Hybrid multi-objective evolutionary algorithm based on Search Manager framework for big data optimization problems

Big Data optimization (Big-Opt) refers to optimization problems which require to manage the properties of big data analytics. In the present paper, the Search Manager (SM), a recently proposed framework for hybridizing metaheuristics to improve the performance of optimization algorithms, is extended...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 87; S. 105991
Hauptverfasser: Abdi, Yousef, Feizi-Derakhshi, Mohammad-Reza
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2020
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Big Data optimization (Big-Opt) refers to optimization problems which require to manage the properties of big data analytics. In the present paper, the Search Manager (SM), a recently proposed framework for hybridizing metaheuristics to improve the performance of optimization algorithms, is extended for multi-objective problems (MOSM), and then five configurations of it by combination of different search strategies are proposed to solve the EEG signal analysis problem which is a member of the big data optimization problems class. Experimental results demonstrate that the proposed configurations of MOSM are efficient in this kind of problems. The configurations are also compared with NSGA-III with uniform crossover and adaptive mutation operators (NSGA-III UCAM), which is a recently proposed method for Big-Opt problems. •Search Manager hybridization method extended to multi-objective optimization problems (MOSM).•Five configurations of the MOSM are proposed for Big Data optimization problems.•The proposed algorithms are compared with each other.•The results of proposed algorithms are compared with the results of NSGA-III UCAM.•MOSM is effective in optimizing Big Data optimization problems.
AbstractList Big Data optimization (Big-Opt) refers to optimization problems which require to manage the properties of big data analytics. In the present paper, the Search Manager (SM), a recently proposed framework for hybridizing metaheuristics to improve the performance of optimization algorithms, is extended for multi-objective problems (MOSM), and then five configurations of it by combination of different search strategies are proposed to solve the EEG signal analysis problem which is a member of the big data optimization problems class. Experimental results demonstrate that the proposed configurations of MOSM are efficient in this kind of problems. The configurations are also compared with NSGA-III with uniform crossover and adaptive mutation operators (NSGA-III UCAM), which is a recently proposed method for Big-Opt problems. •Search Manager hybridization method extended to multi-objective optimization problems (MOSM).•Five configurations of the MOSM are proposed for Big Data optimization problems.•The proposed algorithms are compared with each other.•The results of proposed algorithms are compared with the results of NSGA-III UCAM.•MOSM is effective in optimizing Big Data optimization problems.
ArticleNumber 105991
Author Abdi, Yousef
Feizi-Derakhshi, Mohammad-Reza
Author_xml – sequence: 1
  givenname: Yousef
  orcidid: 0000-0002-8517-8769
  surname: Abdi
  fullname: Abdi, Yousef
  email: y.abdi@tabrizu.ac.ir
– sequence: 2
  givenname: Mohammad-Reza
  surname: Feizi-Derakhshi
  fullname: Feizi-Derakhshi, Mohammad-Reza
BookMark eNp9kMFOAjEQhhuDiYC-gKe-wGK7sN028WKIignGg3puutNZKO5uSVsw-PQu4smDp_kzyfdn5huRQec7JOSaswlnXNxsJiZ6mOSMq35RKMXPyJDLMs-UkHzQ50LIbKZm4oKMYtywHlK5HJKwOFTBWdrumuQyX20Qktsjxb1vdsn5zoQDNc3KB5fWLa1MREt9R1_RBFjTZ9OZFQZaB9Pipw8ftPaBVm5FrUmG-m1yrfsyxyK6Db5qsI2X5Lw2TcSr3zkm7w_3b_NFtnx5fJrfLTOYCpEyC7KUtShtXhpTIkoGbIZQzmpWMKgsiLzitcUaJPRBKmBKFqIytkApQU3HRJ56IfgYA9YaXPo5JQXjGs2ZPrrTG310p4_u9Mldj-Z_0G1wba_if-j2BGH_1N5h0BEcdoDWhd6qtt79h38DTaqO0A
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106411
crossref_primary_10_1038_s41598_024_52083_7
crossref_primary_10_1007_s41870_025_02607_9
crossref_primary_10_1186_s12859_020_03644_w
crossref_primary_10_1016_j_compbiomed_2023_107727
crossref_primary_10_1007_s11063_022_10850_5
crossref_primary_10_1016_j_asoc_2023_110232
crossref_primary_10_1016_j_compbiomed_2021_104896
crossref_primary_10_4018_IJCAC_2022010101
crossref_primary_10_1016_j_ress_2025_111658
crossref_primary_10_1109_TCYB_2022_3178929
crossref_primary_10_1016_j_engappai_2023_107000
crossref_primary_10_3233_JIFS_202785
crossref_primary_10_1007_s10586_023_04214_4
crossref_primary_10_1016_j_asoc_2022_109333
crossref_primary_10_1145_3470971
crossref_primary_10_1016_j_scs_2021_102960
crossref_primary_10_1016_j_swevo_2024_101493
crossref_primary_10_1007_s11227_023_05218_y
crossref_primary_10_3390_math12020175
crossref_primary_10_1016_j_eswa_2025_127644
crossref_primary_10_1016_j_swevo_2025_102061
crossref_primary_10_1109_TCYB_2020_3041325
crossref_primary_10_1007_s40747_024_01489_x
crossref_primary_10_1016_j_susoc_2025_05_003
crossref_primary_10_1016_j_jare_2024_09_019
crossref_primary_10_1016_j_asoc_2022_108791
crossref_primary_10_1016_j_techfore_2021_121193
crossref_primary_10_1016_j_asoc_2025_113930
crossref_primary_10_1016_j_swevo_2024_101628
crossref_primary_10_1109_TEVC_2023_3319640
crossref_primary_10_1016_j_asoc_2023_110525
crossref_primary_10_1016_j_asoc_2021_108297
crossref_primary_10_1016_j_ecmx_2025_101014
crossref_primary_10_1016_j_swevo_2023_101462
crossref_primary_10_3233_IDT_220114
Cites_doi 10.1186/s12859-019-2754-0
10.1016/j.measurement.2017.09.022
10.1007/s00500-016-2474-6
10.1109/MSP.2014.2329397
10.1016/j.future.2018.06.008
10.1016/j.physa.2017.02.056
10.1016/j.asoc.2017.05.060
10.1016/j.eswa.2014.05.009
10.1016/j.asoc.2014.08.024
10.1007/s12293-015-0174-x
10.1109/TSG.2015.2468683
10.1016/j.advengsoft.2016.01.008
10.1016/j.ejor.2019.01.063
10.1038/s41598-019-45814-8
10.1016/j.advengsoft.2015.01.010
10.1016/j.eswa.2011.02.050
10.1007/s12293-016-0201-6
10.1016/j.ins.2016.01.046
10.1016/j.ins.2015.06.044
10.1016/j.asoc.2015.12.034
10.1016/j.biosystems.2017.07.010
10.1016/j.cie.2019.03.019
10.1016/j.ins.2018.10.005
10.1109/TEVC.2004.826071
10.1109/ICEC.1998.700159
10.1016/j.asoc.2016.12.022
10.1016/j.asoc.2017.06.029
10.1016/j.chemolab.2015.08.020
10.1016/j.asoc.2018.05.023
10.1049/el.2018.6506
10.1504/IJBIC.2015.069304
10.3390/sym9100203
10.1109/TEVC.2012.2185702
10.1016/j.ins.2008.02.017
10.1016/j.ab.2013.03.015
10.1007/11925231_28
10.3390/a10010018
10.1016/j.asoc.2017.10.032
10.1016/j.eswa.2013.05.052
10.1016/j.swevo.2015.06.002
10.1016/j.cie.2016.12.045
10.1109/4235.996017
10.1016/j.cor.2016.04.016
10.1016/j.future.2018.04.032
10.1016/j.ejor.2014.12.005
10.1016/j.knosys.2015.07.006
10.1016/j.asoc.2018.06.050
10.1016/j.eswa.2019.05.032
10.1016/j.swevo.2018.06.010
10.1016/j.asoc.2018.03.053
10.1016/j.asoc.2017.12.036
10.1007/978-3-319-50920-4_19
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105991
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105991
S1568494619307720
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-dc878f67d27aa7ee80c04ec74f050cbdc62b1fdefc8cb1f89c09856bad5e88c93
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509341500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:03:05 EST 2025
Tue Nov 18 22:34:37 EST 2025
Fri Feb 23 02:45:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Evolutionary operators
Hybrid multi-objective evolutionary algorithm
Search Manager framework
Big Data optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-dc878f67d27aa7ee80c04ec74f050cbdc62b1fdefc8cb1f89c09856bad5e88c93
ORCID 0000-0002-8517-8769
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2019_105991
crossref_primary_10_1016_j_asoc_2019_105991
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105991
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Ding, Qu, Li (b30) 2018; 68
Abdi, Seyfari (b27) 2018; 9
Deb, Sindhya, Okabe (b55) 2007
Deb, Pratap, Agarwal, Meyarivan (b43) 2002; 6
Yi, Xing, Wang, Dong, Vasilakos, Alavi, Wang (b54) 2018; 509
Kang, Park, Ro, Jung (b19) 2018; 54
Peng, Liao, Cai (b36) 2015; 6
Mirjalili (b50) 2015
Yelghi, Köse (b9) 2018; 62
Mohapatra, Das, Roy (b18) 2017; 59
Hosseini, Al-Khaled (b10) 2014; 24
Raidl (b39) 2015; 244
Fausto, Cuevas, Valdivia, González (b47) 2017; 160
Patel, Savsani (b58) 2015; 324
Masoudi-Sobhanzadeh, Omidi, Amanlou, Masoudi-Nejad (b57) 2019; 9
Yi, Deb, Dong, Alavi, Wang (b34) 2018; 88
Zhang, Wang, Yang, Gen (b22) 2019; 130
Gen, Zhang, Line, Yun (b23) 2017; 112
Fonseca, Santos, Carrano (b40) 2016; 74
Xue, Cai, Cao, Cui, Li (b60) 2015; 7
Masoudi-Sobhanzadeh, Motieghader, Masoudi-Nejad (b11) 2019; 20
Mirjalili (b3) 2015; 83
Asrari, Lotfifard, Payam (b41) 2016; 7
Lopez-Rincon, Tonda, Elati, Schwander, Piwowarski, Gallinari (b16) 2018; 65
Coello, Lechuga (b42) 2002
Cevher, Becker, Schmidt (b2) 2014; 31
Elsayed, Sarker (b35) 2016; 8
.
Goel, Singh, Aseri (b15) 2013; 438
Mirjalili (b59) 2015; 89
Bao, Xu, Goodman (b62) 2019; 134
Silva, Ricardo de Souza, Souza, Suza, Filho (b20) 2018; 71
Bernal, Castillo, Soria, Valdez (b61) 2017; 10
Lin, Chen, Zhan, Chen, Coello, Yin, Lin, Zhang (b29) 2016; 20
Połap, Woźniak (b45) 2017; 9
Sahoo, Chandra (b63) 2017; 52
Ghaemi, Feizi-Derakhshi (b46) 2014; 41
Wang, Tan, Liu (b52) 2018; 22
Sreekara Reddy, Ch. Ratnam, Rajyalakshmi, Manupati (b25) 2018; 114
Opara, Arabas (b8) 2019; 44
Rautray, Balabantaray (b14) 2017; 477
Mirjalili (b6) 2019
Pellerin, Perrier, Berthaut (b38) 2019; 280
Pei, J. (b44) 2017; vol. 10386
Kaushal, Baljit, Akashdeep (b12) 2018; 70
Zelinka (b5) 2015; 25
Hiziroglu (b13) 2013; 40
Tavakkoli-Moghaddam, Azarkish, Sadeghnejad-Barkousaraie (b31) 2011; 38
Chakraborty, Kar (b4) 2017
L.V. Santana-Quintero, N. Ramirez, C.A.C. Coello, A multiobjective particle swarm optimizer hybridized with scatter search, in: 5th Mexican International Conference on Artificial Intelligence, LNCS 4293, 2006, pp. 294–304.
El Majdouli, Rbouh, Bougrine, El Benani, El Imrani (b37) 2016; 8
Zhu, Lin, Du, Liang, Wang, Zhu, Chen, Huang, Ming (b26) 2016
Jayabarathi, Raghunathan, Gandomi (b49) 2018; vol. 744
Tang, Wang (b28) 2013; 17
Wissem, Sabeur, Haithem, Mondher, Engelbert (b1) 2018; 86
Wang, Wangc, Cuid, Suna, Zhaoa, Wanga, Xuee (b33) 2017; 69
Marini, Walczak (b7) 2015; 149
Binol, Guvenc, Bulut, Akkaya (b21) 2018; 54
Mirjalili, Lewis (b56) 2016; 95
Ratnaweera, Halgamuge (b53) 2004; 83
Ál. Rubio-Largo, Vega-Rodríguez, González-Álvarez (b24) 2016; 41
S. Tsutsui, A. Ghosh, A study on the effect of multi-parent recombination in real coded genetic algorithms, in: IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 1998.
Goh, Tan, Al-Mamun, Abbass (b48) 2015
Yang, Tang, Yao (b17) 2008; 178
Kaushal (10.1016/j.asoc.2019.105991_b12) 2018; 70
Chakraborty (10.1016/j.asoc.2019.105991_b4) 2017
Abdi (10.1016/j.asoc.2019.105991_b27) 2018; 9
Coello (10.1016/j.asoc.2019.105991_b42) 2002
Mirjalili (10.1016/j.asoc.2019.105991_b59) 2015; 89
Yi (10.1016/j.asoc.2019.105991_b54) 2018; 509
Lopez-Rincon (10.1016/j.asoc.2019.105991_b16) 2018; 65
Masoudi-Sobhanzadeh (10.1016/j.asoc.2019.105991_b11) 2019; 20
Mirjalili (10.1016/j.asoc.2019.105991_b56) 2016; 95
Fonseca (10.1016/j.asoc.2019.105991_b40) 2016; 74
Raidl (10.1016/j.asoc.2019.105991_b39) 2015; 244
Peng (10.1016/j.asoc.2019.105991_b36) 2015; 6
Wang (10.1016/j.asoc.2019.105991_b33) 2017; 69
Asrari (10.1016/j.asoc.2019.105991_b41) 2016; 7
Marini (10.1016/j.asoc.2019.105991_b7) 2015; 149
Goh (10.1016/j.asoc.2019.105991_b48) 2015
Yelghi (10.1016/j.asoc.2019.105991_b9) 2018; 62
10.1016/j.asoc.2019.105991_b51
Wang (10.1016/j.asoc.2019.105991_b52) 2018; 22
Cevher (10.1016/j.asoc.2019.105991_b2) 2014; 31
Mirjalili (10.1016/j.asoc.2019.105991_b3) 2015; 83
El Majdouli (10.1016/j.asoc.2019.105991_b37) 2016; 8
Ratnaweera (10.1016/j.asoc.2019.105991_b53) 2004; 83
Bernal (10.1016/j.asoc.2019.105991_b61) 2017; 10
Kang (10.1016/j.asoc.2019.105991_b19) 2018; 54
Zhu (10.1016/j.asoc.2019.105991_b26) 2016
Jayabarathi (10.1016/j.asoc.2019.105991_b49) 2018; vol. 744
Gen (10.1016/j.asoc.2019.105991_b23) 2017; 112
Deb (10.1016/j.asoc.2019.105991_b43) 2002; 6
Bao (10.1016/j.asoc.2019.105991_b62) 2019; 134
Yi (10.1016/j.asoc.2019.105991_b34) 2018; 88
Binol (10.1016/j.asoc.2019.105991_b21) 2018; 54
Wissem (10.1016/j.asoc.2019.105991_b1) 2018; 86
Tang (10.1016/j.asoc.2019.105991_b28) 2013; 17
Silva (10.1016/j.asoc.2019.105991_b20) 2018; 71
Rautray (10.1016/j.asoc.2019.105991_b14) 2017; 477
Opara (10.1016/j.asoc.2019.105991_b8) 2019; 44
Zhang (10.1016/j.asoc.2019.105991_b22) 2019; 130
Hiziroglu (10.1016/j.asoc.2019.105991_b13) 2013; 40
Elsayed (10.1016/j.asoc.2019.105991_b35) 2016; 8
Mirjalili (10.1016/j.asoc.2019.105991_b50) 2015
Połap (10.1016/j.asoc.2019.105991_b45) 2017; 9
Masoudi-Sobhanzadeh (10.1016/j.asoc.2019.105991_b57) 2019; 9
Yang (10.1016/j.asoc.2019.105991_b17) 2008; 178
Zelinka (10.1016/j.asoc.2019.105991_b5) 2015; 25
Goel (10.1016/j.asoc.2019.105991_b15) 2013; 438
Xue (10.1016/j.asoc.2019.105991_b60) 2015; 7
10.1016/j.asoc.2019.105991_b32
Patel (10.1016/j.asoc.2019.105991_b58) 2015; 324
Ghaemi (10.1016/j.asoc.2019.105991_b46) 2014; 41
Xu (10.1016/j.asoc.2019.105991_b30) 2018; 68
Sreekara Reddy (10.1016/j.asoc.2019.105991_b25) 2018; 114
Mirjalili (10.1016/j.asoc.2019.105991_b6) 2019
Ál. Rubio-Largo (10.1016/j.asoc.2019.105991_b24) 2016; 41
Pei (10.1016/j.asoc.2019.105991_b44) 2017; vol. 10386
Lin (10.1016/j.asoc.2019.105991_b29) 2016; 20
Pellerin (10.1016/j.asoc.2019.105991_b38) 2019; 280
Sahoo (10.1016/j.asoc.2019.105991_b63) 2017; 52
Tavakkoli-Moghaddam (10.1016/j.asoc.2019.105991_b31) 2011; 38
Mohapatra (10.1016/j.asoc.2019.105991_b18) 2017; 59
Deb (10.1016/j.asoc.2019.105991_b55) 2007
Fausto (10.1016/j.asoc.2019.105991_b47) 2017; 160
Hosseini (10.1016/j.asoc.2019.105991_b10) 2014; 24
References_xml – volume: vol. 10386
  year: 2017
  ident: b44
  article-title: Non-dominated sorting and crowding distance based multi-objective chaotic evolution
  publication-title: Advances in Swarm Intelligence. ICSI 2017
– volume: vol. 744
  year: 2018
  ident: b49
  article-title: The bat algorithm, variants and some practical engineering applications: A review
  publication-title: Nature-Inspired Algorithms and Applied Optimization
– start-page: 1187
  year: 2007
  end-page: 1194
  ident: b55
  article-title: Self-adaptive simulated binary crossover for real-parameter optimization
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– volume: 41
  start-page: 6676
  year: 2014
  end-page: 6687
  ident: b46
  article-title: Forest optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 74
  start-page: 108
  year: 2016
  end-page: 117
  ident: b40
  article-title: Integrating matheuristics and metaheuristics for timetabling
  publication-title: Comput. Oper. Res.
– volume: 65
  start-page: 91
  year: 2018
  end-page: 100
  ident: b16
  article-title: Evolutionary optimization of convolutional neural networks for cancer miRNA biomarkers classification
  publication-title: Appl. Soft Comput.
– volume: 17
  start-page: 20
  year: 2013
  end-page: 45
  ident: b28
  article-title: A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput
– volume: 477
  start-page: 174
  year: 2017
  end-page: 186
  ident: b14
  article-title: Cat swarm optimization based evolutionary framework for multi document summarization
  publication-title: Physica A
– volume: 6
  start-page: 481
  year: 2015
  end-page: 494
  ident: b36
  article-title: Differential evolution with distributed direction information based mutation operators: An optimization technique for big data
  publication-title: J. Amb. Itel. Hum. Comp.
– start-page: 3332
  year: 2015
  end-page: 3339
  ident: b48
  article-title: Evolutionary big optimization (BigOpt) of signals
  publication-title: 2015 IEEE Congress on Evolutionary Computation
– start-page: 43
  year: 2019
  end-page: 55
  ident: b6
  article-title: Genetic algorithm
  publication-title: Evolutionary Algorithms and Neural Networks Studies in Computational Intelligence, Vol. 780
– volume: 112
  start-page: 616
  year: 2017
  end-page: 633
  ident: b23
  article-title: Recent advances in hybrid evolutionary algorithms for multiobjective manufacturing scheduling
  publication-title: Comput. Ind. Eng.
– volume: 88
  start-page: 571
  year: 2018
  end-page: 585
  ident: b34
  article-title: An improved NSGA-III algorithm with adaptive mutation operator for big data optimization problems
  publication-title: Future Gener. Comput. Syst.
– volume: 509
  start-page: 470
  year: 2018
  end-page: 487
  ident: b54
  article-title: Behavior of crossover operators in NSGA-III for large-scale optimization problems
  publication-title: Inform. Sci.
– volume: 52
  start-page: 64
  year: 2017
  end-page: 80
  ident: b63
  article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification
  publication-title: Appl. Soft Comput.
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: b3
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
– volume: 69
  start-page: 806
  year: 2017
  end-page: 815
  ident: b33
  article-title: A hybrid multi-objective firefly algorithm for big data optimization
  publication-title: App. Soft Comput.
– volume: 114
  start-page: 78
  year: 2018
  end-page: 90
  ident: b25
  article-title: An effective hybrid multi objective evolutionary algorithm for solving real time event in flexible job shop scheduling problem
  publication-title: Measurement
– volume: 20
  start-page: 711
  year: 2016
  end-page: 729
  ident: b29
  article-title: A hybrid evolutionary immune algorithm for multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 324
  start-page: 217
  year: 2015
  end-page: 246
  ident: b58
  article-title: Heat transfer search (HTS): A novel optimization algorithm
  publication-title: Inform. Sci.
– volume: 244
  start-page: 66
  year: 2015
  end-page: 76
  ident: b39
  article-title: Decomposition based hybrid metaheuristics
  publication-title: European J. Oper. Res.
– volume: 59
  start-page: 340
  year: 2017
  end-page: 362
  ident: b18
  article-title: A modified competitive swarm optimizer for large scale optimization problems
  publication-title: Appl. Soft Comput.
– volume: 38
  start-page: 10812
  year: 2011
  end-page: 10821
  ident: b31
  article-title: A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 40
  start-page: 6491
  year: 2013
  end-page: 6507
  ident: b13
  article-title: Soft computing applications in customer segmentation: State-of-art review and critique
  publication-title: Expert Syst Appl.
– volume: 10
  start-page: 18
  year: 2017
  ident: b61
  article-title: Imperialist competitive algorithm with dynamic parameter adaptation using fuzzy logic applied to the optimization of mathematical functions
  publication-title: Algorithms
– start-page: 1051
  year: 2002
  end-page: 1056
  ident: b42
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
  publication-title: IEEE Congr. Evol. Comput.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b56
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 70
  start-page: 423
  year: 2018
  end-page: 464
  ident: b12
  article-title: Soft computing based object detection and tracking approaches: State-of-the-art survey
  publication-title: Appl. Soft Comput.
– volume: 68
  start-page: 268
  year: 2018
  end-page: 282
  ident: b30
  article-title: Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization
  publication-title: App. Soft Comput.
– volume: 83
  start-page: 240
  year: 2004
  end-page: 255
  ident: b53
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient
  publication-title: IEEE Trans. Evol. Comput.
– volume: 7
  start-page: 125
  year: 2015
  end-page: 128
  ident: b60
  article-title: Optimal parameter settings for bat algorithm
  publication-title: Int. J. Bio-Inspir. Com.
– volume: 149
  start-page: 153
  year: 2015
  end-page: 165
  ident: b7
  article-title: Particle swarm optimization (PSO). A tutorial
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 8
  start-page: 17
  year: 2016
  end-page: 33
  ident: b35
  article-title: Differential evolution framework for big data optimization
  publication-title: Memetic Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b43
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II evolutionary computation
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 333
  year: 2016
  end-page: 347
  ident: b37
  article-title: Fireworks algorithm framework for big data optimization
  publication-title: Memet. Comput.
– volume: 7
  start-page: 1401
  year: 2016
  end-page: 1410
  ident: b41
  article-title: Pareto dominance-based multiobjective optimization method for distribution network reconfiguration
  publication-title: IEEE T. Smart Grid
– reference: S. Tsutsui, A. Ghosh, A study on the effect of multi-parent recombination in real coded genetic algorithms, in: IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 1998.
– volume: 24
  start-page: 1078
  year: 2014
  end-page: 1094
  ident: b10
  article-title: A survey on the imperialist competitive algorithm metaheuristic: Implementation in engineering domain and directions for future research
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 387
  year: 2018
  end-page: 408
  ident: b52
  article-title: Particle swarm optimization algorithm: An overview
  publication-title: Soft. Comput.
– volume: 438
  start-page: 14
  year: 2013
  end-page: 21
  ident: b15
  article-title: A comparative analysis of soft computing techniques for gene prediction
  publication-title: Anal. Biochem.
– volume: 41
  start-page: 157
  year: 2016
  end-page: 168
  ident: b24
  article-title: Hybrid multiobjective artificial bee colony for multiple sequence alignment
  publication-title: App. Soft Comput.
– volume: 160
  start-page: 39
  year: 2017
  end-page: 55
  ident: b47
  article-title: A global optimization algorithm inspired in the behavior of selfish herds
  publication-title: Biosystems
– volume: 20
  start-page: 170
  year: 2019
  ident: b11
  article-title: Featureselect: A software for feature selection based on machine learning approaches
  publication-title: BMC Bioinform.
– volume: 9
  start-page: 9348
  year: 2019
  ident: b57
  article-title: Trader as a new optimization algorithm predicts drug-target interactions efficiently
  publication-title: Sci. Rep.
– volume: 54
  start-page: 1
  year: 2018
  end-page: 4
  ident: b19
  article-title: A strategy-selecting hybrid optimization algorithm to overcome the problems of the no free lunch theorem
  publication-title: IEEE Trans. Magn.
– volume: 178
  start-page: 2985
  year: 2008
  end-page: 2999
  ident: b17
  article-title: Large scale evolutionary optimization using cooperative coevolution
  publication-title: Inform. Sci.
– volume: 62
  start-page: 29
  year: 2018
  end-page: 44
  ident: b9
  article-title: A modified firefly algorithm for global minimum optimization
  publication-title: Appl. Soft Comput.
– volume: 44
  start-page: 546
  year: 2019
  end-page: 558
  ident: b8
  article-title: Differential evolution: A survey of theoretical analyses
  publication-title: Swarm Evol. Comput.
– volume: 31
  start-page: 32
  year: 2014
  end-page: 43
  ident: b2
  article-title: Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics
  publication-title: IEEE Signal Proc. Mag.
– volume: 54
  start-page: 1377
  year: 2018
  end-page: 1379
  ident: b21
  article-title: Hybrid evolutionary search method for complex function optimisation problems
  publication-title: Electron. Lett.
– reference: L.V. Santana-Quintero, N. Ramirez, C.A.C. Coello, A multiobjective particle swarm optimizer hybridized with scatter search, in: 5th Mexican International Conference on Artificial Intelligence, LNCS 4293, 2006, pp. 294–304.
– start-page: 177
  year: 2016
  end-page: 198
  ident: b26
  article-title: A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm
  publication-title: Inform. Sci.
– volume: 130
  start-page: 661
  year: 2019
  end-page: 670
  ident: b22
  article-title: Hybrid multiobjective evolutionary algorithm based on differential evolution for flow shop scheduling problems
  publication-title: Comput. Ind. Eng.
– reference: .
– volume: 86
  start-page: 546
  year: 2018
  end-page: 564
  ident: b1
  article-title: An experimental survey on big data frameworks
  publication-title: Future Gener. Comput. Syst.
– volume: 25
  start-page: 2
  year: 2015
  end-page: 14
  ident: b5
  article-title: A survey on evolutionary algorithms dynamics and its complexity – mutual relations, past, present and future
  publication-title: Swarm Evol. Comput.
– volume: 134
  start-page: 14
  year: 2019
  end-page: 27
  ident: b62
  article-title: A new dominance-relation metric balancing convergence and diversity in multi- and many-objective optimization
  publication-title: Expert Syst. Appl.
– volume: 71
  start-page: 433
  year: 2018
  end-page: 459
  ident: b20
  article-title: Hybrid metaheuristics and multi-agent systems for solving optimization problems: A review of frameworks and a comparative analysis
  publication-title: Appl. Soft Comput.
– volume: 280
  start-page: 395
  year: 2019
  end-page: 416
  ident: b38
  article-title: A survey of hybrid metaheuristics for the resource-constrained project scheduling problem
  publication-title: European J. Oper. Res.
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b59
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl-Based Syst.
– start-page: 120
  year: 2015
  end-page: 133
  ident: b50
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– start-page: 457
  year: 2017
  end-page: 494
  ident: b4
  article-title: Swarm intelligence: A review of algorithms
  publication-title: Nature-Inspired, Computing and Optimization, Modeling and Optimization in Science and Technologies
– volume: 9
  start-page: 525
  year: 2018
  end-page: 540
  ident: b27
  article-title: Search manager: A dramework for hybridizing different search strategies
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 9
  year: 2017
  ident: b45
  article-title: Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism
  publication-title: Symmetry
– volume: 20
  start-page: 170
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2019.105991_b11
  article-title: Featureselect: A software for feature selection based on machine learning approaches
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-019-2754-0
– volume: 114
  start-page: 78
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b25
  article-title: An effective hybrid multi objective evolutionary algorithm for solving real time event in flexible job shop scheduling problem
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.09.022
– volume: 54
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b19
  article-title: A strategy-selecting hybrid optimization algorithm to overcome the problems of the no free lunch theorem
  publication-title: IEEE Trans. Magn.
– volume: 22
  start-page: 387
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b52
  article-title: Particle swarm optimization algorithm: An overview
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-016-2474-6
– volume: 31
  start-page: 32
  issue: 5
  year: 2014
  ident: 10.1016/j.asoc.2019.105991_b2
  article-title: Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics
  publication-title: IEEE Signal Proc. Mag.
  doi: 10.1109/MSP.2014.2329397
– start-page: 43
  year: 2019
  ident: 10.1016/j.asoc.2019.105991_b6
  article-title: Genetic algorithm
– volume: 88
  start-page: 571
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b34
  article-title: An improved NSGA-III algorithm with adaptive mutation operator for big data optimization problems
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.06.008
– volume: 477
  start-page: 174
  year: 2017
  ident: 10.1016/j.asoc.2019.105991_b14
  article-title: Cat swarm optimization based evolutionary framework for multi document summarization
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.02.056
– volume: 59
  start-page: 340
  year: 2017
  ident: 10.1016/j.asoc.2019.105991_b18
  article-title: A modified competitive swarm optimizer for large scale optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.060
– volume: 41
  start-page: 6676
  issue: 15
  year: 2014
  ident: 10.1016/j.asoc.2019.105991_b46
  article-title: Forest optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.05.009
– volume: 24
  start-page: 1078
  year: 2014
  ident: 10.1016/j.asoc.2019.105991_b10
  article-title: A survey on the imperialist competitive algorithm metaheuristic: Implementation in engineering domain and directions for future research
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.08.024
– volume: 8
  start-page: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2019.105991_b35
  article-title: Differential evolution framework for big data optimization
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-015-0174-x
– volume: 7
  start-page: 1401
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2019.105991_b41
  article-title: Pareto dominance-based multiobjective optimization method for distribution network reconfiguration
  publication-title: IEEE T. Smart Grid
  doi: 10.1109/TSG.2015.2468683
– start-page: 1051
  year: 2002
  ident: 10.1016/j.asoc.2019.105991_b42
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.asoc.2019.105991_b56
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 280
  start-page: 395
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2019.105991_b38
  article-title: A survey of hybrid metaheuristics for the resource-constrained project scheduling problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2019.01.063
– start-page: 3332
  year: 2015
  ident: 10.1016/j.asoc.2019.105991_b48
  article-title: Evolutionary big optimization (BigOpt) of signals
– volume: 9
  start-page: 9348
  year: 2019
  ident: 10.1016/j.asoc.2019.105991_b57
  article-title: Trader as a new optimization algorithm predicts drug-target interactions efficiently
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45814-8
– volume: 6
  start-page: 481
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2019.105991_b36
  article-title: Differential evolution with distributed direction information based mutation operators: An optimization technique for big data
  publication-title: J. Amb. Itel. Hum. Comp.
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.asoc.2019.105991_b3
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 38
  start-page: 10812
  issue: 9
  year: 2011
  ident: 10.1016/j.asoc.2019.105991_b31
  article-title: A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.050
– volume: 8
  start-page: 333
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2019.105991_b37
  article-title: Fireworks algorithm framework for big data optimization
  publication-title: Memet. Comput.
  doi: 10.1007/s12293-016-0201-6
– start-page: 177
  issue: 345
  year: 2016
  ident: 10.1016/j.asoc.2019.105991_b26
  article-title: A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.01.046
– volume: 324
  start-page: 217
  year: 2015
  ident: 10.1016/j.asoc.2019.105991_b58
  article-title: Heat transfer search (HTS): A novel optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.06.044
– volume: 41
  start-page: 157
  year: 2016
  ident: 10.1016/j.asoc.2019.105991_b24
  article-title: Hybrid multiobjective artificial bee colony for multiple sequence alignment
  publication-title: App. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.034
– volume: 160
  start-page: 39
  year: 2017
  ident: 10.1016/j.asoc.2019.105991_b47
  article-title: A global optimization algorithm inspired in the behavior of selfish herds
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2017.07.010
– volume: 20
  start-page: 711
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2019.105991_b29
  article-title: A hybrid evolutionary immune algorithm for multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 130
  start-page: 661
  year: 2019
  ident: 10.1016/j.asoc.2019.105991_b22
  article-title: Hybrid multiobjective evolutionary algorithm based on differential evolution for flow shop scheduling problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.03.019
– volume: 509
  start-page: 470
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b54
  article-title: Behavior of crossover operators in NSGA-III for large-scale optimization problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.10.005
– volume: 83
  start-page: 240
  year: 2004
  ident: 10.1016/j.asoc.2019.105991_b53
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826071
– volume: vol. 10386
  year: 2017
  ident: 10.1016/j.asoc.2019.105991_b44
  article-title: Non-dominated sorting and crowding distance based multi-objective chaotic evolution
– ident: 10.1016/j.asoc.2019.105991_b51
  doi: 10.1109/ICEC.1998.700159
– volume: 52
  start-page: 64
  year: 2017
  ident: 10.1016/j.asoc.2019.105991_b63
  article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.022
– volume: 69
  start-page: 806
  year: 2017
  ident: 10.1016/j.asoc.2019.105991_b33
  article-title: A hybrid multi-objective firefly algorithm for big data optimization
  publication-title: App. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.029
– volume: 149
  start-page: 153
  year: 2015
  ident: 10.1016/j.asoc.2019.105991_b7
  article-title: Particle swarm optimization (PSO). A tutorial
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.08.020
– volume: 70
  start-page: 423
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b12
  article-title: Soft computing based object detection and tracking approaches: State-of-the-art survey
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.023
– volume: 54
  start-page: 1377
  issue: 24
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b21
  article-title: Hybrid evolutionary search method for complex function optimisation problems
  publication-title: Electron. Lett.
  doi: 10.1049/el.2018.6506
– start-page: 1187
  year: 2007
  ident: 10.1016/j.asoc.2019.105991_b55
  article-title: Self-adaptive simulated binary crossover for real-parameter optimization
– volume: 7
  start-page: 125
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2019.105991_b60
  article-title: Optimal parameter settings for bat algorithm
  publication-title: Int. J. Bio-Inspir. Com.
  doi: 10.1504/IJBIC.2015.069304
– volume: 9
  issue: 10
  year: 2017
  ident: 10.1016/j.asoc.2019.105991_b45
  article-title: Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism
  publication-title: Symmetry
  doi: 10.3390/sym9100203
– volume: 17
  start-page: 20
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2019.105991_b28
  article-title: A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput
  doi: 10.1109/TEVC.2012.2185702
– volume: 178
  start-page: 2985
  year: 2008
  ident: 10.1016/j.asoc.2019.105991_b17
  article-title: Large scale evolutionary optimization using cooperative coevolution
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2008.02.017
– volume: 9
  start-page: 525
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b27
  article-title: Search manager: A dramework for hybridizing different search strategies
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 438
  start-page: 14
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2019.105991_b15
  article-title: A comparative analysis of soft computing techniques for gene prediction
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2013.03.015
– ident: 10.1016/j.asoc.2019.105991_b32
  doi: 10.1007/11925231_28
– volume: 10
  start-page: 18
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105991_b61
  article-title: Imperialist competitive algorithm with dynamic parameter adaptation using fuzzy logic applied to the optimization of mathematical functions
  publication-title: Algorithms
  doi: 10.3390/a10010018
– volume: 62
  start-page: 29
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b9
  article-title: A modified firefly algorithm for global minimum optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.10.032
– volume: 40
  start-page: 6491
  issue: 16
  year: 2013
  ident: 10.1016/j.asoc.2019.105991_b13
  article-title: Soft computing applications in customer segmentation: State-of-art review and critique
  publication-title: Expert Syst Appl.
  doi: 10.1016/j.eswa.2013.05.052
– volume: 25
  start-page: 2
  year: 2015
  ident: 10.1016/j.asoc.2019.105991_b5
  article-title: A survey on evolutionary algorithms dynamics and its complexity – mutual relations, past, present and future
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.06.002
– volume: 112
  start-page: 616
  year: 2017
  ident: 10.1016/j.asoc.2019.105991_b23
  article-title: Recent advances in hybrid evolutionary algorithms for multiobjective manufacturing scheduling
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.12.045
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2019.105991_b43
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II evolutionary computation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 74
  start-page: 108
  year: 2016
  ident: 10.1016/j.asoc.2019.105991_b40
  article-title: Integrating matheuristics and metaheuristics for timetabling
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.04.016
– volume: 86
  start-page: 546
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b1
  article-title: An experimental survey on big data frameworks
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.04.032
– volume: 244
  start-page: 66
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2019.105991_b39
  article-title: Decomposition based hybrid metaheuristics
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2014.12.005
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.asoc.2019.105991_b59
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– start-page: 120
  issue: 96
  year: 2015
  ident: 10.1016/j.asoc.2019.105991_b50
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 71
  start-page: 433
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b20
  article-title: Hybrid metaheuristics and multi-agent systems for solving optimization problems: A review of frameworks and a comparative analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.06.050
– volume: 134
  start-page: 14
  year: 2019
  ident: 10.1016/j.asoc.2019.105991_b62
  article-title: A new dominance-relation metric balancing convergence and diversity in multi- and many-objective optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.032
– volume: 44
  start-page: 546
  year: 2019
  ident: 10.1016/j.asoc.2019.105991_b8
  article-title: Differential evolution: A survey of theoretical analyses
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.06.010
– volume: 68
  start-page: 268
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b30
  article-title: Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization
  publication-title: App. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.053
– volume: 65
  start-page: 91
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b16
  article-title: Evolutionary optimization of convolutional neural networks for cancer miRNA biomarkers classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.036
– start-page: 457
  year: 2017
  ident: 10.1016/j.asoc.2019.105991_b4
  article-title: Swarm intelligence: A review of algorithms
  doi: 10.1007/978-3-319-50920-4_19
– volume: vol. 744
  year: 2018
  ident: 10.1016/j.asoc.2019.105991_b49
  article-title: The bat algorithm, variants and some practical engineering applications: A review
SSID ssj0016928
Score 2.4509294
Snippet Big Data optimization (Big-Opt) refers to optimization problems which require to manage the properties of big data analytics. In the present paper, the Search...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105991
SubjectTerms Big Data optimization
Evolutionary operators
Hybrid multi-objective evolutionary algorithm
Search Manager framework
Title Hybrid multi-objective evolutionary algorithm based on Search Manager framework for big data optimization problems
URI https://dx.doi.org/10.1016/j.asoc.2019.105991
Volume 87
WOSCitedRecordID wos000509341500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbpwwFLXaSRfd9F01fcmL7hARMwPYXkZpqrSLqKpSaXboYuwM0wxEQKI0X5_rBwydtlGz6AYhBAZxjo-v7WNfQj4kulAFYLeEwRQ7KEyKUKgoD9lMJ1JyZuaebLIJdnzMFwvx1U_FtDadAKsqfnUlzv8r1HgNwTZLZ-8A91AoXsBzBB2PCDse_wn4o59mEZZzCoZ1vnKKFqhL_1Zjk4Oz07opu-U6MK1YEVjRsMMfzg7TBLo3bTk_Z3kaGC9pUKPCrP3SzcAno2nHAW4f1bYo79avftH1jaOdZCqsewA1plV6E4aW12X4UTXwY9naJMMoNUtYr6EIv6lrGI9MIN7R4PLwYpryMBZ-iNGrrW9enVya4M4l6_pNyd2gwmoPkKTGgSf2Njf_um32VnM2mAx7_9oqM2VkpozMlXGf7MxYIviE7Ox_Plx8GaadUmGT8Q4f7ldZOUPg9pf8OZIZRScnT8gj362g-44OT8k9VT0jj_uUHdQr-HPSOHbQLXbQMTvowA5q2UHrijp2UM8OOrCDIjsosoMadtAxO2jPjhfk-6fDk4Oj0KfdCOU8TbuwwCrKdcqKGQNgSvFIRrGSLNZREsm8kOksn2IV15JLPOFCRoInaQ5FojiXYv6STKq6Uq8IjSPQLJEM8rmOYRpxLfg8Bw25SgES2CXT_hdm0u9Jb1KjnGV_B2-XBMMz525HllvvTnpkMh9TulgxQ6Ld8tzrO73lDXm4qQBvyaRrLtQ78kBedmXbvPcsuwHvB5-S
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+multi-objective+evolutionary+algorithm+based+on+Search+Manager+framework+for+big+data+optimization+problems&rft.jtitle=Applied+soft+computing&rft.au=Abdi%2C+Yousef&rft.au=Feizi-Derakhshi%2C+Mohammad-Reza&rft.date=2020-02-01&rft.issn=1568-4946&rft.volume=87&rft.spage=105991&rft_id=info:doi/10.1016%2Fj.asoc.2019.105991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon