Monitoring of Nonlinear Time-Delay Processes Based on Adaptive Method and Moving Window

A new adaptive kernel principal component analysis (KPCA) algorithm for monitoring nonlinear time-delay process is proposed. The main contribution of the proposed algorithm is to combine adaptive KPCA with moving window principal component analysis (MWPCA) algorithm, and exponentially weighted princ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical problems in engineering Ročník 2014; číslo 1
Hlavní autoři: Fan, Yunpeng, Zhang, Wei, Zhang, Yingwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Hindawi Publishing Corporation 01.01.2014
John Wiley & Sons, Inc
Témata:
ISSN:1024-123X, 1563-5147
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A new adaptive kernel principal component analysis (KPCA) algorithm for monitoring nonlinear time-delay process is proposed. The main contribution of the proposed algorithm is to combine adaptive KPCA with moving window principal component analysis (MWPCA) algorithm, and exponentially weighted principal component analysis (EWPCA) algorithm respectively. The new algorithm prejudges the new available sample with MKPCA method to decide whether the model is updated. Then update the KPCA model using EWKPCA method. And also extend MPCA and EWPCA from linear data space to nonlinear data space effectively. Monitoring experiment is performed using the proposed algorithm. The simulation results show that the proposed method is effective.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1024-123X
1563-5147
DOI:10.1155/2014/546138