Cognitive Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy

Associating a patient's profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimens...

Full description

Saved in:
Bibliographic Details
Published in:Circulation. Cardiovascular imaging Vol. 9; no. 6
Main Authors: Sengupta, Partho P, Huang, Yen-Min, Bansal, Manish, Ashrafi, Ali, Fisher, Matt, Shameer, Khader, Gall, Walt, Dudley, Joel T
Format: Journal Article
Language:English
Published: United States 01.06.2016
Subjects:
ISSN:1942-0080, 1942-0080
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Associating a patient's profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimensional attributes of speckle tracking echocardiography data sets derived from patients with known constrictive pericarditis and restrictive cardiomyopathy. Clinical and echocardiographic data of 50 patients with constrictive pericarditis and 44 with restrictive cardiomyopathy were used for developing an associative memory classifier-based machine-learning algorithm. The speckle tracking echocardiography data were normalized in reference to 47 controls with no structural heart disease, and the diagnostic area under the receiver operating characteristic curve of the associative memory classifier was evaluated for differentiating constrictive pericarditis from restrictive cardiomyopathy. Using only speckle tracking echocardiography variables, associative memory classifier achieved a diagnostic area under the curve of 89.2%, which improved to 96.2% with addition of 4 echocardiographic variables. In comparison, the area under the curve of early diastolic mitral annular velocity and left ventricular longitudinal strain were 82.1% and 63.7%, respectively. Furthermore, the associative memory classifier demonstrated greater accuracy and shorter learning curves than other machine-learning approaches, with accuracy asymptotically approaching 90% after a training fraction of 0.3 and remaining flat at higher training fractions. This study demonstrates feasibility of a cognitive machine-learning approach for learning and recalling patterns observed during echocardiographic evaluations. Incorporation of machine-learning algorithms in cardiac imaging may aid standardized assessments and support the quality of interpretations, particularly for novice readers with limited experience.
AbstractList Associating a patient's profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimensional attributes of speckle tracking echocardiography data sets derived from patients with known constrictive pericarditis and restrictive cardiomyopathy.BACKGROUNDAssociating a patient's profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimensional attributes of speckle tracking echocardiography data sets derived from patients with known constrictive pericarditis and restrictive cardiomyopathy.Clinical and echocardiographic data of 50 patients with constrictive pericarditis and 44 with restrictive cardiomyopathy were used for developing an associative memory classifier-based machine-learning algorithm. The speckle tracking echocardiography data were normalized in reference to 47 controls with no structural heart disease, and the diagnostic area under the receiver operating characteristic curve of the associative memory classifier was evaluated for differentiating constrictive pericarditis from restrictive cardiomyopathy. Using only speckle tracking echocardiography variables, associative memory classifier achieved a diagnostic area under the curve of 89.2%, which improved to 96.2% with addition of 4 echocardiographic variables. In comparison, the area under the curve of early diastolic mitral annular velocity and left ventricular longitudinal strain were 82.1% and 63.7%, respectively. Furthermore, the associative memory classifier demonstrated greater accuracy and shorter learning curves than other machine-learning approaches, with accuracy asymptotically approaching 90% after a training fraction of 0.3 and remaining flat at higher training fractions.METHODS AND RESULTSClinical and echocardiographic data of 50 patients with constrictive pericarditis and 44 with restrictive cardiomyopathy were used for developing an associative memory classifier-based machine-learning algorithm. The speckle tracking echocardiography data were normalized in reference to 47 controls with no structural heart disease, and the diagnostic area under the receiver operating characteristic curve of the associative memory classifier was evaluated for differentiating constrictive pericarditis from restrictive cardiomyopathy. Using only speckle tracking echocardiography variables, associative memory classifier achieved a diagnostic area under the curve of 89.2%, which improved to 96.2% with addition of 4 echocardiographic variables. In comparison, the area under the curve of early diastolic mitral annular velocity and left ventricular longitudinal strain were 82.1% and 63.7%, respectively. Furthermore, the associative memory classifier demonstrated greater accuracy and shorter learning curves than other machine-learning approaches, with accuracy asymptotically approaching 90% after a training fraction of 0.3 and remaining flat at higher training fractions.This study demonstrates feasibility of a cognitive machine-learning approach for learning and recalling patterns observed during echocardiographic evaluations. Incorporation of machine-learning algorithms in cardiac imaging may aid standardized assessments and support the quality of interpretations, particularly for novice readers with limited experience.CONCLUSIONSThis study demonstrates feasibility of a cognitive machine-learning approach for learning and recalling patterns observed during echocardiographic evaluations. Incorporation of machine-learning algorithms in cardiac imaging may aid standardized assessments and support the quality of interpretations, particularly for novice readers with limited experience.
Associating a patient's profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimensional attributes of speckle tracking echocardiography data sets derived from patients with known constrictive pericarditis and restrictive cardiomyopathy. Clinical and echocardiographic data of 50 patients with constrictive pericarditis and 44 with restrictive cardiomyopathy were used for developing an associative memory classifier-based machine-learning algorithm. The speckle tracking echocardiography data were normalized in reference to 47 controls with no structural heart disease, and the diagnostic area under the receiver operating characteristic curve of the associative memory classifier was evaluated for differentiating constrictive pericarditis from restrictive cardiomyopathy. Using only speckle tracking echocardiography variables, associative memory classifier achieved a diagnostic area under the curve of 89.2%, which improved to 96.2% with addition of 4 echocardiographic variables. In comparison, the area under the curve of early diastolic mitral annular velocity and left ventricular longitudinal strain were 82.1% and 63.7%, respectively. Furthermore, the associative memory classifier demonstrated greater accuracy and shorter learning curves than other machine-learning approaches, with accuracy asymptotically approaching 90% after a training fraction of 0.3 and remaining flat at higher training fractions. This study demonstrates feasibility of a cognitive machine-learning approach for learning and recalling patterns observed during echocardiographic evaluations. Incorporation of machine-learning algorithms in cardiac imaging may aid standardized assessments and support the quality of interpretations, particularly for novice readers with limited experience.
Author Sengupta, Partho P
Huang, Yen-Min
Shameer, Khader
Bansal, Manish
Fisher, Matt
Dudley, Joel T
Gall, Walt
Ashrafi, Ali
Author_xml – sequence: 1
  givenname: Partho P
  surname: Sengupta
  fullname: Sengupta, Partho P
  email: Partho.Sengupta@mountsinai.org
  organization: From the Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, NY (P.P.S., M.B.); Saffron Technology, Inc, Cary, NC (Y.-M.H., A.A., M.F., W.G.); and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (K.S., J.T.D.). Partho.Sengupta@mountsinai.org
– sequence: 2
  givenname: Yen-Min
  surname: Huang
  fullname: Huang, Yen-Min
  organization: From the Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, NY (P.P.S., M.B.); Saffron Technology, Inc, Cary, NC (Y.-M.H., A.A., M.F., W.G.); and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (K.S., J.T.D.)
– sequence: 3
  givenname: Manish
  surname: Bansal
  fullname: Bansal, Manish
  organization: From the Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, NY (P.P.S., M.B.); Saffron Technology, Inc, Cary, NC (Y.-M.H., A.A., M.F., W.G.); and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (K.S., J.T.D.)
– sequence: 4
  givenname: Ali
  surname: Ashrafi
  fullname: Ashrafi, Ali
  organization: From the Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, NY (P.P.S., M.B.); Saffron Technology, Inc, Cary, NC (Y.-M.H., A.A., M.F., W.G.); and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (K.S., J.T.D.)
– sequence: 5
  givenname: Matt
  surname: Fisher
  fullname: Fisher, Matt
  organization: From the Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, NY (P.P.S., M.B.); Saffron Technology, Inc, Cary, NC (Y.-M.H., A.A., M.F., W.G.); and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (K.S., J.T.D.)
– sequence: 6
  givenname: Khader
  surname: Shameer
  fullname: Shameer, Khader
  organization: From the Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, NY (P.P.S., M.B.); Saffron Technology, Inc, Cary, NC (Y.-M.H., A.A., M.F., W.G.); and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (K.S., J.T.D.)
– sequence: 7
  givenname: Walt
  surname: Gall
  fullname: Gall, Walt
  organization: From the Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, NY (P.P.S., M.B.); Saffron Technology, Inc, Cary, NC (Y.-M.H., A.A., M.F., W.G.); and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (K.S., J.T.D.)
– sequence: 8
  givenname: Joel T
  surname: Dudley
  fullname: Dudley, Joel T
  organization: From the Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, NY (P.P.S., M.B.); Saffron Technology, Inc, Cary, NC (Y.-M.H., A.A., M.F., W.G.); and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (K.S., J.T.D.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27266599$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1PwjAUhhuDkQ_9C6SX3gz7QbvNOzIFl6AS1GtSuhZqtha7YrIf4v91IEavzpvzPnlycvqgY51VAAwxGmHM8U2WL7P8cTLLn2btgo0QGlOKzkAPp2MSIZSgzr_cBf26fkeIU8SSC9AlMeGcpWkPfGVuY00wnwo-Crk1VkVzJbw1dgMn5cZ5E7YV1M7DTPjCCAnzSmza9hZO4MKULsCXsC-aI3JntFZe2WBEOAgyZ-vgjTzqF6pNB0cwNZx6V8Gl-muPdlc1bifCtrkE51qUtbo6zQF4m96_Zg_R_HmWZ5N5JCnnIRIqlgSnhFMqEk6UXKcxZQVRgmtZpJxipIXWCUpiyUQRa065Go-ZZGvJMFmTAbj-8e68-9i356wqU0tVlsIqt69XOE5ZwnEcoxYdntD9ulLFaudNJXyz-n0l-QZZWHzU
CitedBy_id crossref_primary_10_1007_s10554_022_02566_3
crossref_primary_10_1097_RTI_0000000000000385
crossref_primary_10_1002_ehf2_12795
crossref_primary_10_1161_JAHA_119_013924
crossref_primary_10_1007_s10554_019_01545_5
crossref_primary_10_1016_j_nlm_2022_107623
crossref_primary_10_37615_retic_v2n1a1
crossref_primary_10_1016_j_heliyon_2022_e10872
crossref_primary_10_3389_fcvm_2021_711611
crossref_primary_10_1053_j_jvca_2020_08_048
crossref_primary_10_1007_s12170_023_00721_6
crossref_primary_10_1111_echo_15048
crossref_primary_10_1038_s41569_020_00477_1
crossref_primary_10_1093_eurheartj_ehy404
crossref_primary_10_3390_jimaging9020050
crossref_primary_10_1007_s11936_020_00838_6
crossref_primary_10_3390_diagnostics14020132
crossref_primary_10_1016_j_echo_2022_07_004
crossref_primary_10_1590_1806_9282_65_12_1438
crossref_primary_10_1016_j_cjca_2021_09_030
crossref_primary_10_1371_journal_pone_0201059
crossref_primary_10_3389_fcvm_2022_1016032
crossref_primary_10_1016_j_jcmg_2017_07_001
crossref_primary_10_1016_j_echo_2022_09_017
crossref_primary_10_1016_j_jacc_2017_03_571
crossref_primary_10_3390_jcdd11080245
crossref_primary_10_1016_j_cmpb_2019_105296
crossref_primary_10_3390_diagnostics10121004
crossref_primary_10_1038_s41569_021_00527_2
crossref_primary_10_1007_s11936_020_0805_5
crossref_primary_10_4274_atfm_galenos_2022_36449
crossref_primary_10_1016_j_amjcard_2020_08_048
crossref_primary_10_1016_j_tcm_2020_11_007
crossref_primary_10_1016_j_jcmg_2018_04_026
crossref_primary_10_1007_s11886_018_0990_y
crossref_primary_10_1016_j_addr_2017_10_007
crossref_primary_10_1016_j_jacc_2016_12_047
crossref_primary_10_1016_j_ultrasmedbio_2022_06_004
crossref_primary_10_1007_s11886_022_01776_4
crossref_primary_10_1186_s12947_021_00261_2
crossref_primary_10_1016_j_rec_2019_05_014
crossref_primary_10_1007_s11936_019_0728_1
crossref_primary_10_1161_CIRCIMAGING_116_005059
crossref_primary_10_1016_j_jacc_2018_02_041
crossref_primary_10_3390_jpm13081268
crossref_primary_10_1136_openhrt_2019_001177
crossref_primary_10_1016_j_jacc_2017_01_062
crossref_primary_10_1111_echo_70007
crossref_primary_10_1016_j_pcad_2020_03_003
crossref_primary_10_1097_RTI_0000000000000584
crossref_primary_10_1007_s10278_024_01119_5
crossref_primary_10_1007_s13665_023_00334_9
crossref_primary_10_1002_jmri_28527
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_1016_j_bios_2021_113605
crossref_primary_10_1186_s12911_018_0653_3
crossref_primary_10_1016_j_cmpb_2022_107182
crossref_primary_10_1016_j_echo_2018_07_013
crossref_primary_10_1016_j_jacadv_2023_100574
crossref_primary_10_1515_bams_2020_0069
crossref_primary_10_1016_j_ultrasmedbio_2020_12_014
crossref_primary_10_1016_j_jacc_2016_08_062
crossref_primary_10_1007_s10554_020_01981_8
crossref_primary_10_3389_fcvm_2021_648877
crossref_primary_10_1007_s12596_018_0508_4
crossref_primary_10_1177_1179546820927404
crossref_primary_10_1016_j_tcm_2021_02_002
crossref_primary_10_1007_s12410_020_9529_x
crossref_primary_10_1161_CIR_0000000000001202
crossref_primary_10_3389_fcvm_2019_00195
crossref_primary_10_1038_s41746_017_0013_1
crossref_primary_10_1016_j_imu_2024_101475
crossref_primary_10_1017_S1047951120001493
crossref_primary_10_3390_app9142921
crossref_primary_10_1016_j_jcmg_2023_09_011
crossref_primary_10_1007_s11886_020_01329_7
crossref_primary_10_36660_abc_20200596
crossref_primary_10_1002_ima_23086
crossref_primary_10_3389_fcvm_2023_1195235
crossref_primary_10_3390_life13041029
crossref_primary_10_1080_17434440_2017_1300057
crossref_primary_10_1097_HCO_0000000000000812
crossref_primary_10_1136_heartjnl_2017_311198
crossref_primary_10_4103_jcecho_jcecho_62_25
crossref_primary_10_1016_j_cpcardiol_2023_102349
crossref_primary_10_1016_j_pcad_2016_12_008
crossref_primary_10_1111_echo_14086
crossref_primary_10_1186_s13019_022_02025_z
crossref_primary_10_1117_1_JMI_10_5_054502
crossref_primary_10_3389_fmed_2019_00036
crossref_primary_10_1016_j_echo_2018_10_003
crossref_primary_10_1161_CIRCRESAHA_116_309128
crossref_primary_10_1016_j_mayocp_2020_01_038
crossref_primary_10_1016_j_jcmg_2018_01_020
crossref_primary_10_3390_jcm14020625
crossref_primary_10_1007_s10554_020_02083_1
crossref_primary_10_1007_s11596_021_2486_z
crossref_primary_10_1007_s12471_019_01311_1
crossref_primary_10_3389_fcvm_2022_945726
crossref_primary_10_1007_s11886_017_0851_0
crossref_primary_10_1007_s11886_022_01774_6
crossref_primary_10_1016_j_jcmg_2016_10_012
crossref_primary_10_2196_14784
crossref_primary_10_3390_diagnostics14020156
crossref_primary_10_1016_j_jcmg_2023_10_009
crossref_primary_10_3390_jcm11102893
crossref_primary_10_1371_journal_pone_0224453
crossref_primary_10_1007_s40471_019_00209_1
crossref_primary_10_1161_CIRCULATIONAHA_118_037095
ContentType Journal Article
Copyright 2016 American Heart Association, Inc.
Copyright_xml – notice: 2016 American Heart Association, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCIMAGING.115.004330
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1942-0080
ExternalDocumentID 27266599
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA189201
– fundername: NCATS NIH HHS
  grantid: UL1 TR000067
GroupedDBID ---
.XZ
.Z2
0R~
18M
29B
53G
5GY
5VS
6J9
AAAAV
AAHPQ
AAIQE
AAJCS
AARTV
AASCR
ABASU
ABBUW
ABDIG
ABJNI
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACWDW
ACWRI
ACXJB
ACXNZ
ADBBV
ADGGA
ADHPY
ADNKB
AEBDS
AEETU
AFBFQ
AFDTB
AFEXH
AFNMH
AFUWQ
AGINI
AHQNM
AHQVU
AHRYX
AHVBC
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BQLVK
C45
CGR
CS3
CUY
CVF
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
ECM
EEVPB
EIF
EJD
EX3
F5P
FCALG
FL-
GNXGY
GQDEL
H13
HLJTE
HZ~
IKREB
IN~
IPNFZ
KD2
KQ8
KQB
L-C
NPM
O9-
ODMTH
ODZKP
OHYEH
OK1
OPUJH
OUVQU
OVD
OVDNE
OXXIT
P2P
P6G
RAH
RIG
RLZ
S4S
TEORI
TR2
TSPGW
V2I
W2D
W3M
W8F
WOW
ZZMQN
7X8
ABPXF
ADKSD
ID FETCH-LOGICAL-c366t-ae7c2192633a862ecb9735d2ea6fcd96310faff8087c5ad7f636e445c5bc512b2
IEDL.DBID 7X8
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378135400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1942-0080
IngestDate Mon Sep 08 06:26:07 EDT 2025
Thu Apr 03 07:00:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords precision medicine
cardiovascular imaging
big data
cognitive tools
machine learning
phenomics
speckle tracking echocardiography
Language English
License 2016 American Heart Association, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-ae7c2192633a862ecb9735d2ea6fcd96310faff8087c5ad7f636e445c5bc512b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27266599
PQID 1795861770
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1795861770
pubmed_primary_27266599
PublicationCentury 2000
PublicationDate 2016-Jun
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-Jun
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation. Cardiovascular imaging
PublicationTitleAlternate Circ Cardiovasc Imaging
PublicationYear 2016
References 3203132 - Biometrics. 1988 Sep;44(3):837-45
12804087 - J Comput Biol. 2003;10(2):119-42
18550044 - Comput Biol Med. 2008 Jul;38(7):817-25
21957173 - Sci Transl Med. 2011 Sep 28;3(102):102ra95
19130999 - J Am Soc Echocardiogr. 2009 Jan;22(1):24-33; quiz 103-4
27266601 - Circ Cardiovasc Imaging. 2016 Jun;9(6)
19187853 - J Am Soc Echocardiogr. 2009 Feb;22(2):107-33
26073787 - Med Image Anal. 2015 Aug;24(1):77-89
26141982 - J Am Soc Echocardiogr. 2015 Oct;28(10 ):1204-1213, e2
21338865 - J Am Soc Echocardiogr. 2011 Mar;24(3):277-313
10454978 - Eur Heart J. 1999 Sep;20(17):1271-5
18638602 - Am J Cardiol. 2008 Aug 1;102(3):357-62
23532508 - Circ Cardiovasc Imaging. 2013 May 1;6(3):399-406
24633783 - Circ Cardiovasc Imaging. 2014 May;7(3):526-34
15905277 - Bioinformatics. 2005 Aug 1;21(15):3301-7
23286090 - Med Image Comput Comput Assist Interv. 2012;15(Pt 2):535-43
26209911 - J Am Soc Echocardiogr. 2015 Oct;28(10):1171-1181, e2
24229773 - JACC Cardiovasc Imaging. 2013 Nov;6(11):1206-11
20362924 - J Am Soc Echocardiogr. 2010 Apr;23 (4):351-69; quiz 453-5
25888476 - BMJ Open. 2015 Apr 17;5(4):e007170
19356402 - JACC Cardiovasc Imaging. 2008 Jan;1(1):29-38
25107553 - Circ Cardiovasc Imaging. 2014 Sep;7(5):819-27
19342117 - Comput Methods Programs Biomed. 2009 Aug;95(2 Suppl):S22-32
26403342 - J Am Coll Cardiol. 2015 Sep 29;66(13):1456-66
1993786 - J Am Coll Cardiol. 1991 Mar 1;17(3):666-9
References_xml – reference: 23286090 - Med Image Comput Comput Assist Interv. 2012;15(Pt 2):535-43
– reference: 1993786 - J Am Coll Cardiol. 1991 Mar 1;17(3):666-9
– reference: 24633783 - Circ Cardiovasc Imaging. 2014 May;7(3):526-34
– reference: 18550044 - Comput Biol Med. 2008 Jul;38(7):817-25
– reference: 25107553 - Circ Cardiovasc Imaging. 2014 Sep;7(5):819-27
– reference: 19187853 - J Am Soc Echocardiogr. 2009 Feb;22(2):107-33
– reference: 26209911 - J Am Soc Echocardiogr. 2015 Oct;28(10):1171-1181, e2
– reference: 21957173 - Sci Transl Med. 2011 Sep 28;3(102):102ra95
– reference: 21338865 - J Am Soc Echocardiogr. 2011 Mar;24(3):277-313
– reference: 19130999 - J Am Soc Echocardiogr. 2009 Jan;22(1):24-33; quiz 103-4
– reference: 10454978 - Eur Heart J. 1999 Sep;20(17):1271-5
– reference: 19342117 - Comput Methods Programs Biomed. 2009 Aug;95(2 Suppl):S22-32
– reference: 25888476 - BMJ Open. 2015 Apr 17;5(4):e007170
– reference: 26073787 - Med Image Anal. 2015 Aug;24(1):77-89
– reference: 19356402 - JACC Cardiovasc Imaging. 2008 Jan;1(1):29-38
– reference: 24229773 - JACC Cardiovasc Imaging. 2013 Nov;6(11):1206-11
– reference: 18638602 - Am J Cardiol. 2008 Aug 1;102(3):357-62
– reference: 26141982 - J Am Soc Echocardiogr. 2015 Oct;28(10 ):1204-1213, e2
– reference: 26403342 - J Am Coll Cardiol. 2015 Sep 29;66(13):1456-66
– reference: 20362924 - J Am Soc Echocardiogr. 2010 Apr;23 (4):351-69; quiz 453-5
– reference: 12804087 - J Comput Biol. 2003;10(2):119-42
– reference: 23532508 - Circ Cardiovasc Imaging. 2013 May 1;6(3):399-406
– reference: 27266601 - Circ Cardiovasc Imaging. 2016 Jun;9(6):
– reference: 3203132 - Biometrics. 1988 Sep;44(3):837-45
– reference: 15905277 - Bioinformatics. 2005 Aug 1;21(15):3301-7
SSID ssj0063058
Score 2.5317407
Snippet Associating a patient's profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
SubjectTerms Aged
Algorithms
Area Under Curve
Biopsy
Cardiomyopathy, Restrictive - classification
Cardiomyopathy, Restrictive - diagnostic imaging
Cardiomyopathy, Restrictive - physiopathology
Case-Control Studies
Decision Support Techniques
Diagnosis, Differential
Echocardiography, Doppler - methods
Feasibility Studies
Female
Humans
Machine Learning
Male
Middle Aged
Myocardium - pathology
Pericarditis, Constrictive - classification
Pericarditis, Constrictive - diagnostic imaging
Pericarditis, Constrictive - physiopathology
Pilot Projects
Predictive Value of Tests
Reproducibility of Results
ROC Curve
Stroke Volume
Ventricular Function, Left
Title Cognitive Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy
URI https://www.ncbi.nlm.nih.gov/pubmed/27266599
https://www.proquest.com/docview/1795861770
Volume 9
WOSCitedRecordID wos000378135400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qfPDFC97mjQi-hnVNk6y-yKhuDtwYQ2VvI03SOVjXuVVhP8T_60nWuSdB8KWUXg4h-ZJ8yTk5H0I3psoT4RlGQpheSMAkhbvEkDDWUivpK89pEbw-iU6n1u-H3WLDbV6EVa7GRDdQ60zZPfIKAIfVYLoV3t30nVjVKOtdLSQ0NlGJApWxIV2i_-NF4IBldxQuDHxiqVFxQhhITiVq9aJWu95sdZrwwO6rBJR6v9NMN9009v5b0H20WxBNXF8i4wBtmMkh-opW0UK47aIoDSkSrA5xfTwEM_lbioHH4sghR-FW6mSMbnEdd0fjLMc28HDhPrkvtFVy27pgwGp_2nz_znzXOYLARj6a48YsS3HPrN8661m6yKwg8uIIvTQenqNHUggzEEU5z4k0QsFI53NKJayIjIpDQZn2jeSJ0tClq14ik6Tm1YRiUouEU26CgCkWKyAYsX-MtibZxJwirEJf2lVMbDwdwNoFIAVEmksNtI5pE5TR9aqWBwB8682QE5N9zAfrei6jk2VTDabLDB0DXwDvYGF49oe_z9EOkCC-DP-6QKUEur25RNvqEypoduUQBddOt_0N0frZIQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cognitive+Machine-Learning+Algorithm+for+Cardiac+Imaging%3A+A+Pilot+Study+for+Differentiating+Constrictive+Pericarditis+From+Restrictive+Cardiomyopathy&rft.jtitle=Circulation.+Cardiovascular+imaging&rft.au=Sengupta%2C+Partho+P&rft.au=Huang%2C+Yen-Min&rft.au=Bansal%2C+Manish&rft.au=Ashrafi%2C+Ali&rft.date=2016-06-01&rft.eissn=1942-0080&rft.volume=9&rft.issue=6&rft_id=info:doi/10.1161%2FCIRCIMAGING.115.004330&rft_id=info%3Apmid%2F27266599&rft_id=info%3Apmid%2F27266599&rft.externalDocID=27266599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-0080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-0080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-0080&client=summon