On covering graphs by complete bipartite subgraphs

We prove that, if a graph with e edges contains m vertex-disjoint edges, then m 2 / e complete bipartite subgraphs are necessary to cover all its edges. Similar lower bounds are also proved for fractional covers. For sparse graphs, this improves the well-known fooling set lower bound in communicatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics Ročník 309; číslo 10; s. 3399 - 3403
Hlavní autoři: Jukna, S., Kulikov, A.S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 28.05.2009
Témata:
ISSN:0012-365X, 1872-681X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove that, if a graph with e edges contains m vertex-disjoint edges, then m 2 / e complete bipartite subgraphs are necessary to cover all its edges. Similar lower bounds are also proved for fractional covers. For sparse graphs, this improves the well-known fooling set lower bound in communication complexity. We also formulate several open problems about covering problems for graphs whose solution would have important consequences in the complexity theory of boolean functions.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2008.09.036