Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization Algorithm Problems
Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the fra...
Uloženo v:
| Vydáno v: | Physical review letters Ročník 126; číslo 7; s. 070505 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Physical Society
19.02.2021
American Physical Society (APS) |
| Témata: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or "bang-bang") structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating that bang-anneal-bang protocols are more common. The general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms. |
|---|---|
| AbstractList | Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or "bang-bang") structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating that bang-anneal-bang protocols are more common. The general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms.Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or "bang-bang") structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating that bang-anneal-bang protocols are more common. The general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms. Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or “bang-bang”) structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating that bang-anneal-bang protocols are more common. Futher, the general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms. Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or "bang-bang") structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating that bang-anneal-bang protocols are more common. The general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms. |
| ArticleNumber | 070505 |
| Author | Brady, Lucas T. Gorshkov, Alexey V. Baldwin, Christopher L. Kharkov, Yaroslav Bapat, Aniruddha |
| Author_xml | – sequence: 1 givenname: Lucas T. orcidid: 0000-0001-7696-7689 surname: Brady fullname: Brady, Lucas T. – sequence: 2 givenname: Christopher L. surname: Baldwin fullname: Baldwin, Christopher L. – sequence: 3 givenname: Aniruddha surname: Bapat fullname: Bapat, Aniruddha – sequence: 4 givenname: Yaroslav surname: Kharkov fullname: Kharkov, Yaroslav – sequence: 5 givenname: Alexey V. orcidid: 0000-0003-0509-3421 surname: Gorshkov fullname: Gorshkov, Alexey V. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33666474$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1852863$$D View this record in Osti.gov |
| BookMark | eNqFkV9rFDEUxYNU7Lb6FcqgL77MevNnMgn4shSrwkKr6Kshk810UzLJmmTE9tOb7bYoffHpQvide0_OOUFHIQaL0BmGJcZA311tb_NX-2ttS1liwpfQQwfdM7TA0Mu2x5gdoQUAxa0E6I_RSc43AFBR8QIdU8o5Zz1boB-Xu-Im7ZurFEs00efGhebLrEOZp2YVgtXehetGh83f190uxd9VVWxzL3d3urgYmpW_jsmV7bTfNng75Zfo-ah9tq8e5in6fvHh2_mndn358fP5at2a6qS02gprB2zGTloOZkOJpp0EIcko5WiAMNH1g9AdHkYJWPeMC26k4Mww2JCenqLXh70xF6eyccWarYnVvikKi44ITiv09gBV-z9nm4uaXDbWex1snLMiTAommaCyom-eoDdxTqF-YU_1BBOCeaXOHqh5mOxG7VINJd2qx3gr8P4AmBRzTnZU1dl9ViVp5xUGtW9T_dOmqhWpQ5tVzp_IHy_8R_gHer2nNQ |
| CitedBy_id | crossref_primary_10_3389_fcomp_2024_1286057 crossref_primary_10_1103_PhysRevApplied_22_024009 crossref_primary_10_3390_quantum6040036 crossref_primary_10_1098_rspa_2024_0193 crossref_primary_10_1103_PhysRevResearch_6_043325 crossref_primary_10_1103_PhysRevLett_131_060602 crossref_primary_10_1088_2058_9565_ad895c crossref_primary_10_1038_s41598_023_41688_z crossref_primary_10_1103_PhysRevResearch_3_013227 crossref_primary_10_1007_s11128_023_04170_3 crossref_primary_10_1088_1361_6455_ad46a5 crossref_primary_10_3389_fphy_2022_900099 crossref_primary_10_1038_s42256_022_00446_y crossref_primary_10_1088_1402_4896_acf803 crossref_primary_10_1088_1367_2630_acb22c crossref_primary_10_3390_quantum7010009 crossref_primary_10_1088_1367_2630_ace547 crossref_primary_10_1103_PhysRevApplied_17_044005 crossref_primary_10_3390_math10152601 crossref_primary_10_1016_j_physrep_2024_03_002 crossref_primary_10_1103_PhysRevResearch_4_023249 crossref_primary_10_1007_s42484_022_00069_x crossref_primary_10_1103_PhysRevApplied_19_064071 crossref_primary_10_1103_PhysRevResearch_6_023171 crossref_primary_10_1103_PhysRevA_111_L050201 crossref_primary_10_1088_1361_6633_ad85f0 crossref_primary_10_1103_PhysRevD_111_034506 crossref_primary_10_1103_PhysRevA_111_062406 crossref_primary_10_1007_s11227_025_07573_4 crossref_primary_10_1088_2058_9565_ad7b6f crossref_primary_10_1016_j_jii_2024_100663 crossref_primary_10_1103_PhysRevA_105_032431 crossref_primary_10_1103_PRXQuantum_4_030335 crossref_primary_10_1103_PhysRevApplied_16_054023 crossref_primary_10_1038_s41567_025_02944_3 crossref_primary_10_1103_PhysRevResearch_6_033336 crossref_primary_10_1103_PRXQuantum_5_020366 crossref_primary_10_1088_2058_9565_aca3ce crossref_primary_10_1103_PhysRevA_111_032411 crossref_primary_10_1103_PhysRevA_105_052442 crossref_primary_10_1038_s41534_024_00825_w crossref_primary_10_1088_2058_9565_acfbaa crossref_primary_10_1103_PhysRevA_111_062411 crossref_primary_10_32604_cmc_2022_028878 crossref_primary_10_1103_PhysRevA_111_042602 crossref_primary_10_1007_s11128_024_04512_9 crossref_primary_10_1088_1367_2630_ad7b6b crossref_primary_10_1103_x9hw_xhvj crossref_primary_10_1088_1367_2630_adfd07 crossref_primary_10_1103_fkmb_b4k4 crossref_primary_10_1287_ijoc_2024_0560 crossref_primary_10_1140_epjqt_s40507_022_00138_x crossref_primary_10_1088_1367_2630_ad4629 crossref_primary_10_1145_3517340 crossref_primary_10_3390_app11167574 crossref_primary_10_1038_s41534_023_00787_5 |
| Cites_doi | 10.1007/978-1-4419-8853-9 10.1063/1.2798382 10.1073/pnas.2006373117 10.1103/PhysRevA.77.043806 10.1038/nature24654 10.1088/1367-2630/12/7/075008 10.1137/0304013 10.1126/science.aax9743 10.1103/PhysRevA.87.043607 10.1016/j.jmr.2004.11.004 10.1103/PhysRevLett.99.170501 10.1103/PhysRevA.100.022327 10.1103/PhysRevX.10.021067 10.1103/PhysRevLett.89.188301 10.1103/PhysRevA.90.013404 10.1103/PhysRevA.65.042308 10.1103/PhysRevLett.98.243602 10.1103/PhysRevA.91.043401 10.1103/PhysRevA.68.062308 10.1103/PhysRevLett.109.267203 10.1103/PhysRevB.91.201404 10.1103/PhysRevE.58.5355 10.1038/s41566-018-0236-y 10.1088/0953-4075/40/18/R01 10.1103/PhysRevA.86.013405 10.1126/science.288.5467.824 10.1103/PhysRevX.7.021027 10.1088/2058-9565/aa7daf 10.1103/PhysRevA.97.062343 |
| ContentType | Journal Article |
| Copyright | Copyright American Physical Society Feb 19, 2021 |
| Copyright_xml | – notice: Copyright American Physical Society Feb 19, 2021 |
| CorporateAuthor | Univ. of Iowa, Iowa City, IA (United States) Duke Univ., Durham, NC (United States) |
| CorporateAuthor_xml | – name: Duke Univ., Durham, NC (United States) – name: Univ. of Iowa, Iowa City, IA (United States) |
| DBID | AAYXX CITATION NPM 7U5 8FD H8D L7M 7X8 OIOZB OTOTI |
| DOI | 10.1103/PhysRevLett.126.070505 |
| DatabaseName | CrossRef PubMed Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef PubMed Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | 1852863 33666474 10_1103_PhysRevLett_126_070505 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 NPM 7U5 8FD H8D L7M 7X8 60C AAPBV ABCKA ABPTK ADETJ OIOZB OTOTI UCJ VQA XFK |
| ID | FETCH-LOGICAL-c366t-ae8eeb1cf59e60cd32a3590892f99fc024857b8a51bf901a74686c9864c40d273 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 84 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620021300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Thu May 18 22:34:28 EDT 2023 Thu Jul 10 19:03:15 EDT 2025 Sun Nov 09 06:52:37 EST 2025 Thu Apr 03 07:04:03 EDT 2025 Sat Nov 29 07:39:44 EST 2025 Tue Nov 18 22:43:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-ae8eeb1cf59e60cd32a3590892f99fc024857b8a51bf901a74686c9864c40d273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0019139; SC0019449 National Institute of Standards and Technology (NIST) USDOE Office of Science (SC) |
| ORCID | 0000-0001-7696-7689 0000-0003-0509-3421 0000000176967689 0000000305093421 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1852863 |
| PMID | 33666474 |
| PQID | 2497212216 |
| PQPubID | 2048222 |
| ParticipantIDs | osti_scitechconnect_1852863 proquest_miscellaneous_2498494839 proquest_journals_2497212216 pubmed_primary_33666474 crossref_citationtrail_10_1103_PhysRevLett_126_070505 crossref_primary_10_1103_PhysRevLett_126_070505 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-19 |
| PublicationDateYYYYMMDD | 2021-02-19 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: College Park |
| PublicationTitle | Physical review letters |
| PublicationTitleAlternate | Phys Rev Lett |
| PublicationYear | 2021 |
| Publisher | American Physical Society American Physical Society (APS) |
| Publisher_xml | – name: American Physical Society – name: American Physical Society (APS) |
| References | L. S. Pontryagin (PhysRevLett.126.070505Cc8R1) 1962 D. Aharonov (PhysRevLett.126.070505Cc13R1) 2007 PhysRevLett.126.070505Cc19R1 PhysRevLett.126.070505Cc18R1 PhysRevLett.126.070505Cc15R1 PhysRevLett.126.070505Cc17R1 PhysRevLett.126.070505Cc36R1 PhysRevLett.126.070505Cc16R1 PhysRevLett.126.070505Cc37R1 PhysRevLett.126.070505Cc34R1 Y. Nesterov (PhysRevLett.126.070505Cc43R1) 2004 PhysRevLett.126.070505Cc10R1 PhysRevLett.126.070505Cc35R1 PhysRevLett.126.070505Cc51R1 D. E. Kirk (PhysRevLett.126.070505Cc29R1) 1998 M. Grace (PhysRevLett.126.070505Cc23R1) 2009; 40 PhysRevLett.126.070505Cc49R1 PhysRevLett.126.070505Cc25R1 PhysRevLett.126.070505Cc47R1 PhysRevLett.126.070505Cc27R1 PhysRevLett.126.070505Cc48R1 PhysRevLett.126.070505Cc2R1 PhysRevLett.126.070505Cc4R1 PhysRevLett.126.070505Cc7R1 PhysRevLett.126.070505Cc22R1 PhysRevLett.126.070505Cc45R1 PhysRevLett.126.070505Cc21R1 PhysRevLett.126.070505Cc46R1 PhysRevLett.126.070505Cc24R1 PhysRevLett.126.070505Cc41R1 PhysRevLett.126.070505Cc42R1 PhysRevLett.126.070505Cc20R1 PhysRevLett.126.070505Cc40R1 |
| References_xml | – volume-title: Introductory Lectures on Convex Optimization year: 2004 ident: PhysRevLett.126.070505Cc43R1 doi: 10.1007/978-1-4419-8853-9 – ident: PhysRevLett.126.070505Cc34R1 doi: 10.1063/1.2798382 – ident: PhysRevLett.126.070505Cc42R1 doi: 10.1073/pnas.2006373117 – ident: PhysRevLett.126.070505Cc22R1 doi: 10.1103/PhysRevA.77.043806 – ident: PhysRevLett.126.070505Cc41R1 doi: 10.1038/nature24654 – ident: PhysRevLett.126.070505Cc17R1 doi: 10.1088/1367-2630/12/7/075008 – ident: PhysRevLett.126.070505Cc35R1 doi: 10.1137/0304013 – ident: PhysRevLett.126.070505Cc25R1 doi: 10.1126/science.aax9743 – ident: PhysRevLett.126.070505Cc46R1 doi: 10.1103/PhysRevA.87.043607 – ident: PhysRevLett.126.070505Cc20R1 doi: 10.1016/j.jmr.2004.11.004 – ident: PhysRevLett.126.070505Cc21R1 doi: 10.1103/PhysRevLett.99.170501 – ident: PhysRevLett.126.070505Cc7R1 doi: 10.1103/PhysRevA.100.022327 – ident: PhysRevLett.126.070505Cc45R1 doi: 10.1103/PhysRevX.10.021067 – ident: PhysRevLett.126.070505Cc18R1 doi: 10.1103/PhysRevLett.89.188301 – ident: PhysRevLett.126.070505Cc37R1 doi: 10.1103/PhysRevA.90.013404 – ident: PhysRevLett.126.070505Cc10R1 doi: 10.1103/PhysRevA.65.042308 – ident: PhysRevLett.126.070505Cc51R1 doi: 10.1103/PhysRevLett.98.243602 – ident: PhysRevLett.126.070505Cc27R1 doi: 10.1103/PhysRevA.91.043401 – ident: PhysRevLett.126.070505Cc19R1 doi: 10.1103/PhysRevA.68.062308 – ident: PhysRevLett.126.070505Cc40R1 doi: 10.1103/PhysRevLett.109.267203 – volume: 40 start-page: 9 issn: 0953-4075 year: 2009 ident: PhysRevLett.126.070505Cc23R1 publication-title: J. Phys. B – ident: PhysRevLett.126.070505Cc47R1 doi: 10.1103/PhysRevB.91.201404 – ident: PhysRevLett.126.070505Cc2R1 doi: 10.1103/PhysRevE.58.5355 – ident: PhysRevLett.126.070505Cc49R1 doi: 10.1038/s41566-018-0236-y – volume-title: The Mathematical Theory of Optimal Processes year: 1962 ident: PhysRevLett.126.070505Cc8R1 – ident: PhysRevLett.126.070505Cc16R1 doi: 10.1088/0953-4075/40/18/R01 – ident: PhysRevLett.126.070505Cc36R1 doi: 10.1103/PhysRevA.86.013405 – ident: PhysRevLett.126.070505Cc15R1 doi: 10.1126/science.288.5467.824 – ident: PhysRevLett.126.070505Cc4R1 doi: 10.1103/PhysRevX.7.021027 – ident: PhysRevLett.126.070505Cc24R1 doi: 10.1088/2058-9565/aa7daf – volume-title: SIAM J. Comput. year: 2007 ident: PhysRevLett.126.070505Cc13R1 – volume-title: Optimal Control Theory: An Introduction year: 1998 ident: PhysRevLett.126.070505Cc29R1 – ident: PhysRevLett.126.070505Cc48R1 doi: 10.1103/PhysRevA.97.062343 |
| SSID | ssj0001268 |
| Score | 2.6657343 |
| Snippet | Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of... |
| SourceID | osti proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 070505 |
| SubjectTerms | Algorithms Annealing CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Control theory Ising model Optimal control Optimization Optimization algorithms Physics |
| Title | Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization Algorithm Problems |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33666474 https://www.proquest.com/docview/2497212216 https://www.proquest.com/docview/2498494839 https://www.osti.gov/servlets/purl/1852863 |
| Volume | 126 |
| WOSCitedRecordID | wos000620021300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8QwDA9yKPji98f8YoKv063dR_t4iOKL5ykK9-Toeq0e3G1y24l_vsk2TwVFfBljTUZJ0zShyS8AJ5xbHRhfe1lkEy9k2dBDrzXwBFdRZhhF2WHdbCLp9cRgIPsL4P98gx_4_IwyIe_MK1W3nAaMoDap-RoZXRGSYvPrwdz04nhjejnlHfhJWxL8-2--nUadAnfV755mfeJcrv5_rmuw0nqXbrdRh3VYMPkGLNVZnrrchMcbNBATJOhPi6pAFSjdUe7ezlC6s4nbRZOrqDrdVfnw8yuBjr8hV2Xcmr0t3HS746diOqqeJ_Q3akpTbsHD5cX9-ZXXNljwNI_jylNGGLTV2kbSxL4ecqY49UCXzEppdQ13lmRCRUFmcdFUEsYi1gTorkN_iI7PNnTyIje74FqFKqm5sZrpUBqjeCKtUhguITW-OBB9CDrVLfo4NcEYp3UU4vP0i-xSlF3ayM6BsznfS4O_8SfHPq1jih4EweBqyhfSSCAiJmLuwMHH8qbtbi1TDEExEGYsiB04ng_jPqPLE5WbYlbTCILS4dKBnUYt5hPiKM04TMK9f092H5YZJclQhxl5AJ1qOjOHsKhfq1E5PaqVG5_JQLwDZZv5Ug |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Protocols+in+Quantum+Annealing+and+Quantum+Approximate+Optimization+Algorithm+Problems&rft.jtitle=Physical+review+letters&rft.au=Brady%2C+Lucas+T.&rft.au=Baldwin%2C+Christopher+L.&rft.au=Bapat%2C+Aniruddha&rft.au=Kharkov%2C+Yaroslav&rft.date=2021-02-19&rft.pub=American+Physical+Society+%28APS%29&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=126&rft.issue=7&rft_id=info:doi/10.1103%2FPhysRevLett.126.070505&rft.externalDocID=1852863 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |