A practical approximation algorithm for the LTS estimator

The linear least trimmed squares (LTS) estimator is a statistical technique for fitting a linear model to a set of points. It was proposed by Rousseeuw as a robust alternative to the classical least squares estimator. Given a set of n points in Rd, the objective is to minimize the sum of the smalles...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis Vol. 99; pp. 148 - 170
Main Authors: Mount, David M., Netanyahu, Nathan S., Piatko, Christine D., Wu, Angela Y., Silverman, Ruth
Format: Journal Article
Language:English
Published: Elsevier B.V 01.07.2016
Subjects:
ISSN:0167-9473, 1872-7352
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The linear least trimmed squares (LTS) estimator is a statistical technique for fitting a linear model to a set of points. It was proposed by Rousseeuw as a robust alternative to the classical least squares estimator. Given a set of n points in Rd, the objective is to minimize the sum of the smallest 50% squared residuals (or more generally any given fraction). There exist practical heuristics for computing the linear LTS estimator, but they provide no guarantees on the accuracy of the final result. Two results are presented. First, a measure of the numerical condition of a set of points is introduced. Based on this measure, a probabilistic analysis of the accuracy of the best LTS fit resulting from a set of random elemental fits is presented. This analysis shows that as the condition of the point set improves, the accuracy of the resulting fit also increases. Second, a new approximation algorithm for LTS, called Adaptive-LTS, is described. Given bounds on the minimum and maximum slope coefficients, this algorithm returns an approximation to the optimal LTS fit whose slope coefficients lie within the given bounds. Empirical evidence of this algorithm’s efficiency and effectiveness is provided for a variety of data sets.
AbstractList The linear least trimmed squares (LTS) estimator is a statistical technique for fitting a linear model to a set of points. It was proposed by Rousseeuw as a robust alternative to the classical least squares estimator. Given a set of n points in Rd, the objective is to minimize the sum of the smallest 50% squared residuals (or more generally any given fraction). There exist practical heuristics for computing the linear LTS estimator, but they provide no guarantees on the accuracy of the final result. Two results are presented. First, a measure of the numerical condition of a set of points is introduced. Based on this measure, a probabilistic analysis of the accuracy of the best LTS fit resulting from a set of random elemental fits is presented. This analysis shows that as the condition of the point set improves, the accuracy of the resulting fit also increases. Second, a new approximation algorithm for LTS, called Adaptive-LTS, is described. Given bounds on the minimum and maximum slope coefficients, this algorithm returns an approximation to the optimal LTS fit whose slope coefficients lie within the given bounds. Empirical evidence of this algorithm’s efficiency and effectiveness is provided for a variety of data sets.
The linear least trimmed squares (LTS) estimator is a statistical technique for fitting a linear model to a set of points. It was proposed by Rousseeuw as a robust alternative to the classical least squares estimator. Given a set of nn points in R super(d)Rd, the objective is to minimize the sum of the smallest 50% squared residuals (or more generally any given fraction). There exist practical heuristics for computing the linear LTS estimator, but they provide no guarantees on the accuracy of the final result. Two results are presented. First, a measure of the numerical condition of a set of points is introduced. Based on this measure, a probabilistic analysis of the accuracy of the best LTS fit resulting from a set of random elemental fits is presented. This analysis shows that as the condition of the point set improves, the accuracy of the resulting fit also increases. Second, a new approximation algorithm for LTS, called Adaptive-LTS, is described. Given bounds on the minimum and maximum slope coefficients, this algorithm returns an approximation to the optimal LTS fit whose slope coefficients lie within the given bounds. Empirical evidence of this algorithm's efficiency and effectiveness is provided for a variety of data sets.
Author Wu, Angela Y.
Silverman, Ruth
Piatko, Christine D.
Mount, David M.
Netanyahu, Nathan S.
Author_xml – sequence: 1
  givenname: David M.
  orcidid: 0000-0002-3290-8932
  surname: Mount
  fullname: Mount, David M.
  email: mount@cs.umd.edu
  organization: Department of Computer Science, University of Maryland, College Park, MD, USA
– sequence: 2
  givenname: Nathan S.
  surname: Netanyahu
  fullname: Netanyahu, Nathan S.
  email: nathan@cs.biu.ac.il, nathan@cfar.umd.edu
  organization: Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
– sequence: 3
  givenname: Christine D.
  surname: Piatko
  fullname: Piatko, Christine D.
  email: christine.piatko@jhuapl.edu
  organization: The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
– sequence: 4
  givenname: Angela Y.
  surname: Wu
  fullname: Wu, Angela Y.
  email: awu@american.edu
  organization: Department of Computer Science, American University, Washington, DC, USA
– sequence: 5
  givenname: Ruth
  surname: Silverman
  fullname: Silverman, Ruth
  organization: Center for Automation Research, University of Maryland, College Park, MD, USA
BookMark eNqFkE1LAzEQhoMo2Fb_gKc9etl1Mulmd8FLKX5BwYP1HLJJ1qZsNzVJRf-9qfXkocLAhPA-mcwzJqeDGwwhVxQKCpTfrAsVtCwwnQugqfgJGdG6wrxiJZ6SUbqp8mZasXMyDmENADit6hFpZtnWSxWtkn0mt1vvPu1GRuuGTPZvztu42mSd81lcmWyxfMlMiPuA8xfkrJN9MJe_fUJe7--W88d88fzwNJ8tcsU4j7nWGhlv2hpbqLHW2DZatiANhxYVtIpPK112aspMC50pKTYlraEBo0umqWQTcn14N_3tfZfGi40NyvS9HIzbBYFYMkSGgP9GaU05VA1rqhStD1HlXQjedELZ-LN39NL2goLYixVrsRcr9mIF0FQ8ofgH3fqkxH8dh24PkEmqPqzxIihrBmW09UZFoZ09hn8De8qTIg
CitedBy_id crossref_primary_10_3847_1538_3881_acc6cb
crossref_primary_10_1016_j_csda_2025_108133
crossref_primary_10_1016_j_csda_2017_05_013
crossref_primary_10_1109_ACCESS_2021_3063293
crossref_primary_10_3390_s20185407
crossref_primary_10_1016_j_autcon_2019_03_013
crossref_primary_10_1016_j_sigpro_2024_109579
Cites_doi 10.1016/j.csda.2010.04.023
10.1016/S0167-9473(00)00056-6
10.1109/CVPR.1993.341019
10.1016/j.csda.2006.08.033
10.1016/j.csda.2012.02.003
10.1080/01621459.1987.10478500
10.1016/0167-9473(95)92697-V
10.1142/S0218195900000334
10.1198/jcgs.2009.07091
10.1016/0167-9473(92)00070-8
10.1007/s00454-006-1267-6
10.1016/0167-9473(91)90059-B
10.1016/S0031-3203(98)00086-7
10.1080/01621459.1990.10475313
10.1017/S0269964800000255
10.1007/s10618-005-0024-4
10.1007/s00453-012-9721-8
10.1023/A:1007975324482
10.1023/A:1008022116857
10.1080/01621459.1984.10477105
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.csda.2016.01.016
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-7352
EndPage 170
ExternalDocumentID 10_1016_j_csda_2016_01_016
S0167947316300020
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c366t-ddd2369b82b0828d2b9dab0ae60b2c0bc647d5fc43eb0fe5129518090ed53d1a3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373653700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-9473
IngestDate Mon Sep 29 03:57:17 EDT 2025
Wed Oct 01 14:26:35 EDT 2025
Sat Nov 29 07:25:56 EST 2025
Tue Nov 18 22:34:37 EST 2025
Fri Feb 23 02:23:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Least trimmed squares
Computational geometry
Approximation algorithms
Robust estimation
Linear estimation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-ddd2369b82b0828d2b9dab0ae60b2c0bc647d5fc43eb0fe5129518090ed53d1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3290-8932
PQID 1816079397
PQPubID 23500
PageCount 23
ParticipantIDs proquest_miscellaneous_2253223202
proquest_miscellaneous_1816079397
crossref_citationtrail_10_1016_j_csda_2016_01_016
crossref_primary_10_1016_j_csda_2016_01_016
elsevier_sciencedirect_doi_10_1016_j_csda_2016_01_016
PublicationCentury 2000
PublicationDate July 2016
2016-07-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: July 2016
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mount, Netanyahu, Piatko, Silverman, Wu (br000095) 2014; 69
Souvaine, Steele (br000140) 1987; 82
Cormen, Leiserson, Rivest, Stein (br000015) 2009
Rousseeuw (br000115) 1991; 11
Djorgovski, Gal, Odewahn, Carvalho, Brunner, Longo, Scaramella (br000025) 1998
Hofmann, Kontoghiorghes (br000065) 2010; 54
Hofmann, Gatu, Kontoghiorghes (br000060) 2010; 19
Mount, Netanyahu, Romanik, Silverman, Wu (br000100) 2007; 51
Agulló (br000005) 2001; 36
Hawkins (br000055) 1994; 17
Mount, Netanyahu, Piatko, Silverman, Wu (br000090) 2000; 10
Torti, Perrotta, Atkinson, Riani (br000145) 2012; 56
Erickson, Har-Peled, Mount (br000035) 2006; 36
Bernholt (br000010) 2005; vol. 3480
Jaulin, Kieffer, Didrit, Walter (br000080) 2001
Rousseeuw (br000110) 1984; 79
Mount, Netanyahu, Le Moigne (br000085) 1999; 32
Huttenlocher, D.P., Rucklidge, W.J., 1993. A multi-resolution technique for comparing images using the Hausdorff distance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, pp. 705–706.
Edelsbrunner, Souvaine (br000030) 1990; 85
Rousseeuw, van Driessen (br000125) 2006; 12
Hössjer (br000070) 1995; 19
Friedberg, Insel, Spence (br000040) 2002
Mount, Netanyahu, Zuck (br000105) 2004
Rucklidge (br000135) 1997; 24
Golub, Loan (br000045) 1996
Rousseeuw, Leroy (br000120) 1987
Diaconis, Shahshahani (br000020) 1987; 1
Hagedoorn, Veltkamp (br000050) 1999; 31
Rucklidge (br000130) 1996; no. 1173
Hofmann (10.1016/j.csda.2016.01.016_br000060) 2010; 19
Torti (10.1016/j.csda.2016.01.016_br000145) 2012; 56
Diaconis (10.1016/j.csda.2016.01.016_br000020) 1987; 1
Rucklidge (10.1016/j.csda.2016.01.016_br000130) 1996; no. 1173
Hofmann (10.1016/j.csda.2016.01.016_br000065) 2010; 54
Rousseeuw (10.1016/j.csda.2016.01.016_br000110) 1984; 79
Rucklidge (10.1016/j.csda.2016.01.016_br000135) 1997; 24
Bernholt (10.1016/j.csda.2016.01.016_br000010) 2005; vol. 3480
Rousseeuw (10.1016/j.csda.2016.01.016_br000125) 2006; 12
Edelsbrunner (10.1016/j.csda.2016.01.016_br000030) 1990; 85
Cormen (10.1016/j.csda.2016.01.016_br000015) 2009
Friedberg (10.1016/j.csda.2016.01.016_br000040) 2002
Djorgovski (10.1016/j.csda.2016.01.016_br000025) 1998
Agulló (10.1016/j.csda.2016.01.016_br000005) 2001; 36
Mount (10.1016/j.csda.2016.01.016_br000100) 2007; 51
Erickson (10.1016/j.csda.2016.01.016_br000035) 2006; 36
Golub (10.1016/j.csda.2016.01.016_br000045) 1996
Hawkins (10.1016/j.csda.2016.01.016_br000055) 1994; 17
Mount (10.1016/j.csda.2016.01.016_br000085) 1999; 32
Mount (10.1016/j.csda.2016.01.016_br000105) 2004
Rousseeuw (10.1016/j.csda.2016.01.016_br000115) 1991; 11
Mount (10.1016/j.csda.2016.01.016_br000090) 2000; 10
Souvaine (10.1016/j.csda.2016.01.016_br000140) 1987; 82
Hagedoorn (10.1016/j.csda.2016.01.016_br000050) 1999; 31
10.1016/j.csda.2016.01.016_br000075
Rousseeuw (10.1016/j.csda.2016.01.016_br000120) 1987
Mount (10.1016/j.csda.2016.01.016_br000095) 2014; 69
Jaulin (10.1016/j.csda.2016.01.016_br000080) 2001
Hössjer (10.1016/j.csda.2016.01.016_br000070) 1995; 19
References_xml – year: 2009
  ident: br000015
  article-title: Introduction to Algorithms
– volume: 36
  start-page: 425
  year: 2001
  end-page: 439
  ident: br000005
  article-title: New algorithms for computing the least trimmed squares regression estimator
  publication-title: Comput. Statist. Data Anal.
– start-page: 207
  year: 2004
  end-page: 219
  ident: br000105
  article-title: Analyzing the number of samples required for an approximate Monte-Carlo LMS line estimator
  publication-title: Theory and Applications of Recent Robust Methods, Statistics for Industry and Technology
– year: 1987
  ident: br000120
  article-title: Robust Regression and Outlier Detection
– year: 2001
  ident: br000080
  article-title: Applied Interval Analysis
– volume: no. 1173
  year: 1996
  ident: br000130
  publication-title: Efficient Visual Recognition Using the Hausdorff Distance
– volume: 51
  start-page: 2461
  year: 2007
  end-page: 2486
  ident: br000100
  article-title: A practical approximation algorithm for the LMS line estimator
  publication-title: Comput. Statist. Data Anal.
– volume: 19
  start-page: 265
  year: 1995
  end-page: 282
  ident: br000070
  article-title: Exact computation of the least trimmed squares estimate in simple linear regression
  publication-title: Comput. Statist. Data Anal.
– reference: Huttenlocher, D.P., Rucklidge, W.J., 1993. A multi-resolution technique for comparing images using the Hausdorff distance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, pp. 705–706.
– volume: 17
  start-page: 185
  year: 1994
  end-page: 196
  ident: br000055
  article-title: The feasible solution algorithm for least trimmed squares regression
  publication-title: Comput. Statist. Data Anal.
– volume: 31
  start-page: 103
  year: 1999
  end-page: 115
  ident: br000050
  article-title: Reliable and efficient pattern matching using an affine invariant metric
  publication-title: Int. J. Comput. Vis.
– volume: vol. 3480
  start-page: 697
  year: 2005
  end-page: 706
  ident: br000010
  article-title: Computing the least median of squares estimator in time
  publication-title: Proc. Intl. Conf. on Computational Science and Its Applications
– volume: 1
  start-page: 15
  year: 1987
  end-page: 32
  ident: br000020
  article-title: The subgroup algorithm for generating uniform random variables
  publication-title: Prob. Eng. Inf. Sci.
– volume: 32
  start-page: 17
  year: 1999
  end-page: 38
  ident: br000085
  article-title: Efficient algorithms for robust point pattern matching
  publication-title: Pattern Recognit.
– volume: 85
  start-page: 115
  year: 1990
  end-page: 119
  ident: br000030
  article-title: Computing median-of-squares regression lines and guided topological sweep
  publication-title: J. Amer. Statist. Assoc.
– volume: 24
  start-page: 251
  year: 1997
  end-page: 270
  ident: br000135
  article-title: Efficiently locating objects using the Hausdorff distance
  publication-title: Int. J. Comput. Vis.
– start-page: 89
  year: 1998
  ident: br000025
  article-title: The Palomar digital sky survey (DPOSS)
  publication-title: Wide Field Surveys in Cosmology (14th IAP meeting)
– volume: 69
  start-page: 148
  year: 2014
  end-page: 183
  ident: br000095
  article-title: On the least trimmed squares estimator
  publication-title: Algorithmica
– volume: 36
  start-page: 593
  year: 2006
  end-page: 607
  ident: br000035
  article-title: On the least median square problem
  publication-title: Discrete Comput. Geom.
– volume: 82
  start-page: 794
  year: 1987
  end-page: 801
  ident: br000140
  article-title: Time- and space- efficient algorithms for least median of squares regression
  publication-title: J. Amer. Statist. Assoc.
– year: 2002
  ident: br000040
  article-title: Linear Algebra
– year: 1996
  ident: br000045
  article-title: Matrix Computations
– volume: 79
  start-page: 871
  year: 1984
  end-page: 880
  ident: br000110
  article-title: Least median-of-squares regression
  publication-title: J. Amer. Statist. Assoc.
– volume: 12
  start-page: 29
  year: 2006
  end-page: 45
  ident: br000125
  article-title: Computing LTS regression for large data sets
  publication-title: Data Min. Knowl. Discov.
– volume: 11
  start-page: 127
  year: 1991
  end-page: 129
  ident: br000115
  article-title: A diagnostic plot for regression outliers and leverage points
  publication-title: Comput. Statist. Data Anal.
– volume: 54
  start-page: 3392
  year: 2010
  end-page: 3403
  ident: br000065
  article-title: Matrix strategies for computing the least trimmed squares estimation of the general linear and sur models
  publication-title: Comput. Statist. Data Anal.
– volume: 10
  start-page: 593
  year: 2000
  end-page: 608
  ident: br000090
  article-title: Quantile approximation for robust statistical estimation and
  publication-title: Internat. J. Comput. Geom. Appl.
– volume: 56
  start-page: 2501
  year: 2012
  end-page: 2512
  ident: br000145
  article-title: Benchmark testing of algorithms for very robust regression: FS, LMS and LTS
  publication-title: Comput. Statist. Data Anal.
– volume: 19
  start-page: 191
  year: 2010
  end-page: 204
  ident: br000060
  article-title: An exact least trimmed squares algorithm for a range of coverage values
  publication-title: J. Comput. Graph. Statist.
– volume: 54
  start-page: 3392
  year: 2010
  ident: 10.1016/j.csda.2016.01.016_br000065
  article-title: Matrix strategies for computing the least trimmed squares estimation of the general linear and sur models
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2010.04.023
– volume: 36
  start-page: 425
  year: 2001
  ident: 10.1016/j.csda.2016.01.016_br000005
  article-title: New algorithms for computing the least trimmed squares regression estimator
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/S0167-9473(00)00056-6
– ident: 10.1016/j.csda.2016.01.016_br000075
  doi: 10.1109/CVPR.1993.341019
– volume: 51
  start-page: 2461
  year: 2007
  ident: 10.1016/j.csda.2016.01.016_br000100
  article-title: A practical approximation algorithm for the LMS line estimator
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2006.08.033
– volume: 56
  start-page: 2501
  year: 2012
  ident: 10.1016/j.csda.2016.01.016_br000145
  article-title: Benchmark testing of algorithms for very robust regression: FS, LMS and LTS
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2012.02.003
– start-page: 207
  year: 2004
  ident: 10.1016/j.csda.2016.01.016_br000105
  article-title: Analyzing the number of samples required for an approximate Monte-Carlo LMS line estimator
– volume: 82
  start-page: 794
  year: 1987
  ident: 10.1016/j.csda.2016.01.016_br000140
  article-title: Time- and space- efficient algorithms for least median of squares regression
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1987.10478500
– year: 1996
  ident: 10.1016/j.csda.2016.01.016_br000045
– volume: 19
  start-page: 265
  year: 1995
  ident: 10.1016/j.csda.2016.01.016_br000070
  article-title: Exact computation of the least trimmed squares estimate in simple linear regression
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/0167-9473(95)92697-V
– year: 2001
  ident: 10.1016/j.csda.2016.01.016_br000080
– volume: 10
  start-page: 593
  year: 2000
  ident: 10.1016/j.csda.2016.01.016_br000090
  article-title: Quantile approximation for robust statistical estimation and k-enclosing problems
  publication-title: Internat. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195900000334
– volume: 19
  start-page: 191
  year: 2010
  ident: 10.1016/j.csda.2016.01.016_br000060
  article-title: An exact least trimmed squares algorithm for a range of coverage values
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1198/jcgs.2009.07091
– year: 2009
  ident: 10.1016/j.csda.2016.01.016_br000015
– volume: 17
  start-page: 185
  year: 1994
  ident: 10.1016/j.csda.2016.01.016_br000055
  article-title: The feasible solution algorithm for least trimmed squares regression
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/0167-9473(92)00070-8
– year: 1987
  ident: 10.1016/j.csda.2016.01.016_br000120
– volume: vol. 3480
  start-page: 697
  year: 2005
  ident: 10.1016/j.csda.2016.01.016_br000010
  article-title: Computing the least median of squares estimator in time O(nd)
– volume: 36
  start-page: 593
  year: 2006
  ident: 10.1016/j.csda.2016.01.016_br000035
  article-title: On the least median square problem
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-006-1267-6
– volume: 11
  start-page: 127
  year: 1991
  ident: 10.1016/j.csda.2016.01.016_br000115
  article-title: A diagnostic plot for regression outliers and leverage points
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/0167-9473(91)90059-B
– volume: 32
  start-page: 17
  year: 1999
  ident: 10.1016/j.csda.2016.01.016_br000085
  article-title: Efficient algorithms for robust point pattern matching
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(98)00086-7
– volume: 85
  start-page: 115
  year: 1990
  ident: 10.1016/j.csda.2016.01.016_br000030
  article-title: Computing median-of-squares regression lines and guided topological sweep
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1990.10475313
– volume: no. 1173
  year: 1996
  ident: 10.1016/j.csda.2016.01.016_br000130
– volume: 1
  start-page: 15
  year: 1987
  ident: 10.1016/j.csda.2016.01.016_br000020
  article-title: The subgroup algorithm for generating uniform random variables
  publication-title: Prob. Eng. Inf. Sci.
  doi: 10.1017/S0269964800000255
– volume: 12
  start-page: 29
  year: 2006
  ident: 10.1016/j.csda.2016.01.016_br000125
  article-title: Computing LTS regression for large data sets
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-005-0024-4
– year: 2002
  ident: 10.1016/j.csda.2016.01.016_br000040
– volume: 69
  start-page: 148
  year: 2014
  ident: 10.1016/j.csda.2016.01.016_br000095
  article-title: On the least trimmed squares estimator
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9721-8
– volume: 24
  start-page: 251
  year: 1997
  ident: 10.1016/j.csda.2016.01.016_br000135
  article-title: Efficiently locating objects using the Hausdorff distance
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1007975324482
– volume: 31
  start-page: 103
  year: 1999
  ident: 10.1016/j.csda.2016.01.016_br000050
  article-title: Reliable and efficient pattern matching using an affine invariant metric
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1008022116857
– start-page: 89
  year: 1998
  ident: 10.1016/j.csda.2016.01.016_br000025
  article-title: The Palomar digital sky survey (DPOSS)
– volume: 79
  start-page: 871
  year: 1984
  ident: 10.1016/j.csda.2016.01.016_br000110
  article-title: Least median-of-squares regression
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1984.10477105
SSID ssj0002478
Score 2.2108984
Snippet The linear least trimmed squares (LTS) estimator is a statistical technique for fitting a linear model to a set of points. It was proposed by Rousseeuw as a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms Accuracy
Algorithms
Approximation
Approximation algorithms
Computation
Computational geometry
data collection
Estimators
Least trimmed squares
Linear estimation
linear models
Mathematical analysis
Mathematical models
probability analysis
Robust estimation
Slopes
Title A practical approximation algorithm for the LTS estimator
URI https://dx.doi.org/10.1016/j.csda.2016.01.016
https://www.proquest.com/docview/1816079397
https://www.proquest.com/docview/2253223202
Volume 99
WOSCitedRecordID wos000373653700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wEeEJ9iG6AgsacqyEkcJ36soBWgUibRib5Zduzugy0t_UDlv-cudlwx2DQekKIoSuOk8v3sO5_vfkfIa0OFqYSxsSixhBnjKtYV17BqtTTTU2p40iQKD4vRqJxMxKHfLlg25QSKui43GzH_r6KGeyBsTJ39B3GHl8INuAahwxnEDucbCb7XZj4hCwAyhm9OXXpiV50fzxanq5OLEFs4HH_pIs3GhXKkw1vSgqbYQ-soxKwjT-iMSMGo0q7ybCZBYlh0QoUw-a2XdWTB_vypTtZu56fx1W8drocAjW8u6sfxHKDVG6KQv66dvxUjb5VXFd5FkfAQzhq8ljAbC-ZqlrTTrquL5OfNxNFtehWcuFoif8zuztFw9qZaGqSMSnjDuJr8hUp79FkOjoZDOe5PxgfZYP49xjpjuB9_kL1zMr9NdtIiF2WH7PQ-9Ccfg_5OmdPf7Z_2qVYuKvDyp68yZy4p9sZaGT8g9_0yI-o5eDwkt2z9iNz7FDh6l4-J6EUBKNFvQIkCUCIASgRtIgBKFIDyhBwN-uO372NfSCOuMs5XsTEmzbjQZaqRsdCkWhilqbKc6rSiMDhZYfJpxTKr6dSiDZgjrxu1Js9MorKnpFPPavuMRGVuwIIsBResYkwxVcDPQsO62TIkc9wlSdsfsvIs81js5Fy24YRnEvtQYh9KmsDBd0k3tJk7jpVrn87bbpbeSnTWnwSYXNvuVSsTCVMo7oup2s7WSwlGLkeeSFFc_QyoPVB9WUrTvRu8Z5_c3Y6D56SzWqztC3Kn-gGDdfHSA-4XmWye6g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+practical+approximation+algorithm+for+the+LTS+estimator&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Mounta%2C+David+M&rft.au=Netanyahub%2C+Nathan+S&rft.au=Piatkod%2C+Christine+D&rft.au=Wue%2C+Angela+Y&rft.date=2016-07-01&rft.issn=0167-9473&rft.volume=99&rft.spage=148&rft.epage=170&rft_id=info:doi/10.1016%2Fj.csda.2016.01.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon