soft Computing – year: 2022 ident: b10 article-title: What is a group of geese called? – volume: 139 year: 2020 ident: b2 article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection publication-title: Expert Systems with Applications – volume: 9 start-page: 117581 year: 2021 end-page: 117595 ident: b35 article-title: A hybrid sparrow search algorithm based on constructing similarity publication-title: IEEE Access – year: 2010 ident: b40 article-title: An improved ant colony optimization for constrained engineering design problems publication-title: Engineering Computations – reference: (pp. 1942–1948). – volume: 22 start-page: 811 year: 2018 end-page: 822 ident: b29 article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer publication-title: Soft Computing – volume: 60 start-page: 1 year: 2017 end-page: 15 ident: b60 article-title: Satin bowerbird optimizer publication-title: Engineering Applications of Artificial Intelligence – volume: 14 start-page: 122 year: 2021 ident: b64 article-title: Bio-inspired algorithms and its applications for optimization in fuzzy clustering publication-title: Algorithms – volume: 5 start-page: 1 year: 2012 end-page: 16 ident: b13 article-title: Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm publication-title: Swarm and Evolutionary Computation – volume: 10 start-page: 16150 year: 2022 end-page: 16177 ident: b53 article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm publication-title: IEEE Access – volume: 2013 start-page: 1 year: 2013 end-page: 8 ident: b61 article-title: Data feature selection based on artificial bee colony algorithm publication-title: EURASIP Journal on Image and Video Processing – volume: 61 start-page: 1608 year: 2011 end-page: 1623 ident: b72 article-title: A novel modified differential evolution algorithm for constrained optimization problems publication-title: Computers & Mathematics with Applications – volume: 37 start-page: 2521 year: 2021 end-page: 2541 ident: b39 article-title: Optimal design of large-scale frames with an advanced charged system search algorithm using box-shaped sections publication-title: Engineering with Computers – volume: 241 year: 2022 ident: b68 article-title: Artificial bee colony algorithm with efficient search strategy based on random neighborhood structure publication-title: Knowledge-Based Systems – year: 2008 ident: b66 article-title: Introduction to mathematical optimization publication-title: From linear programming to metaheuristics – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b48 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications – volume: 8 start-page: 148378 year: 2020 end-page: 148403 ident: b26 article-title: Dynamic group-based cooperative optimization algorithm publication-title: IEEE Access – volume: 74 start-page: 2914 year: 2011 end-page: 2928 ident: b36 article-title: A new local search based hybrid genetic algorithm for feature selection publication-title: Neurocomputing – start-page: 1 year: 2022 end-page: 39 ident: b44 article-title: MOAVOA: a new multi-objective artificial vultures optimization algorithm publication-title: Neural Computing and Applications – year: 2012 ident: b67 article-title: Metaheuristics in water, geotechnical and transport engineering – volume: 44 start-page: 405 year: 2020 end-page: 420 ident: b41 article-title: Hybrid invasive weed optimization-shuffled frog-leaping algorithm for optimal design of truss structures publication-title: Iranian Journal of Science and Technology, Transactions of Civil Engineering – year: 1999 ident: b46 article-title: FEP learning algorithm: application to direct self-learning control publication-title: Proceedings of the 1999 IEEE international conference on control applications (Cat. no.99CH36328) – start-page: 19 year: 2015 end-page: 24 ident: b30 article-title: An innovative approach for feature selection based on chicken swarm optimization publication-title: 2015 7th international conference of soft computing and pattern recognition – volume: 7 start-page: 39496 year: 2019 end-page: 39508 ident: b4 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access – volume: 16 start-page: 831 year: 2020 end-page: 844 ident: b21 article-title: Hybrid gray wolf and particle swarm optimization for feature selection publication-title: International Journal Innovation Information Control – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b57 article-title: GSA: A gravitational search algorithm publication-title: Information Sciences – volume: 107 start-page: 743 year: 2022 end-page: 760 ident: b15 article-title: Improved artificial bee colony algorithm with dynamic population composition for optimization problems publication-title: Nonlinear Dynamics – volume: 388 year: 2022 ident: b70 article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 111 start-page: 1946 year: 2019 end-page: 1955 ident: b51 article-title: Frequency based feature selection method using whale algorithm publication-title: Genomics – volume: 187 year: 2022 ident: b54 article-title: Multi-objective lichtenberg algorithm: A hybrid physics-based meta-heuristic for solving engineering problems publication-title: Expert Systems with Applications – year: 2011 ident: b11 article-title: Clever algorithms: Nature-inspired programming recipes – volume: 5 start-page: 6915 year: 2010 ident: b37 article-title: Artificial bee colony algorithm publication-title: Scholarpedia – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b49 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – year: 2009 ident: b69 article-title: An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry – volume: 174 year: 2022 ident: b3 article-title: Mountain gazelle optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Advances in Engineering Software – volume: 35 start-page: 1359 year: 2019 end-page: 1373 ident: b62 article-title: A novel hybrid PSO–GWO algorithm for optimization problems publication-title: Engineering with Computers – start-page: 11 year: 2022 end-page: 34 ident: b5 article-title: Moth-flame optimization algorithm for feature selection: A review and future trends publication-title: Handbook of Moth-Flame Optimization Algorithm – volume: 221 start-page: 1897 year: 2010 end-page: 1906 ident: b14 article-title: Comparison of sensitivity analysis techniques: A case study with the rice model WARM publication-title: Ecological Modelling – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b17 article-title: Ant colony optimization publication-title: IEEE Computational Intelligence Magazine – start-page: 1 year: 2022 end-page: 26 ident: b45 article-title: MOTEO: a novel multi-objective thermal exchange optimization algorithm for engineering problems publication-title: Soft Computing – reference: Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In – volume: 192 start-page: 514 year: 2022 end-page: 536 ident: b52 article-title: Chaotic hunger games search optimization algorithm for global optimization and engineering problems publication-title: Mathematics and Computers in Simulation – volume: 42 start-page: 8520 year: 2015 end-page: 8532 ident: b9 article-title: Feature selection using joint mutual information maximisation publication-title: Expert Systems with Applications – volume: 10 start-page: 16188 year: 2022 end-page: 16208 ident: b43 article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints publication-title: IEEE Access – volume: 204 year: 2020 ident: b55 article-title: Feature selection based on chaotic binary black hole algorithm for data classification publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 7 start-page: 5984 year: 2019 end-page: 5993 ident: b31 article-title: A modified gravitational search algorithm for function optimization publication-title: IEEE Access – volume: 112 start-page: 4370 year: 2020 end-page: 4384 ident: b58 article-title: Integration of multi-objective PSO based feature selection and node centrality for medical datasets publication-title: Genomics – reference: Awad, A. A., Ali, A. F., Gaber, T., et al. (2020). Feature Selection Method Based on Chaotic Maps and Butterfly Optimization Algorithm. In – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: b24 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing – reference: (pp. 159–169). – volume: 90 start-page: 484 year: 2017 end-page: 500 ident: b1 article-title: An improved opposition-based sine cosine algorithm for global optimization publication-title: Expert Systems with Applications – volume: 10 start-page: 3144 year: 2022 ident: b20 article-title: Feature selection and classification of transformer faults based on novel meta-heuristic algorithm publication-title: Mathematics – volume: 92 start-page: 145 year: 2004 end-page: 159 ident: b28 article-title: Flying with the wind - Spring migration of arctic-breeding waders and geese over South Sweden publication-title: Ardea – reference: , URL: , Comments: 14 pages; Bioinspired Optimization Methods and their Applications (BIOMA 2012). – volume: 5 start-page: 697 year: 2020 end-page: 706 ident: b56 article-title: Feature selection using different transfer functions for binary bat algorithm publication-title: International Journal of Mathematical, Engineering and Management Sciences – reference: Fister, I., Yang, X.-S., Fister, I., & Brest, J. (2012). Memetic firefly algorithm for combinatorial optimization. – volume: 18 start-page: 261 year: 2014 end-page: 276 ident: b65 article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms publication-title: Applied Soft Computing – volume: 8 start-page: 179317 year: 2020 end-page: 179335 ident: b23 article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images publication-title: IEEE Access – start-page: 691 year: 2007 end-page: 696 ident: b8 article-title: Two-step particle swarm optimization to solve the feature selection problem publication-title: Seventh international conference on intelligent systems design and applications – volume: 7 start-page: 20281 year: 2019 end-page: 20292 ident: b16 article-title: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem publication-title: IEEE Access – reference: . – volume: 76 start-page: 16 year: 2019 end-page: 30 ident: b63 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Applied Soft Computing – year: 2008 ident: b32 article-title: Why do geese mate for life? – volume: 45 start-page: 1917 year: 2023 end-page: 1934 ident: b19 article-title: Al-biruni earth radius (BER) metaheuristic search optimization algorithm publication-title: Computer Systems Science and Engineering – year: 2022 ident: b34 article-title: Canada geese behavior & biology – volume: 181 start-page: 5227 year: 2011 end-page: 5239 ident: b27 article-title: Multi-stage genetic programming: a new strategy to nonlinear system modeling publication-title: Information Sciences – start-page: 153 year: 2020 end-page: 158 ident: b33 article-title: Chaotic harris hawks optimization for unconstrained function optimization publication-title: 2020 16th international computer engineering conference – start-page: 1 year: 2020 end-page: 32 ident: b42 article-title: Stochastic paint optimizer: theory and application in civil engineering publication-title: Engineering with Computers – reference: Celik, Y., & Kutucu, H. (2018). Solving the Tension/Compression Spring Design Problem by an Improved Firefly Algorithm. In – volume: 5 start-page: 6915 issue: 3 year: 2010 ident: 10.1016/j.eswa.2023.122147_b37 article-title: Artificial bee colony algorithm publication-title: Scholarpedia doi: 10.4249/scholarpedia.6915 – volume: 43 start-page: 117 year: 2016 ident: 10.1016/j.eswa.2023.122147_b50 article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.01.044 – volume: 192 start-page: 514 year: 2022 ident: 10.1016/j.eswa.2023.122147_b52 article-title: Chaotic hunger games search optimization algorithm for global optimization and engineering problems publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2021.09.014 – volume: 7 start-page: 39496 year: 2019 ident: 10.1016/j.eswa.2023.122147_b4 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – volume: 10 start-page: 3144 issue: 17 year: 2022 ident: 10.1016/j.eswa.2023.122147_b20 article-title: Feature selection and classification of transformer faults based on novel meta-heuristic algorithm publication-title: Mathematics doi: 10.3390/math10173144 – year: 2012 ident: 10.1016/j.eswa.2023.122147_b67 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.eswa.2023.122147_b48 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1870-7 – volume: 204 year: 2020 ident: 10.1016/j.eswa.2023.122147_b55 article-title: Feature selection based on chaotic binary black hole algorithm for data classification publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2020.104104 – year: 2009 ident: 10.1016/j.eswa.2023.122147_b69 – volume: 90 start-page: 484 year: 2017 ident: 10.1016/j.eswa.2023.122147_b1 article-title: An improved opposition-based sine cosine algorithm for global optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.07.043 – volume: 22 start-page: 811 issue: 3 year: 2018 ident: 10.1016/j.eswa.2023.122147_b29 article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer publication-title: Soft Computing doi: 10.1007/s00500-016-2385-6 – year: 2008 ident: 10.1016/j.eswa.2023.122147_b66 article-title: Introduction to mathematical optimization – volume: 45 start-page: 1917 issue: 2 year: 2023 ident: 10.1016/j.eswa.2023.122147_b19 article-title: Al-biruni earth radius (BER) metaheuristic search optimization algorithm publication-title: Computer Systems Science and Engineering doi: 10.32604/csse.2023.032497 – volume: 61 start-page: 1608 issue: 6 year: 2011 ident: 10.1016/j.eswa.2023.122147_b72 article-title: A novel modified differential evolution algorithm for constrained optimization problems publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2011.01.029 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2023.122147_b42 article-title: Stochastic paint optimizer: theory and application in civil engineering publication-title: Engineering with Computers – volume: 75 start-page: 1 year: 2015 ident: 10.1016/j.eswa.2023.122147_b59 article-title: Stochastic fractal search: A powerful metaheuristic algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.07.025 – year: 2022 ident: 10.1016/j.eswa.2023.122147_b10 – volume: 92 start-page: 145 issue: 2 year: 2004 ident: 10.1016/j.eswa.2023.122147_b28 article-title: Flying with the wind - Spring migration of arctic-breeding waders and geese over South Sweden publication-title: Ardea – start-page: 19 year: 2015 ident: 10.1016/j.eswa.2023.122147_b30 article-title: An innovative approach for feature selection based on chicken swarm optimization – year: 2022 ident: 10.1016/j.eswa.2023.122147_b34 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.122147_b45 article-title: MOTEO: a novel multi-objective thermal exchange optimization algorithm for engineering problems publication-title: Soft Computing – volume: 388 year: 2022 ident: 10.1016/j.eswa.2023.122147_b70 article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2021.114194 – year: 2011 ident: 10.1016/j.eswa.2023.122147_b11 – volume: 221 start-page: 1897 issue: 16 year: 2010 ident: 10.1016/j.eswa.2023.122147_b14 article-title: Comparison of sensitivity analysis techniques: A case study with the rice model WARM publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2010.04.021 – year: 2010 ident: 10.1016/j.eswa.2023.122147_b40 article-title: An improved ant colony optimization for constrained engineering design problems publication-title: Engineering Computations doi: 10.1108/02644401011008577 – volume: 187 year: 2022 ident: 10.1016/j.eswa.2023.122147_b54 article-title: Multi-objective lichtenberg algorithm: A hybrid physics-based meta-heuristic for solving engineering problems publication-title: Expert Systems with Applications – volume: 7 start-page: 20281 year: 2019 ident: 10.1016/j.eswa.2023.122147_b16 article-title: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897580 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.eswa.2023.122147_b17 article-title: Ant colony optimization publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2006.329691 – volume: 181 start-page: 5227 issue: 23 year: 2011 ident: 10.1016/j.eswa.2023.122147_b27 article-title: Multi-stage genetic programming: a new strategy to nonlinear system modeling publication-title: Information Sciences doi: 10.1016/j.ins.2011.07.026 – volume: 107 start-page: 743 issue: 1 year: 2022 ident: 10.1016/j.eswa.2023.122147_b15 article-title: Improved artificial bee colony algorithm with dynamic population composition for optimization problems publication-title: Nonlinear Dynamics doi: 10.1007/s11071-021-06983-2 – year: 2008 ident: 10.1016/j.eswa.2023.122147_b32 – volume: 14 start-page: 122 issue: 4 year: 2021 ident: 10.1016/j.eswa.2023.122147_b64 article-title: Bio-inspired algorithms and its applications for optimization in fuzzy clustering publication-title: Algorithms doi: 10.3390/a14040122 – volume: 18 start-page: 261 year: 2014 ident: 10.1016/j.eswa.2023.122147_b65 article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.09.018 – volume: 398 year: 2022 ident: 10.1016/j.eswa.2023.122147_b71 article-title: An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2022.115223 – volume: 42 start-page: 8520 issue: 22 year: 2015 ident: 10.1016/j.eswa.2023.122147_b9 article-title: Feature selection using joint mutual information maximisation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.07.007 – start-page: 153 year: 2020 ident: 10.1016/j.eswa.2023.122147_b33 article-title: Chaotic harris hawks optimization for unconstrained function optimization – start-page: 691 year: 2007 ident: 10.1016/j.eswa.2023.122147_b8 article-title: Two-step particle swarm optimization to solve the feature selection problem – volume: 7 start-page: 5984 year: 2019 ident: 10.1016/j.eswa.2023.122147_b31 article-title: A modified gravitational search algorithm for function optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2889854 – volume: 16 start-page: 831 issue: 3 year: 2020 ident: 10.1016/j.eswa.2023.122147_b21 article-title: Hybrid gray wolf and particle swarm optimization for feature selection publication-title: International Journal Innovation Information Control – volume: 64 start-page: 904 issue: 3 year: 2020 ident: 10.1016/j.eswa.2023.122147_b38 article-title: Dynamic water strider algorithm for optimal design of skeletal structures publication-title: Periodica Polytechnica Civil Engineering – volume: 8 start-page: 107635 year: 2020 ident: 10.1016/j.eswa.2023.122147_b22 article-title: MbGWO-SFS: Modified binary grey wolf optimizer based on stochastic fractal search for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001151 – volume: 174 year: 2022 ident: 10.1016/j.eswa.2023.122147_b3 article-title: Mountain gazelle optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2022.103282 – volume: 241 year: 2022 ident: 10.1016/j.eswa.2023.122147_b68 article-title: Artificial bee colony algorithm with efficient search strategy based on random neighborhood structure publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.108306 – ident: 10.1016/j.eswa.2023.122147_b12 – volume: 35 start-page: 1359 issue: 4 year: 2019 ident: 10.1016/j.eswa.2023.122147_b62 article-title: A novel hybrid PSO–GWO algorithm for optimization problems publication-title: Engineering with Computers doi: 10.1007/s00366-018-0668-5 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2023.122147_b49 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 8 start-page: 148378 year: 2020 ident: 10.1016/j.eswa.2023.122147_b26 article-title: Dynamic group-based cooperative optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015892 – volume: 74 start-page: 2914 issue: 17 year: 2011 ident: 10.1016/j.eswa.2023.122147_b36 article-title: A new local search based hybrid genetic algorithm for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.03.034 – volume: 5 start-page: 697 issue: 4 year: 2020 ident: 10.1016/j.eswa.2023.122147_b56 article-title: Feature selection using different transfer functions for binary bat algorithm publication-title: International Journal of Mathematical, Engineering and Management Sciences doi: 10.33889/IJMEMS.2020.5.4.056 – start-page: 11 year: 2022 ident: 10.1016/j.eswa.2023.122147_b5 article-title: Moth-flame optimization algorithm for feature selection: A review and future trends publication-title: Handbook of Moth-Flame Optimization Algorithm doi: 10.1201/9781003205326-3 – volume: 44 start-page: 405 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.122147_b41 article-title: Hybrid invasive weed optimization-shuffled frog-leaping algorithm for optimal design of truss structures publication-title: Iranian Journal of Science and Technology, Transactions of Civil Engineering doi: 10.1007/s40996-019-00280-0 – ident: 10.1016/j.eswa.2023.122147_b7 doi: 10.1007/978-3-030-44289-7_16 – volume: 5 start-page: 1 year: 2012 ident: 10.1016/j.eswa.2023.122147_b13 article-title: Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2012.01.001 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.eswa.2023.122147_b57 article-title: GSA: A gravitational search algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2009.03.004 – volume: 192 start-page: 745 year: 2022 ident: 10.1016/j.eswa.2023.122147_b6 article-title: GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design publication-title: Renewable Energy doi: 10.1016/j.renene.2022.04.162 – year: 1999 ident: 10.1016/j.eswa.2023.122147_b46 article-title: FEP learning algorithm: application to direct self-learning control – volume: 2013 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.eswa.2023.122147_b61 article-title: Data feature selection based on artificial bee colony algorithm publication-title: EURASIP Journal on Image and Video Processing doi: 10.1186/1687-5281-2013-47 – volume: 8 start-page: 179317 year: 2020 ident: 10.1016/j.eswa.2023.122147_b23 article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028012 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2023.122147_b47 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 139 year: 2020 ident: 10.1016/j.eswa.2023.122147_b2 article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112824 – volume: 10 start-page: 16188 year: 2022 ident: 10.1016/j.eswa.2023.122147_b43 article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3146374 – volume: 112 start-page: 4370 issue: 6 year: 2020 ident: 10.1016/j.eswa.2023.122147_b58 article-title: Integration of multi-objective PSO based feature selection and node centrality for medical datasets publication-title: Genomics doi: 10.1016/j.ygeno.2020.07.027 – volume: 60 start-page: 1 issue: C year: 2017 ident: 10.1016/j.eswa.2023.122147_b60 article-title: Satin bowerbird optimizer publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2017.01.006 – ident: 10.1016/j.eswa.2023.122147_b18 doi: 10.1109/ICNN.1995.488968 – volume: 76 start-page: 16 year: 2019 ident: 10.1016/j.eswa.2023.122147_b63 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.11.047 – ident: 10.1016/j.eswa.2023.122147_b25 – volume: 9 start-page: 117581 year: 2021 ident: 10.1016/j.eswa.2023.122147_b35 article-title: A hybrid sparrow search algorithm based on constructing similarity publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3106269 – volume: 10 start-page: 16150 year: 2022 ident: 10.1016/j.eswa.2023.122147_b53 article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3147821 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.122147_b44 article-title: MOAVOA: a new multi-objective artificial vultures optimization algorithm publication-title: Neural Computing and Applications – volume: 111 start-page: 1946 issue: 6 year: 2019 ident: 10.1016/j.eswa.2023.122147_b51 article-title: Frequency based feature selection method using whale algorithm publication-title: Genomics doi: 10.1016/j.ygeno.2019.01.006 – volume: 37 start-page: 2521 issue: 4 year: 2021 ident: 10.1016/j.eswa.2023.122147_b39 article-title: Optimal design of large-scale frames with an advanced charged system search algorithm using box-shaped sections publication-title: Engineering with Computers doi: 10.1007/s00366-020-00955-7 – volume: 172 start-page: 371 year: 2016 ident: 10.1016/j.eswa.2023.122147_b24 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 |
| SSID | ssj0017007 |
| Score | 2.7488484 |
| Snippet | Nature-inspired metaheuristic approaches draw their core idea from biological evolution in order to create new and powerful competing algorithms. Such... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 122147 |
| SubjectTerms | Algorithm Engineering optimization Meta-heuristic Swarm-based algorithms |
| Title | Greylag Goose Optimization: Nature-inspired optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.122147 |
| Volume | 238 |
| WOSCitedRecordID | wos001096431500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoELjC9twFAO3CpXifNhm1tB2wCxgrQh9RY5jrOltMnUhW3dmT-c59j5WDUmdkCVoiaNX6O8n57f90PonQikTFw_wWmUpDhIwghzLlJcbw-Egk6R1Zz-SicTNp3y74PB76YW5mJOi4JdXfGz_8pquAbM1qWz92B3SxQuwHdgOhyB7XD8J8aD0b-ai5PhQalT0b-BSFjYWktt_U_qRp44L3SEHZTNsvf7UMxPymVenS5u-Ot1M-TKtnxuiuF6Ye8u-wP_VIW4XJlsMXwkVkD_cNSK9NMyFfDJDQC7_eAwX87AGjB12kcKVsFZF5ZKdUx_kRv_tz4T1_n1cDzq-ytIoBO2TMVm63ikOPDMbJ5GBhPT4sVKUY_o6Um3Cnjja5iN1Pml7hpF_FF3881u2mu7XJt72KS1zWJNI9Y0YkPjAdokNOQgGzfHn_emX9poFHVN2X3z5Lb4yuQJrj_J7QpOT2k53kKPrbXhjA1KnqKBKp6hJ80kD8cK9ufogwWNU4PG6YPmvbMGGacPGaeFzAv0Y3_v-OMnbKdrYOlHUYUV4V7KZKhcNwG7snaGUy8E-U1I6jMRZVGQycgPlAyln3i-dLOIM6U8JVkSMP8l2ijKQm0jJxEhYS7hivtuIDLFPZ5yBkoRT4Wg1N1BXvNKYmlbz-sJKPP478zYQcN2zZlpvHLn3WHzpmOrOhqVMAbg3LHu1b3-5TV61CH6Ddqolr_ULnooL6r8fPnWouYPAEiQLQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greylag+Goose+Optimization%3A+Nature-inspired+optimization+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=El-kenawy%2C+El-Sayed+M.&rft.au=Khodadadi%2C+Nima&rft.au=Mirjalili%2C+Seyedali&rft.au=Abdelhamid%2C+Abdelaziz+A.&rft.date=2024-03-15&rft.issn=0957-4174&rft.volume=238&rft.spage=122147&rft_id=info:doi/10.1016%2Fj.eswa.2023.122147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_122147 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |