Optimal Distributed Scheduling under Time-Varying Conditions: A Fast-CSMA Algorithm with Applications
Recently, low-complexity and distributed Carrier Sense Multiple Access (CSMA)-based scheduling algorithms have attracted extensive interest due to their throughput-optimal characteristics in general network topologies. However, these algorithms are not well-suited for time-varying environments (i.e....
Uloženo v:
| Vydáno v: | IEEE transactions on wireless communications Ročník 12; číslo 7; s. 3278 - 3288 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.07.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1536-1276, 1558-2248 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Recently, low-complexity and distributed Carrier Sense Multiple Access (CSMA)-based scheduling algorithms have attracted extensive interest due to their throughput-optimal characteristics in general network topologies. However, these algorithms are not well-suited for time-varying environments (i.e., serving real-time traffic under time-varying channel conditions in wireless networks) for two reasons: (1) the mixing time of the underlying CSMA Markov Chain grows with the size of the network, which, for large networks, generates unacceptable delay for deadline-constrained traffic; (2) since the dynamic CSMA parameters are influenced by the arrival and channel state processes, the underlying CSMA Markov Chain may not converge to a steady-state under strict deadline constraints and fading channel conditions. In this paper, we attack the problem of distributed scheduling for time-varying environments. Specifically, we propose a Fast-CSMA (FCSMA) policy in fully-connected topologies, which converges much faster than the existing CSMA algorithms and thus yields significant advantages for time-varying applications. Then, we design optimal policies based on FCSMA techniques in two challenging and important scenarios in wireless networks for scheduling inelastic traffic with/without channel state information (CSI) over wireless fading channels. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 1536-1276 1558-2248 |
| DOI: | 10.1109/TWC.2013.062413.121125 |