Fast and optimal decoding for machine translation

A good decoding algorithm is critical to the success of any statistical machine translation system. The decoder's job is to find the translation that is most likely according to a set of previously learned parameters (and a formula for combining them). Since the space of possible translations i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Artificial intelligence Ročník 154; číslo 1; s. 127 - 143
Hlavní autoři: Germann, Ulrich, Jahr, Michael, Knight, Kevin, Marcu, Daniel, Yamada, Kenji
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2004
Témata:
ISSN:0004-3702, 1872-7921
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A good decoding algorithm is critical to the success of any statistical machine translation system. The decoder's job is to find the translation that is most likely according to a set of previously learned parameters (and a formula for combining them). Since the space of possible translations is extremely large, typical decoding algorithms are only able to examine a portion of it, thus risking to miss good solutions. Unfortunately, examining more of the space leads to unacceptably slow decodings. In this paper, we compare the speed and output quality of a traditional stack-based decoding algorithm with two new decoders: a fast but non-optimal greedy decoder and a slow but optimal decoder that treats decoding as an integer-programming optimization problem.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2003.06.001