Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization Algorithm Problems

Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the fra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review letters Ročník 126; číslo 7; s. 070505
Hlavní autoři: Brady, Lucas T., Baldwin, Christopher L., Bapat, Aniruddha, Kharkov, Yaroslav, Gorshkov, Alexey V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Physical Society 19.02.2021
American Physical Society (APS)
Témata:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or "bang-bang") structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating that bang-anneal-bang protocols are more common. The general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms.
AbstractList Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or "bang-bang") structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating that bang-anneal-bang protocols are more common. The general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms.Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or "bang-bang") structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating that bang-anneal-bang protocols are more common. The general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms.
Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or “bang-bang”) structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating that bang-anneal-bang protocols are more common. Futher, the general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms.
Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or "bang-bang") structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating that bang-anneal-bang protocols are more common. The general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms.
ArticleNumber 070505
Author Brady, Lucas T.
Gorshkov, Alexey V.
Baldwin, Christopher L.
Kharkov, Yaroslav
Bapat, Aniruddha
Author_xml – sequence: 1
  givenname: Lucas T.
  orcidid: 0000-0001-7696-7689
  surname: Brady
  fullname: Brady, Lucas T.
– sequence: 2
  givenname: Christopher L.
  surname: Baldwin
  fullname: Baldwin, Christopher L.
– sequence: 3
  givenname: Aniruddha
  surname: Bapat
  fullname: Bapat, Aniruddha
– sequence: 4
  givenname: Yaroslav
  surname: Kharkov
  fullname: Kharkov, Yaroslav
– sequence: 5
  givenname: Alexey V.
  orcidid: 0000-0003-0509-3421
  surname: Gorshkov
  fullname: Gorshkov, Alexey V.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33666474$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1852863$$D View this record in Osti.gov
BookMark eNqFkV9rFDEUxYNU7Lb6FcqgL77MevNnMgn4shSrwkKr6Kshk810UzLJmmTE9tOb7bYoffHpQvide0_OOUFHIQaL0BmGJcZA311tb_NX-2ttS1liwpfQQwfdM7TA0Mu2x5gdoQUAxa0E6I_RSc43AFBR8QIdU8o5Zz1boB-Xu-Im7ZurFEs00efGhebLrEOZp2YVgtXehetGh83f190uxd9VVWxzL3d3urgYmpW_jsmV7bTfNng75Zfo-ah9tq8e5in6fvHh2_mndn358fP5at2a6qS02gprB2zGTloOZkOJpp0EIcko5WiAMNH1g9AdHkYJWPeMC26k4Mww2JCenqLXh70xF6eyccWarYnVvikKi44ITiv09gBV-z9nm4uaXDbWex1snLMiTAommaCyom-eoDdxTqF-YU_1BBOCeaXOHqh5mOxG7VINJd2qx3gr8P4AmBRzTnZU1dl9ViVp5xUGtW9T_dOmqhWpQ5tVzp_IHy_8R_gHer2nNQ
CitedBy_id crossref_primary_10_3389_fcomp_2024_1286057
crossref_primary_10_1103_PhysRevApplied_22_024009
crossref_primary_10_3390_quantum6040036
crossref_primary_10_1098_rspa_2024_0193
crossref_primary_10_1103_PhysRevResearch_6_043325
crossref_primary_10_1103_PhysRevLett_131_060602
crossref_primary_10_1088_2058_9565_ad895c
crossref_primary_10_1038_s41598_023_41688_z
crossref_primary_10_1103_PhysRevResearch_3_013227
crossref_primary_10_1007_s11128_023_04170_3
crossref_primary_10_1088_1361_6455_ad46a5
crossref_primary_10_3389_fphy_2022_900099
crossref_primary_10_1038_s42256_022_00446_y
crossref_primary_10_1088_1402_4896_acf803
crossref_primary_10_1088_1367_2630_acb22c
crossref_primary_10_3390_quantum7010009
crossref_primary_10_1088_1367_2630_ace547
crossref_primary_10_1103_PhysRevApplied_17_044005
crossref_primary_10_3390_math10152601
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1103_PhysRevResearch_4_023249
crossref_primary_10_1007_s42484_022_00069_x
crossref_primary_10_1103_PhysRevApplied_19_064071
crossref_primary_10_1103_PhysRevResearch_6_023171
crossref_primary_10_1103_PhysRevA_111_L050201
crossref_primary_10_1088_1361_6633_ad85f0
crossref_primary_10_1103_PhysRevD_111_034506
crossref_primary_10_1103_PhysRevA_111_062406
crossref_primary_10_1007_s11227_025_07573_4
crossref_primary_10_1088_2058_9565_ad7b6f
crossref_primary_10_1016_j_jii_2024_100663
crossref_primary_10_1103_PhysRevA_105_032431
crossref_primary_10_1103_PRXQuantum_4_030335
crossref_primary_10_1103_PhysRevApplied_16_054023
crossref_primary_10_1038_s41567_025_02944_3
crossref_primary_10_1103_PhysRevResearch_6_033336
crossref_primary_10_1103_PRXQuantum_5_020366
crossref_primary_10_1088_2058_9565_aca3ce
crossref_primary_10_1103_PhysRevA_111_032411
crossref_primary_10_1103_PhysRevA_105_052442
crossref_primary_10_1038_s41534_024_00825_w
crossref_primary_10_1088_2058_9565_acfbaa
crossref_primary_10_1103_PhysRevA_111_062411
crossref_primary_10_32604_cmc_2022_028878
crossref_primary_10_1103_PhysRevA_111_042602
crossref_primary_10_1007_s11128_024_04512_9
crossref_primary_10_1088_1367_2630_ad7b6b
crossref_primary_10_1103_x9hw_xhvj
crossref_primary_10_1088_1367_2630_adfd07
crossref_primary_10_1103_fkmb_b4k4
crossref_primary_10_1287_ijoc_2024_0560
crossref_primary_10_1140_epjqt_s40507_022_00138_x
crossref_primary_10_1088_1367_2630_ad4629
crossref_primary_10_1145_3517340
crossref_primary_10_3390_app11167574
crossref_primary_10_1038_s41534_023_00787_5
Cites_doi 10.1007/978-1-4419-8853-9
10.1063/1.2798382
10.1073/pnas.2006373117
10.1103/PhysRevA.77.043806
10.1038/nature24654
10.1088/1367-2630/12/7/075008
10.1137/0304013
10.1126/science.aax9743
10.1103/PhysRevA.87.043607
10.1016/j.jmr.2004.11.004
10.1103/PhysRevLett.99.170501
10.1103/PhysRevA.100.022327
10.1103/PhysRevX.10.021067
10.1103/PhysRevLett.89.188301
10.1103/PhysRevA.90.013404
10.1103/PhysRevA.65.042308
10.1103/PhysRevLett.98.243602
10.1103/PhysRevA.91.043401
10.1103/PhysRevA.68.062308
10.1103/PhysRevLett.109.267203
10.1103/PhysRevB.91.201404
10.1103/PhysRevE.58.5355
10.1038/s41566-018-0236-y
10.1088/0953-4075/40/18/R01
10.1103/PhysRevA.86.013405
10.1126/science.288.5467.824
10.1103/PhysRevX.7.021027
10.1088/2058-9565/aa7daf
10.1103/PhysRevA.97.062343
ContentType Journal Article
Copyright Copyright American Physical Society Feb 19, 2021
Copyright_xml – notice: Copyright American Physical Society Feb 19, 2021
CorporateAuthor Univ. of Iowa, Iowa City, IA (United States)
Duke Univ., Durham, NC (United States)
CorporateAuthor_xml – name: Duke Univ., Durham, NC (United States)
– name: Univ. of Iowa, Iowa City, IA (United States)
DBID AAYXX
CITATION
NPM
7U5
8FD
H8D
L7M
7X8
OIOZB
OTOTI
DOI 10.1103/PhysRevLett.126.070505
DatabaseName CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Aerospace Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 1852863
33666474
10_1103_PhysRevLett_126_070505
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
7U5
8FD
H8D
L7M
7X8
60C
AAPBV
ABCKA
ABPTK
ADETJ
OIOZB
OTOTI
UCJ
VQA
XFK
ID FETCH-LOGICAL-c366t-ae8eeb1cf59e60cd32a3590892f99fc024857b8a51bf901a74686c9864c40d273
IEDL.DBID 3MX
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620021300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Thu May 18 22:34:28 EDT 2023
Thu Jul 10 19:03:15 EDT 2025
Sun Nov 09 06:52:37 EST 2025
Thu Apr 03 07:04:03 EDT 2025
Sat Nov 29 07:39:44 EST 2025
Tue Nov 18 22:43:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-ae8eeb1cf59e60cd32a3590892f99fc024857b8a51bf901a74686c9864c40d273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0019139; SC0019449
National Institute of Standards and Technology (NIST)
USDOE Office of Science (SC)
ORCID 0000-0001-7696-7689
0000-0003-0509-3421
0000000176967689
0000000305093421
OpenAccessLink https://www.osti.gov/servlets/purl/1852863
PMID 33666474
PQID 2497212216
PQPubID 2048222
ParticipantIDs osti_scitechconnect_1852863
proquest_miscellaneous_2498494839
proquest_journals_2497212216
pubmed_primary_33666474
crossref_citationtrail_10_1103_PhysRevLett_126_070505
crossref_primary_10_1103_PhysRevLett_126_070505
PublicationCentury 2000
PublicationDate 2021-02-19
PublicationDateYYYYMMDD 2021-02-19
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: College Park
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2021
Publisher American Physical Society
American Physical Society (APS)
Publisher_xml – name: American Physical Society
– name: American Physical Society (APS)
References L. S. Pontryagin (PhysRevLett.126.070505Cc8R1) 1962
D. Aharonov (PhysRevLett.126.070505Cc13R1) 2007
PhysRevLett.126.070505Cc19R1
PhysRevLett.126.070505Cc18R1
PhysRevLett.126.070505Cc15R1
PhysRevLett.126.070505Cc17R1
PhysRevLett.126.070505Cc36R1
PhysRevLett.126.070505Cc16R1
PhysRevLett.126.070505Cc37R1
PhysRevLett.126.070505Cc34R1
Y. Nesterov (PhysRevLett.126.070505Cc43R1) 2004
PhysRevLett.126.070505Cc10R1
PhysRevLett.126.070505Cc35R1
PhysRevLett.126.070505Cc51R1
D. E. Kirk (PhysRevLett.126.070505Cc29R1) 1998
M. Grace (PhysRevLett.126.070505Cc23R1) 2009; 40
PhysRevLett.126.070505Cc49R1
PhysRevLett.126.070505Cc25R1
PhysRevLett.126.070505Cc47R1
PhysRevLett.126.070505Cc27R1
PhysRevLett.126.070505Cc48R1
PhysRevLett.126.070505Cc2R1
PhysRevLett.126.070505Cc4R1
PhysRevLett.126.070505Cc7R1
PhysRevLett.126.070505Cc22R1
PhysRevLett.126.070505Cc45R1
PhysRevLett.126.070505Cc21R1
PhysRevLett.126.070505Cc46R1
PhysRevLett.126.070505Cc24R1
PhysRevLett.126.070505Cc41R1
PhysRevLett.126.070505Cc42R1
PhysRevLett.126.070505Cc20R1
PhysRevLett.126.070505Cc40R1
References_xml – volume-title: Introductory Lectures on Convex Optimization
  year: 2004
  ident: PhysRevLett.126.070505Cc43R1
  doi: 10.1007/978-1-4419-8853-9
– ident: PhysRevLett.126.070505Cc34R1
  doi: 10.1063/1.2798382
– ident: PhysRevLett.126.070505Cc42R1
  doi: 10.1073/pnas.2006373117
– ident: PhysRevLett.126.070505Cc22R1
  doi: 10.1103/PhysRevA.77.043806
– ident: PhysRevLett.126.070505Cc41R1
  doi: 10.1038/nature24654
– ident: PhysRevLett.126.070505Cc17R1
  doi: 10.1088/1367-2630/12/7/075008
– ident: PhysRevLett.126.070505Cc35R1
  doi: 10.1137/0304013
– ident: PhysRevLett.126.070505Cc25R1
  doi: 10.1126/science.aax9743
– ident: PhysRevLett.126.070505Cc46R1
  doi: 10.1103/PhysRevA.87.043607
– ident: PhysRevLett.126.070505Cc20R1
  doi: 10.1016/j.jmr.2004.11.004
– ident: PhysRevLett.126.070505Cc21R1
  doi: 10.1103/PhysRevLett.99.170501
– ident: PhysRevLett.126.070505Cc7R1
  doi: 10.1103/PhysRevA.100.022327
– ident: PhysRevLett.126.070505Cc45R1
  doi: 10.1103/PhysRevX.10.021067
– ident: PhysRevLett.126.070505Cc18R1
  doi: 10.1103/PhysRevLett.89.188301
– ident: PhysRevLett.126.070505Cc37R1
  doi: 10.1103/PhysRevA.90.013404
– ident: PhysRevLett.126.070505Cc10R1
  doi: 10.1103/PhysRevA.65.042308
– ident: PhysRevLett.126.070505Cc51R1
  doi: 10.1103/PhysRevLett.98.243602
– ident: PhysRevLett.126.070505Cc27R1
  doi: 10.1103/PhysRevA.91.043401
– ident: PhysRevLett.126.070505Cc19R1
  doi: 10.1103/PhysRevA.68.062308
– ident: PhysRevLett.126.070505Cc40R1
  doi: 10.1103/PhysRevLett.109.267203
– volume: 40
  start-page: 9
  issn: 0953-4075
  year: 2009
  ident: PhysRevLett.126.070505Cc23R1
  publication-title: J. Phys. B
– ident: PhysRevLett.126.070505Cc47R1
  doi: 10.1103/PhysRevB.91.201404
– ident: PhysRevLett.126.070505Cc2R1
  doi: 10.1103/PhysRevE.58.5355
– ident: PhysRevLett.126.070505Cc49R1
  doi: 10.1038/s41566-018-0236-y
– volume-title: The Mathematical Theory of Optimal Processes
  year: 1962
  ident: PhysRevLett.126.070505Cc8R1
– ident: PhysRevLett.126.070505Cc16R1
  doi: 10.1088/0953-4075/40/18/R01
– ident: PhysRevLett.126.070505Cc36R1
  doi: 10.1103/PhysRevA.86.013405
– ident: PhysRevLett.126.070505Cc15R1
  doi: 10.1126/science.288.5467.824
– ident: PhysRevLett.126.070505Cc4R1
  doi: 10.1103/PhysRevX.7.021027
– ident: PhysRevLett.126.070505Cc24R1
  doi: 10.1088/2058-9565/aa7daf
– volume-title: SIAM J. Comput.
  year: 2007
  ident: PhysRevLett.126.070505Cc13R1
– volume-title: Optimal Control Theory: An Introduction
  year: 1998
  ident: PhysRevLett.126.070505Cc29R1
– ident: PhysRevLett.126.070505Cc48R1
  doi: 10.1103/PhysRevA.97.062343
SSID ssj0001268
Score 2.6657343
Snippet Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 070505
SubjectTerms Algorithms
Annealing
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Control theory
Ising model
Optimal control
Optimization
Optimization algorithms
Physics
Title Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization Algorithm Problems
URI https://www.ncbi.nlm.nih.gov/pubmed/33666474
https://www.proquest.com/docview/2497212216
https://www.proquest.com/docview/2498494839
https://www.osti.gov/servlets/purl/1852863
Volume 126
WOSCitedRecordID wos000620021300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8QwDA9yKPji98f8YoKv063dR_t4iOKL5ykK9-Toeq0e3G1y24l_vsk2TwVFfBljTUZJ0zShyS8AJ5xbHRhfe1lkEy9k2dBDrzXwBFdRZhhF2WHdbCLp9cRgIPsL4P98gx_4_IwyIe_MK1W3nAaMoDap-RoZXRGSYvPrwdz04nhjejnlHfhJWxL8-2--nUadAnfV755mfeJcrv5_rmuw0nqXbrdRh3VYMPkGLNVZnrrchMcbNBATJOhPi6pAFSjdUe7ezlC6s4nbRZOrqDrdVfnw8yuBjr8hV2Xcmr0t3HS746diOqqeJ_Q3akpTbsHD5cX9-ZXXNljwNI_jylNGGLTV2kbSxL4ecqY49UCXzEppdQ13lmRCRUFmcdFUEsYi1gTorkN_iI7PNnTyIje74FqFKqm5sZrpUBqjeCKtUhguITW-OBB9CDrVLfo4NcEYp3UU4vP0i-xSlF3ayM6BsznfS4O_8SfHPq1jih4EweBqyhfSSCAiJmLuwMHH8qbtbi1TDEExEGYsiB04ng_jPqPLE5WbYlbTCILS4dKBnUYt5hPiKM04TMK9f092H5YZJclQhxl5AJ1qOjOHsKhfq1E5PaqVG5_JQLwDZZv5Ug
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Protocols+in+Quantum+Annealing+and+Quantum+Approximate+Optimization+Algorithm+Problems&rft.jtitle=Physical+review+letters&rft.au=Brady%2C+Lucas+T.&rft.au=Baldwin%2C+Christopher+L.&rft.au=Bapat%2C+Aniruddha&rft.au=Kharkov%2C+Yaroslav&rft.date=2021-02-19&rft.pub=American+Physical+Society+%28APS%29&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=126&rft.issue=7&rft_id=info:doi/10.1103%2FPhysRevLett.126.070505&rft.externalDocID=1852863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon