Machine learning-based cotton yield forecasting under climate change for precision agriculture

The escalating threat of climate change presents a significant challenge to modern agriculture, with serious consequences for global food security. The impact of changing climate variables on crop productivity, particularly for key agricultural commodities, raises concerns about future yields. This...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Smart agricultural technology Ročník 12; s. 101117
Hlavní autoři: Shahzad, Muhammad Umair, Tahir, Sana, Rashid, Javed, Khashan, Osama A., Ahmad, Rashid, Mansoor, Sheikh, Ghani, Anwar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2025
Elsevier
Témata:
ISSN:2772-3755, 2772-3755
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The escalating threat of climate change presents a significant challenge to modern agriculture, with serious consequences for global food security. The impact of changing climate variables on crop productivity, particularly for key agricultural commodities, raises concerns about future yields. This study examines the potential effects of climate change on cotton production by integrating historical climate data, Global Climate Models (GCMs, CMIP3) projections, and cotton yield data. This study employs a diverse range of machine learning (ML) methods, including multiple regression, k-nearest neighbors (KNN), boosted tree algorithms, and various types of artificial neural networks (ANNs), to investigate the intricate relationship between climate factors and cotton yields. The models are developed and tested using data on climate and crop yields collected from three regions in Punjab, Pakistan, spanning the years 1991 to 2020. To estimate future yield outcomes, climate projections from General Circulation Models (GCMs) are downscaled under the SRA1B, A2, and B1 carbon emission scenarios, enabling forecasts extending to the year 2050. Results show that rainfall has a negligible impact on cotton yield (R = 0.0002), whereas maximum temperature (R = -0.183) is identified as the primary climatic factor influencing yield, followed by minimum temperature (R = 0.248). Among the models, the generalized feedforward (GFF) demonstrated the best performance (R = 0.960, MSE = 0.110, NMSE = 0.187, MAE = 0.269), outperforming probabilistic neural network (PNN), KNN, multilayer perceptron (MLP), and boosted trees. In contrast, linear regression (LR) and multiple regression models performed less effectively. The reliability of GFF and KNN in providing yield estimates (R2 = 0.892, 0.861) supports their potential for accurate predictions. The study forecasts a 4.5% decline in cotton yield by 2050 compared to the highest recorded yield for the region, highlighting the impact of climate change on cotton production and its potential threat to food security. Nevertheless, the adaptive capabilities of the ANN (GFF) models across various climate scenarios present promising tools for integrating ML into climate-resilient agricultural practices, contributing to sustainable agrarian security and mitigating the adverse effects of climate change on food supply. •Identified key climate factors influencing cotton yield, mainly temperature, and rainfall.•Applied ANN, KNN, regression, and ensemble models to simulate yield–climate response.•Forecasted 30-year cotton yield trends using GCM data to support climate adaptation.•Performed comparative analysis with state-of-the-art based on performance parameters.
AbstractList The escalating threat of climate change presents a significant challenge to modern agriculture, with serious consequences for global food security. The impact of changing climate variables on crop productivity, particularly for key agricultural commodities, raises concerns about future yields. This study examines the potential effects of climate change on cotton production by integrating historical climate data, Global Climate Models (GCMs, CMIP3) projections, and cotton yield data. This study employs a diverse range of machine learning (ML) methods, including multiple regression, k-nearest neighbors (KNN), boosted tree algorithms, and various types of artificial neural networks (ANNs), to investigate the intricate relationship between climate factors and cotton yields. The models are developed and tested using data on climate and crop yields collected from three regions in Punjab, Pakistan, spanning the years 1991 to 2020. To estimate future yield outcomes, climate projections from General Circulation Models (GCMs) are downscaled under the SRA1B, A2, and B1 carbon emission scenarios, enabling forecasts extending to the year 2050. Results show that rainfall has a negligible impact on cotton yield (R = 0.0002), whereas maximum temperature (R = -0.183) is identified as the primary climatic factor influencing yield, followed by minimum temperature (R = 0.248). Among the models, the generalized feedforward (GFF) demonstrated the best performance (R = 0.960, MSE = 0.110, NMSE = 0.187, MAE = 0.269), outperforming probabilistic neural network (PNN), KNN, multilayer perceptron (MLP), and boosted trees. In contrast, linear regression (LR) and multiple regression models performed less effectively. The reliability of GFF and KNN in providing yield estimates (R2 = 0.892, 0.861) supports their potential for accurate predictions. The study forecasts a 4.5% decline in cotton yield by 2050 compared to the highest recorded yield for the region, highlighting the impact of climate change on cotton production and its potential threat to food security. Nevertheless, the adaptive capabilities of the ANN (GFF) models across various climate scenarios present promising tools for integrating ML into climate-resilient agricultural practices, contributing to sustainable agrarian security and mitigating the adverse effects of climate change on food supply.
The escalating threat of climate change presents a significant challenge to modern agriculture, with serious consequences for global food security. The impact of changing climate variables on crop productivity, particularly for key agricultural commodities, raises concerns about future yields. This study examines the potential effects of climate change on cotton production by integrating historical climate data, Global Climate Models (GCMs, CMIP3) projections, and cotton yield data. This study employs a diverse range of machine learning (ML) methods, including multiple regression, k-nearest neighbors (KNN), boosted tree algorithms, and various types of artificial neural networks (ANNs), to investigate the intricate relationship between climate factors and cotton yields. The models are developed and tested using data on climate and crop yields collected from three regions in Punjab, Pakistan, spanning the years 1991 to 2020. To estimate future yield outcomes, climate projections from General Circulation Models (GCMs) are downscaled under the SRA1B, A2, and B1 carbon emission scenarios, enabling forecasts extending to the year 2050. Results show that rainfall has a negligible impact on cotton yield (R = 0.0002), whereas maximum temperature (R = -0.183) is identified as the primary climatic factor influencing yield, followed by minimum temperature (R = 0.248). Among the models, the generalized feedforward (GFF) demonstrated the best performance (R = 0.960, MSE = 0.110, NMSE = 0.187, MAE = 0.269), outperforming probabilistic neural network (PNN), KNN, multilayer perceptron (MLP), and boosted trees. In contrast, linear regression (LR) and multiple regression models performed less effectively. The reliability of GFF and KNN in providing yield estimates (R2 = 0.892, 0.861) supports their potential for accurate predictions. The study forecasts a 4.5% decline in cotton yield by 2050 compared to the highest recorded yield for the region, highlighting the impact of climate change on cotton production and its potential threat to food security. Nevertheless, the adaptive capabilities of the ANN (GFF) models across various climate scenarios present promising tools for integrating ML into climate-resilient agricultural practices, contributing to sustainable agrarian security and mitigating the adverse effects of climate change on food supply. •Identified key climate factors influencing cotton yield, mainly temperature, and rainfall.•Applied ANN, KNN, regression, and ensemble models to simulate yield–climate response.•Forecasted 30-year cotton yield trends using GCM data to support climate adaptation.•Performed comparative analysis with state-of-the-art based on performance parameters.
ArticleNumber 101117
Author Mansoor, Sheikh
Tahir, Sana
Rashid, Javed
Khashan, Osama A.
Ghani, Anwar
Ahmad, Rashid
Shahzad, Muhammad Umair
Author_xml – sequence: 1
  givenname: Muhammad Umair
  surname: Shahzad
  fullname: Shahzad, Muhammad Umair
  email: mushahzad@uo.edu.pk
  organization: Department Mathematics, University of Okara, Okara, 56310, Punjab, Pakistan
– sequence: 2
  givenname: Sana
  surname: Tahir
  fullname: Tahir, Sana
  email: tsana2945@gmail.com
  organization: Department Mathematics, University of Okara, Okara, 56310, Punjab, Pakistan
– sequence: 3
  givenname: Javed
  orcidid: 0000-0003-3416-9720
  surname: Rashid
  fullname: Rashid, Javed
  email: RanaJavedRashid@gmail.com
  organization: Department IT Services, University of Okara, Okara, 56310, Punjab, Pakistan
– sequence: 4
  givenname: Osama A.
  orcidid: 0000-0003-1965-1869
  surname: Khashan
  fullname: Khashan, Osama A.
  email: okhashan@ra.ac.ae
  organization: Research and Innovation Centers, Rabdan Academy, Abu Dhabi, 114646, United Arab Emirates
– sequence: 5
  givenname: Rashid
  surname: Ahmad
  fullname: Ahmad, Rashid
  email: rmahmad@su.edu.om
  organization: Faculty of Computing and Information Technology, Sohar University, Sohar, 311, Sultanate of Oman
– sequence: 6
  givenname: Sheikh
  surname: Mansoor
  fullname: Mansoor, Sheikh
  email: mansoorshafi@jejunu.ac.kr
  organization: Department of Plant Resources and Environment, Jeju National University, Jeju-si 63243, South Korea
– sequence: 7
  givenname: Anwar
  orcidid: 0000-0001-7474-0405
  surname: Ghani
  fullname: Ghani, Anwar
  email: anwar.ghani@iiu.edu.pk, anwar.ghani@jejunu.ac.kr
  organization: Big Data Research Center, Department of Computer Engineering, Jeju National University, Jeju-si 63243, South Korea
BookMark eNp9kE1OwzAQRi1UJErpCdjkAim2E8fOggWq-KkEYgNbrIk9aV0Fp7JTpN4ep0WIFStb43nfjN8lmfjeIyHXjC4YZdXNdgEDms2CUy7GCmPyjEy5lDwvpBCTP_cLMo9xSynlSlSqVlPy8QJm4zxmHULwzq_zBiLazPTD0Pvs4LCzWdsHNBCH9JztvcWQmc59pqmZ2YBf49iQ7VKPiy5BsA7O7LthH_CKnLfQRZz_nDPy_nD_tnzKn18fV8u759wUVTXk1sqytlRxi5WtGqBMQFMxo0poQXEhLTOiUQVrKK9BSFazQlhZG8ZqKKUsZmR1yrU9bPUupO3CQffg9LHQh7WGMDjToW5qpNYwVVomywQrWtaNQM6LRpQVH7OKU5YJfYwB2988RvVoXG_10bgejeuT8UTdnihM3_xyGHQ0Dr1B65KYIe3h_uW_ATe3jFE
Cites_doi 10.24191/mjoc.v6i1.8822
10.1038/s41598-022-27357-7
10.3390/land11112098
10.1016/j.agwat.2014.03.014
10.3390/app132112019
10.1016/j.jia.2023.02.011
10.1115/1.4062966
10.3390/agriengineering4010006
10.1079/9781780648903.0000
10.1109/LGRS.2023.3303643
10.1016/j.compag.2019.105031
10.1016/j.agsy.2020.103016
10.3390/su16166976
10.5721/EuJRS20124536
10.1016/j.pnsc.2009.08.001
10.3389/fpls.2023.1128388
10.1016/j.indcrop.2023.117167
10.3390/agriculture13112132
10.1098/rstb.2005.1743
10.1111/j.1365-2656.2008.01390.x
10.1016/j.agwat.2023.108243
10.3390/app13169288
10.32604/cmc.2022.027178
10.1080/10095020.2022.2100287
10.1111/j.1365-3040.1991.tb01444.x
10.3390/agronomy12040828
10.3390/su13020574
10.1109/ACCESS.2020.3048415
10.1016/j.compag.2020.105709
10.1016/j.biosystemseng.2020.02.014
10.1109/ACCESS.2024.3418139
10.3390/agronomy11102068
10.1002/9781119385523.ch12
10.3390/su12020586
10.1098/rstb.2010.0158
10.1108/IJCCSM-05-2019-0026
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.atech.2025.101117
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2772-3755
ExternalDocumentID oai_doaj_org_article_b9e0dc184d174a478049b5e223b54627
10_1016_j_atech_2025_101117
S2772375525003508
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: RS-2023-00220285
  funderid: https://doi.org/10.13039/501100003725
GroupedDBID 6I.
AAFTH
AAHBH
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-c366t-dd749d082de6d6ba015ab61c84afa8257d1c5b831b029a5719135d79c119a4773
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001531295800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2772-3755
IngestDate Fri Oct 03 12:44:35 EDT 2025
Thu Nov 27 01:02:18 EST 2025
Sat Aug 02 17:10:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Smart agriculture
Climate change
Cotton yield
Machine learning
Prediction
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-dd749d082de6d6ba015ab61c84afa8257d1c5b831b029a5719135d79c119a4773
ORCID 0000-0003-3416-9720
0000-0001-7474-0405
0000-0003-1965-1869
OpenAccessLink https://doaj.org/article/b9e0dc184d174a478049b5e223b54627
ParticipantIDs doaj_primary_oai_doaj_org_article_b9e0dc184d174a478049b5e223b54627
crossref_primary_10_1016_j_atech_2025_101117
elsevier_sciencedirect_doi_10_1016_j_atech_2025_101117
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Smart agricultural technology
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhang, Traore, Ge, Li, Wang, Zhu, Cui, Fipps (br0120) 2019; 166
Zhu, Zheng, Luo, Jiao, Yang (br0360) 2023; 13
Nadiruzzaman, Rahman, Pal, Croxton, Rashid, Bahadur, Huq (br0520) 2021; 13
Falamarzi, Palizdan, Huang, Lee (br0300) 2014; 140
Mitra, Beegum, Fleisher, Reddy, Sun, Ray, Timlin, Malakar (br0330) 2024
Celik, Isik, Taskin, Erten, Camps-Valls (br0350) 2023; 20
br0420
Lawlor, Mitchell (br0150) 1991; 14
Jin, Zhang, Espinosa (br0200) 2023; 75
Morales, Villalobos (br0250) 2023; 14
Wu, Guo, Huang, Han, Wang, Feng, Wang, Li, Lei, Yang (br0500) 2023; 203
Peng, Wang, Li, Mihara, Kuramochi, Toma, Hatano (br0110) 2023; 13
Abioye, Hensel, Esau, Elijah, Abidin, Ayobami, Yerima, Nasirahmadi (br0180) 2022; 4
Shaikh, Rasool, Lone (br0240) 2022; 198
Iqbal, Shahzad, Sherif, Tariq, Rashid, Le, Ghani (br0440) 2024; 16
M.A. Ali, J. Farooq, A. Batool, A. Zahoor, F. Azeem, A. Mahmood, K. Jabran, 2019, pp. 249–276, Cotton production in Pakistan, Cotton production.
Fashoto, Mbunge, Ogunleye, den Burg (br0280) 2021; 6
Li, Xu, Zhuang, Liu, Yi, Zhang (br0320) 2023; 22
Chen, Han, Wang, Zhao, Yang, Yang (br0370) 2023; 13
Becker, Schüth, Merz, Khaliq, Usman, Aus der Beek, Kumar, Schulz (br0510) 2023; 281
Exchange (br0020) 2011
Erda, Wei, Hui, Yinlong, Yue, Liping, Liyong (br0140) 2005; 360
Elith, Leathwick, Hastie (br0450) 2008; 77
Joshua, Priyadharson, Kannadasan, Khan, Lawanont, Khan, Rehman, Ali (br0540) 2022; 72
Chandio, Jiang, Rehman, Rauf (br0160) 2020; 12
Kumar, Singh (br0130) 2021
Shuli, Jarwar, Wang, Wang, Ma (br0060) 2018; 31
Van Klompenburg, Kassahun, Catal (br0210) 2020; 177
Yang, Lim, Moon, Li, Nam, Kim, Choi (br0230) 2022; 11
Naser, Alavi (br0490) 2020
Raza (br0530) 2014
Feng, Zhou, Vories, Sudduth, Zhang (br0310) 2020; 193
Naseem, Shahid (br0040) 2023; 1
Trenberth (br0090) 1992
Paudel, Boogaard, de Wit, Janssen, Osinga, Pylianidis, Athanasiadis (br0260) 2021; 187
br0400
Tariq, Yan, Gagnon, Riaz Khan, Mumtaz (br0220) 2023; 26
Baffes (br0050) 2010
Sharma, Jain, Gupta, Chowdary (br0190) 2020; 9
Wang (br0460) 2003
M.P. Bange, J.T. Baker, P.J. Bauer, K.J. Broughton, G.A. Constable, Q. Luo, D.M. Oosterhuis, Y. Osanai, P. Payton, D.T. Tissue, et al., Climate change and cotton production in modern farming systems, vol. 6, CABI, 2016.
Reddy, Kumar (br0290) 2021
Rossi, Caffi, Salinari (br0170) 2012
Asadollah, Sharafati, Shahid (br0380) 2022
Tian, Wang, Tansey, Han, Zhang, Zhang, Li (br0560) 2021; 102
Elbasi, Zaki, Topcu, Abdelbaki, Zreikat, Cina, Shdefat, Saker (br0340) 2023; 13
Kang, Khan, Ma (br0070) 2009; 19
Joshua, Priyadharson, Kannadasan (br0550) 2021; 11
Nazeer, Zia, Qadir, Ahmad, Shahid (br0390) 2023
Ahmad, Ma (br0080) 2020; 12
br0410
Zhang, Li, Li (br0480) 2022; 35
Yildirim, Moriasi, Starks, Chakraborty (br0270) 2022; 12
Chirici, Corona, Marchetti, Mastronardi, Maselli, Bottai, Travaglini (br0470) 2012; 45
Nguyen, Ly, Ho, Al-Ansari, Le, Tran, Prakash, Pham (br0430) 2021; 2021
Gornall, Betts, Burke, Clark, Camp, Willett, Wiltshire (br0100) 2010; 365
Iqbal (10.1016/j.atech.2025.101117_br0440) 2024; 16
Rossi (10.1016/j.atech.2025.101117_br0170) 2012
Shaikh (10.1016/j.atech.2025.101117_br0240) 2022; 198
Asadollah (10.1016/j.atech.2025.101117_br0380) 2022
Zhu (10.1016/j.atech.2025.101117_br0360) 2023; 13
Nazeer (10.1016/j.atech.2025.101117_br0390) 2023
Celik (10.1016/j.atech.2025.101117_br0350) 2023; 20
Jin (10.1016/j.atech.2025.101117_br0200) 2023; 75
Nguyen (10.1016/j.atech.2025.101117_br0430) 2021; 2021
Ahmad (10.1016/j.atech.2025.101117_br0080) 2020; 12
Wu (10.1016/j.atech.2025.101117_br0500) 2023; 203
Falamarzi (10.1016/j.atech.2025.101117_br0300) 2014; 140
Trenberth (10.1016/j.atech.2025.101117_br0090) 1992
Sharma (10.1016/j.atech.2025.101117_br0190) 2020; 9
Abioye (10.1016/j.atech.2025.101117_br0180) 2022; 4
Tian (10.1016/j.atech.2025.101117_br0560) 2021; 102
Becker (10.1016/j.atech.2025.101117_br0510) 2023; 281
Kang (10.1016/j.atech.2025.101117_br0070) 2009; 19
Nadiruzzaman (10.1016/j.atech.2025.101117_br0520) 2021; 13
Erda (10.1016/j.atech.2025.101117_br0140) 2005; 360
Paudel (10.1016/j.atech.2025.101117_br0260) 2021; 187
Fashoto (10.1016/j.atech.2025.101117_br0280) 2021; 6
Lawlor (10.1016/j.atech.2025.101117_br0150) 1991; 14
Joshua (10.1016/j.atech.2025.101117_br0550) 2021; 11
10.1016/j.atech.2025.101117_br0030
Zhang (10.1016/j.atech.2025.101117_br0120) 2019; 166
Wang (10.1016/j.atech.2025.101117_br0460) 2003
Kumar (10.1016/j.atech.2025.101117_br0130) 2021
Tariq (10.1016/j.atech.2025.101117_br0220) 2023; 26
Chen (10.1016/j.atech.2025.101117_br0370) 2023; 13
Peng (10.1016/j.atech.2025.101117_br0110) 2023; 13
Yildirim (10.1016/j.atech.2025.101117_br0270) 2022; 12
Elith (10.1016/j.atech.2025.101117_br0450) 2008; 77
Elbasi (10.1016/j.atech.2025.101117_br0340) 2023; 13
Mitra (10.1016/j.atech.2025.101117_br0330) 2024
Van Klompenburg (10.1016/j.atech.2025.101117_br0210) 2020; 177
Naseem (10.1016/j.atech.2025.101117_br0040) 2023; 1
Feng (10.1016/j.atech.2025.101117_br0310) 2020; 193
Yang (10.1016/j.atech.2025.101117_br0230) 2022; 11
Zhang (10.1016/j.atech.2025.101117_br0480) 2022; 35
Naser (10.1016/j.atech.2025.101117_br0490)
Raza (10.1016/j.atech.2025.101117_br0530) 2014
Shuli (10.1016/j.atech.2025.101117_br0060) 2018; 31
Morales (10.1016/j.atech.2025.101117_br0250) 2023; 14
Baffes (10.1016/j.atech.2025.101117_br0050) 2010
Reddy (10.1016/j.atech.2025.101117_br0290) 2021
Exchange (10.1016/j.atech.2025.101117_br0020)
Chandio (10.1016/j.atech.2025.101117_br0160) 2020; 12
10.1016/j.atech.2025.101117_br0010
Chirici (10.1016/j.atech.2025.101117_br0470) 2012; 45
Li (10.1016/j.atech.2025.101117_br0320) 2023; 22
Gornall (10.1016/j.atech.2025.101117_br0100) 2010; 365
Joshua (10.1016/j.atech.2025.101117_br0540) 2022; 72
References_xml – year: 2010
  ident: br0050
  article-title: Markets for cotton by-products: Global trends and implications for African cotton producers
– year: 2020
  ident: br0490
  article-title: Insights into performance fitness and error metrics for machine learning
– ident: br0400
– year: 2024
  ident: br0330
  article-title: Cotton yield prediction: a machine learning approach with field and synthetic data
  publication-title: IEEE Access
– volume: 20
  start-page: 1
  year: 2023
  end-page: 5
  ident: br0350
  article-title: Explainable artificial intelligence for cotton yield prediction with multisource data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 1
  year: 2022
  end-page: 20
  ident: br0380
  article-title: Application of ensemble machine learning model in downscaling and projecting climate variables over different climate regions in Iran
  publication-title: Environ. Sci. Pollut. Res.
– year: 2014
  ident: br0530
  article-title: Impact of climate change on productivity of cotton in Pakistan, a district level analysis
– volume: 11
  start-page: 2068
  year: 2021
  ident: br0550
  article-title: Exploration of machine learning approaches for paddy yield prediction in eastern part of Tamilnadu
  publication-title: Agronomy
– volume: 4
  start-page: 70
  year: 2022
  end-page: 103
  ident: br0180
  article-title: Precision irrigation management using machine learning and digital farming solutions
  publication-title: AgriEngineering
– volume: 19
  start-page: 1665
  year: 2009
  end-page: 1674
  ident: br0070
  article-title: Climate change impacts on crop yield, crop water productivity and food security–a review
  publication-title: Prog. Nat. Sci.
– volume: 12
  start-page: 201
  year: 2020
  end-page: 221
  ident: br0160
  article-title: Short and long-run impacts of climate change on agriculture: an empirical evidence from China
  publication-title: Int. J. Clim. Change Strategies Manag.
– volume: 177
  year: 2020
  ident: br0210
  article-title: Crop yield prediction using machine learning: a systematic literature review
  publication-title: Comput. Electron. Agric.
– volume: 12
  start-page: 586
  year: 2020
  ident: br0080
  article-title: Climate change and livelihood vulnerability in mixed crop–livestock areas: the case of province Punjab, Pakistan
  publication-title: Sustainability
– start-page: 141
  year: 2021
  end-page: 184
  ident: br0130
  article-title: Microbial diversity and multifunctional microbial biostimulants for agricultural sustainability
  publication-title: Clim. Resil. Environ. Sustain. Approaches Glob. Lessons Local Challenges
– volume: 11
  start-page: 2098
  year: 2022
  ident: br0230
  article-title: Simple optimal sampling algorithm to strengthen digital soil mapping using the spatial distribution of machine learning predictive uncertainty: a case study for field capacity prediction
  publication-title: Land
– volume: 1
  start-page: 41
  year: 2023
  end-page: 47
  ident: br0040
  article-title: Enhancing cotton production in Pakistan: evaluating and addressing challenges in agribusinesses
  publication-title: Journal Sust. Food Agribusiness
– volume: 45
  start-page: 433
  year: 2012
  end-page: 442
  ident: br0470
  article-title: K-NN forest: a software for the non-parametric prediction and mapping of environmental variables by the k-nearest neighbors algorithm
  publication-title: Eur. J. Remote Sen.
– year: 1992
  ident: br0090
  article-title: Climate System Modeling
– year: 2011
  ident: br0020
  article-title: Organic cotton market report
– start-page: 483
  year: 2023
  end-page: 500
  ident: br0390
  article-title: Sustainable cotton production in Punjab: failure and its mitigating strategies
  publication-title: Sustainable Agriculture in the Era of the OMICs Revolution
– year: 2003
  ident: br0460
  article-title: Interdisciplinary Computing in Java Programming, vol. 743
– volume: 102
  year: 2021
  ident: br0560
  article-title: A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the guanzhong plain, PR China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 4843
  year: 2020
  end-page: 4873
  ident: br0190
  article-title: Machine learning applications for precision agriculture: a comprehensive review
  publication-title: IEEE Access
– volume: 198
  year: 2022
  ident: br0240
  article-title: Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming
  publication-title: Comput. Electron. Agric.
– volume: 16
  start-page: 6976
  year: 2024
  ident: br0440
  article-title: Analysis of wheat-yield prediction using machine learning models under climate change scenarios
  publication-title: Sustainability
– ident: br0420
– volume: 75
  year: 2023
  ident: br0200
  article-title: Recent advances and applications of machine learning in experimental solid mechanics: a review
  publication-title: Appl. Mech. Rev.
– volume: 72
  start-page: 5663
  year: 2022
  end-page: 5679
  ident: br0540
  article-title: Crop yield prediction using machine learning approaches on a wide spectrum
  publication-title: Comput. Mater. Continua
– volume: 360
  start-page: 2149
  year: 2005
  end-page: 2154
  ident: br0140
  article-title: Climate change impacts on crop yield and quality with co2 fertilization in China
  publication-title: Philos. Trans. R. Soc. B, Biol. Sci.
– ident: br0410
– volume: 13
  start-page: 9288
  year: 2023
  ident: br0340
  article-title: Crop prediction model using machine learning algorithms
  publication-title: Appl. Sci.
– start-page: 457
  year: 2012
  end-page: 479
  ident: br0170
  article-title: Helping farmers face the increasing complexity of decision-making for crop protection
  publication-title: Phytopathologia Mediterranea
– volume: 193
  start-page: 101
  year: 2020
  end-page: 114
  ident: br0310
  article-title: Yield estimation in cotton using UAV-based multi-sensor imagery
  publication-title: Biosyst. Eng.
– volume: 187
  year: 2021
  ident: br0260
  article-title: Machine learning for large-scale crop yield forecasting
  publication-title: Agric. Syst.
– volume: 281
  year: 2023
  ident: br0510
  article-title: Increased heat stress reduces future yields of three major crops in Pakistan's Punjab region despite intensification of irrigation
  publication-title: Agric. Water Manag.
– volume: 365
  start-page: 2973
  year: 2010
  end-page: 2989
  ident: br0100
  article-title: Implications of climate change for agricultural productivity in the early twenty-first century
  publication-title: Philos. Trans. R. Soc.B, Biol. Sci.
– volume: 22
  start-page: 1909
  year: 2023
  end-page: 1927
  ident: br0320
  article-title: Ensemble learning prediction of soybean yields in China based on meteorological data
  publication-title: J. Integr. Agric.
– volume: 2021
  year: 2021
  ident: br0430
  article-title: Influence of data splitting on performance of machine learning models in prediction of shear strength of soil
  publication-title: Math. Probl. Eng.
– volume: 14
  year: 2023
  ident: br0250
  article-title: Using machine learning for crop yield prediction in the past or the future
  publication-title: Front. Plant Sci.
– volume: 140
  start-page: 26
  year: 2014
  end-page: 36
  ident: br0300
  article-title: Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs)
  publication-title: Agric. Water Manag.
– reference: M.A. Ali, J. Farooq, A. Batool, A. Zahoor, F. Azeem, A. Mahmood, K. Jabran, 2019, pp. 249–276, Cotton production in Pakistan, Cotton production.
– volume: 6
  start-page: 679
  year: 2021
  end-page: 697
  ident: br0280
  article-title: Implementation of machine learning for predicting maize crop yields using multiple linear regression and backward elimination
  publication-title: Malays. J. Comput.
– volume: 13
  start-page: 230
  year: 2023
  ident: br0110
  article-title: Climate change multi-model projections in CMIP6 scenarios in central Hokkaido, Japan
  publication-title: Sci. Rep.
– volume: 14
  start-page: 807
  year: 1991
  end-page: 818
  ident: br0150
  article-title: The effects of increasing co2 on crop photosynthesis and productivity: a review of field studies
  publication-title: Plant Cell Environ.
– volume: 13
  start-page: 574
  year: 2021
  ident: br0520
  article-title: Impact of climate change on cotton production in Bangladesh
  publication-title: Sustainability
– volume: 35
  start-page: 7382
  year: 2022
  end-page: 7396
  ident: br0480
  article-title: Reachable distance function for KNN classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 203
  year: 2023
  ident: br0500
  article-title: Adaptation of cotton production to climate change by sowing date optimization and precision resource management
  publication-title: Ind. Crop. Prod.
– volume: 166
  year: 2019
  ident: br0120
  article-title: Using boosted tree regression and artificial neural networks to forecast upland rice yield under climate change in Sahel
  publication-title: Comput. Electron. Agric.
– volume: 13
  year: 2023
  ident: br0370
  article-title: Machine learning methods in weather and climate applications: a survey
  publication-title: Appl. Sci.
– volume: 12
  start-page: 828
  year: 2022
  ident: br0270
  article-title: Using artificial neural network (ANN) for short-range prediction of cotton yield in data-scarce regions
  publication-title: Agronomy
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: br0450
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
– reference: M.P. Bange, J.T. Baker, P.J. Bauer, K.J. Broughton, G.A. Constable, Q. Luo, D.M. Oosterhuis, Y. Osanai, P. Payton, D.T. Tissue, et al., Climate change and cotton production in modern farming systems, vol. 6, CABI, 2016.
– volume: 13
  start-page: 2132
  year: 2023
  ident: br0360
  article-title: Uncovering the drivers and regional variability of cotton yield in China
  publication-title: Agriculture
– start-page: 1466
  year: 2021
  end-page: 1470
  ident: br0290
  article-title: Crop yield prediction using machine learning algorithm
  publication-title: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS)
– volume: 31
  start-page: 396
  year: 2018
  ident: br0060
  article-title: Overview of the cotton in Pakistan and its future prospects
  publication-title: Pak. J. Agric. Res.
– volume: 26
  start-page: 302
  year: 2023
  end-page: 320
  ident: br0220
  article-title: Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest
  publication-title: Geo-Spat. Inf. Sci.
– start-page: 457
  year: 2012
  ident: 10.1016/j.atech.2025.101117_br0170
  article-title: Helping farmers face the increasing complexity of decision-making for crop protection
  publication-title: Phytopathologia Mediterranea
– ident: 10.1016/j.atech.2025.101117_br0020
– year: 1992
  ident: 10.1016/j.atech.2025.101117_br0090
– volume: 6
  start-page: 679
  issue: 1
  year: 2021
  ident: 10.1016/j.atech.2025.101117_br0280
  article-title: Implementation of machine learning for predicting maize crop yields using multiple linear regression and backward elimination
  publication-title: Malays. J. Comput.
  doi: 10.24191/mjoc.v6i1.8822
– volume: 35
  start-page: 7382
  issue: 7
  year: 2022
  ident: 10.1016/j.atech.2025.101117_br0480
  article-title: Reachable distance function for KNN classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 13
  start-page: 230
  issue: 1
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0110
  article-title: Climate change multi-model projections in CMIP6 scenarios in central Hokkaido, Japan
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-27357-7
– volume: 11
  start-page: 2098
  issue: 11
  year: 2022
  ident: 10.1016/j.atech.2025.101117_br0230
  article-title: Simple optimal sampling algorithm to strengthen digital soil mapping using the spatial distribution of machine learning predictive uncertainty: a case study for field capacity prediction
  publication-title: Land
  doi: 10.3390/land11112098
– volume: 140
  start-page: 26
  year: 2014
  ident: 10.1016/j.atech.2025.101117_br0300
  article-title: Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs)
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2014.03.014
– volume: 13
  issue: 21
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0370
  article-title: Machine learning methods in weather and climate applications: a survey
  publication-title: Appl. Sci.
  doi: 10.3390/app132112019
– start-page: 483
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0390
  article-title: Sustainable cotton production in Punjab: failure and its mitigating strategies
– volume: 22
  start-page: 1909
  issue: 6
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0320
  article-title: Ensemble learning prediction of soybean yields in China based on meteorological data
  publication-title: J. Integr. Agric.
  doi: 10.1016/j.jia.2023.02.011
– volume: 75
  issue: 6
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0200
  article-title: Recent advances and applications of machine learning in experimental solid mechanics: a review
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4062966
– volume: 4
  start-page: 70
  issue: 1
  year: 2022
  ident: 10.1016/j.atech.2025.101117_br0180
  article-title: Precision irrigation management using machine learning and digital farming solutions
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering4010006
– year: 2014
  ident: 10.1016/j.atech.2025.101117_br0530
– ident: 10.1016/j.atech.2025.101117_br0030
  doi: 10.1079/9781780648903.0000
– volume: 20
  start-page: 1
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0350
  article-title: Explainable artificial intelligence for cotton yield prediction with multisource data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2023.3303643
– volume: 166
  year: 2019
  ident: 10.1016/j.atech.2025.101117_br0120
  article-title: Using boosted tree regression and artificial neural networks to forecast upland rice yield under climate change in Sahel
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105031
– volume: 187
  year: 2021
  ident: 10.1016/j.atech.2025.101117_br0260
  article-title: Machine learning for large-scale crop yield forecasting
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2020.103016
– volume: 16
  start-page: 6976
  issue: 16
  year: 2024
  ident: 10.1016/j.atech.2025.101117_br0440
  article-title: Analysis of wheat-yield prediction using machine learning models under climate change scenarios
  publication-title: Sustainability
  doi: 10.3390/su16166976
– volume: 45
  start-page: 433
  issue: 1
  year: 2012
  ident: 10.1016/j.atech.2025.101117_br0470
  article-title: K-NN forest: a software for the non-parametric prediction and mapping of environmental variables by the k-nearest neighbors algorithm
  publication-title: Eur. J. Remote Sen.
  doi: 10.5721/EuJRS20124536
– volume: 19
  start-page: 1665
  issue: 12
  year: 2009
  ident: 10.1016/j.atech.2025.101117_br0070
  article-title: Climate change impacts on crop yield, crop water productivity and food security–a review
  publication-title: Prog. Nat. Sci.
  doi: 10.1016/j.pnsc.2009.08.001
– volume: 14
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0250
  article-title: Using machine learning for crop yield prediction in the past or the future
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1128388
– start-page: 1466
  year: 2021
  ident: 10.1016/j.atech.2025.101117_br0290
  article-title: Crop yield prediction using machine learning algorithm
– volume: 203
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0500
  article-title: Adaptation of cotton production to climate change by sowing date optimization and precision resource management
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2023.117167
– year: 2010
  ident: 10.1016/j.atech.2025.101117_br0050
– volume: 13
  start-page: 2132
  issue: 11
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0360
  article-title: Uncovering the drivers and regional variability of cotton yield in China
  publication-title: Agriculture
  doi: 10.3390/agriculture13112132
– volume: 31
  start-page: 396
  issue: 4
  year: 2018
  ident: 10.1016/j.atech.2025.101117_br0060
  article-title: Overview of the cotton in Pakistan and its future prospects
  publication-title: Pak. J. Agric. Res.
– volume: 360
  start-page: 2149
  issue: 1463
  year: 2005
  ident: 10.1016/j.atech.2025.101117_br0140
  article-title: Climate change impacts on crop yield and quality with co2 fertilization in China
  publication-title: Philos. Trans. R. Soc. B, Biol. Sci.
  doi: 10.1098/rstb.2005.1743
– volume: 77
  start-page: 802
  issue: 4
  year: 2008
  ident: 10.1016/j.atech.2025.101117_br0450
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– ident: 10.1016/j.atech.2025.101117_br0490
– volume: 281
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0510
  article-title: Increased heat stress reduces future yields of three major crops in Pakistan's Punjab region despite intensification of irrigation
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2023.108243
– volume: 13
  start-page: 9288
  issue: 16
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0340
  article-title: Crop prediction model using machine learning algorithms
  publication-title: Appl. Sci.
  doi: 10.3390/app13169288
– volume: 198
  year: 2022
  ident: 10.1016/j.atech.2025.101117_br0240
  article-title: Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming
  publication-title: Comput. Electron. Agric.
– volume: 72
  start-page: 5663
  issue: 3
  year: 2022
  ident: 10.1016/j.atech.2025.101117_br0540
  article-title: Crop yield prediction using machine learning approaches on a wide spectrum
  publication-title: Comput. Mater. Continua
  doi: 10.32604/cmc.2022.027178
– volume: 26
  start-page: 302
  issue: 3
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0220
  article-title: Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest
  publication-title: Geo-Spat. Inf. Sci.
  doi: 10.1080/10095020.2022.2100287
– volume: 2021
  issue: 1
  year: 2021
  ident: 10.1016/j.atech.2025.101117_br0430
  article-title: Influence of data splitting on performance of machine learning models in prediction of shear strength of soil
  publication-title: Math. Probl. Eng.
– volume: 1
  start-page: 41
  issue: 1
  year: 2023
  ident: 10.1016/j.atech.2025.101117_br0040
  article-title: Enhancing cotton production in Pakistan: evaluating and addressing challenges in agribusinesses
  publication-title: Journal Sust. Food Agribusiness
– volume: 14
  start-page: 807
  issue: 8
  year: 1991
  ident: 10.1016/j.atech.2025.101117_br0150
  article-title: The effects of increasing co2 on crop photosynthesis and productivity: a review of field studies
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.1991.tb01444.x
– volume: 12
  start-page: 828
  issue: 4
  year: 2022
  ident: 10.1016/j.atech.2025.101117_br0270
  article-title: Using artificial neural network (ANN) for short-range prediction of cotton yield in data-scarce regions
  publication-title: Agronomy
  doi: 10.3390/agronomy12040828
– volume: 13
  start-page: 574
  issue: 2
  year: 2021
  ident: 10.1016/j.atech.2025.101117_br0520
  article-title: Impact of climate change on cotton production in Bangladesh
  publication-title: Sustainability
  doi: 10.3390/su13020574
– volume: 9
  start-page: 4843
  year: 2020
  ident: 10.1016/j.atech.2025.101117_br0190
  article-title: Machine learning applications for precision agriculture: a comprehensive review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048415
– volume: 177
  year: 2020
  ident: 10.1016/j.atech.2025.101117_br0210
  article-title: Crop yield prediction using machine learning: a systematic literature review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105709
– volume: 193
  start-page: 101
  year: 2020
  ident: 10.1016/j.atech.2025.101117_br0310
  article-title: Yield estimation in cotton using UAV-based multi-sensor imagery
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.02.014
– volume: 102
  year: 2021
  ident: 10.1016/j.atech.2025.101117_br0560
  article-title: A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the guanzhong plain, PR China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2024
  ident: 10.1016/j.atech.2025.101117_br0330
  article-title: Cotton yield prediction: a machine learning approach with field and synthetic data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3418139
– volume: 11
  start-page: 2068
  issue: 10
  year: 2021
  ident: 10.1016/j.atech.2025.101117_br0550
  article-title: Exploration of machine learning approaches for paddy yield prediction in eastern part of Tamilnadu
  publication-title: Agronomy
  doi: 10.3390/agronomy11102068
– year: 2003
  ident: 10.1016/j.atech.2025.101117_br0460
– ident: 10.1016/j.atech.2025.101117_br0010
  doi: 10.1002/9781119385523.ch12
– start-page: 141
  year: 2021
  ident: 10.1016/j.atech.2025.101117_br0130
  article-title: Microbial diversity and multifunctional microbial biostimulants for agricultural sustainability
  publication-title: Clim. Resil. Environ. Sustain. Approaches Glob. Lessons Local Challenges
– start-page: 1
  year: 2022
  ident: 10.1016/j.atech.2025.101117_br0380
  article-title: Application of ensemble machine learning model in downscaling and projecting climate variables over different climate regions in Iran
  publication-title: Environ. Sci. Pollut. Res.
– volume: 12
  start-page: 586
  issue: 2
  year: 2020
  ident: 10.1016/j.atech.2025.101117_br0080
  article-title: Climate change and livelihood vulnerability in mixed crop–livestock areas: the case of province Punjab, Pakistan
  publication-title: Sustainability
  doi: 10.3390/su12020586
– volume: 365
  start-page: 2973
  issue: 1554
  year: 2010
  ident: 10.1016/j.atech.2025.101117_br0100
  article-title: Implications of climate change for agricultural productivity in the early twenty-first century
  publication-title: Philos. Trans. R. Soc.B, Biol. Sci.
  doi: 10.1098/rstb.2010.0158
– volume: 12
  start-page: 201
  issue: 2
  year: 2020
  ident: 10.1016/j.atech.2025.101117_br0160
  article-title: Short and long-run impacts of climate change on agriculture: an empirical evidence from China
  publication-title: Int. J. Clim. Change Strategies Manag.
  doi: 10.1108/IJCCSM-05-2019-0026
SSID ssj0002856898
Score 2.3176444
Snippet The escalating threat of climate change presents a significant challenge to modern agriculture, with serious consequences for global food security. The impact...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 101117
SubjectTerms Climate change
Cotton yield
Deep learning
Machine learning
Prediction
Smart agriculture
Title Machine learning-based cotton yield forecasting under climate change for precision agriculture
URI https://dx.doi.org/10.1016/j.atech.2025.101117
https://doaj.org/article/b9e0dc184d174a478049b5e223b54627
Volume 12
WOSCitedRecordID wos001531295800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2772-3755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856898
  issn: 2772-3755
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2772-3755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856898
  issn: 2772-3755
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYmBBIECUL3lgJCIfjh2PgFqxtGIAqROWv1K1QmmVFiQWfjt3TgKZYGHJYEV2dBfl3UXv3iPkKvYZ2tvHkZCGRfDBc5GRmuGsjIaOywgpbDCbEJNJMZ3Kx57VF3LCGnngJnA3RvrYWehDHNTOmqFejjS5B1QzOeNpmCOHqqfXTC3CL6OcF7LoZIYCoUujKip0hGmOK0mwKPuBoqDY30OkHsqM9sleWx7S2-axDsiWrw7JyzgwHj1tLR5mEWKPoyirsKzoB5LQKBSf3uo1spgpDobV1L7OoRz1tJntxRvoqm4tdaie1a3qhj8iz6Ph0_1D1PoiRDbjfBM5J5h0gN3Oc8eNBkTXhie2YLrU0PEJl9jcFFli4lTqXEBLluVOSJskkAYhsmOyXS0rf0JoJq3nZcycRdnIJNOWl6502pY25YVjA3LdhUitGvkL1fHCFipEVGFEVRPRAbnDMH7fitrVYQEyqtqMqr8yOiC8S4Jqy4AG3mGr-W-nn_7H6WdkF7dsGCvnZHtTv_kLsmPfN_N1fRneMriOP4df3xfXaA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+cotton+yield+forecasting+under+climate+change+for+precision+agriculture&rft.jtitle=Smart+agricultural+technology&rft.au=Muhammad+Umair+Shahzad&rft.au=Sana+Tahir&rft.au=Javed+Rashid&rft.au=Osama+A.+Khashan&rft.date=2025-12-01&rft.pub=Elsevier&rft.eissn=2772-3755&rft.volume=12&rft.spage=101117&rft_id=info:doi/10.1016%2Fj.atech.2025.101117&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b9e0dc184d174a478049b5e223b54627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-3755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-3755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-3755&client=summon