Safety-Critical Attitude Tracking of Spacecraft With Data-Based Parameter Identification

This article proposes a safety-critical control strategy for the attitude tracking issue of a rigid spacecraft subject to orientation and angular velocity constraints. To compensate for the unknown inertial matrix parameters, an online identification algorithm with a data-based selection criteria is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems Vol. 61; no. 2; pp. 1353 - 1362
Main Authors: Xia, Kewei, Wang, Jianan, Liu, Fuxiang
Format: Journal Article
Language:English
Published: New York IEEE 01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9251, 1557-9603
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article proposes a safety-critical control strategy for the attitude tracking issue of a rigid spacecraft subject to orientation and angular velocity constraints. To compensate for the unknown inertial matrix parameters, an online identification algorithm with a data-based selection criteria is first designed, which shows that the estimate error is exponentially convergence if a finite excitation condition is satisfied. Then, by introducing the identified parameters, an adaptive hybrid attitude tracking control torque is developed, where a binary logic switch framework is employed to avoid the unwinding phenomenon. For the sake of safety-critical tracking subject to state constraints, a control barrier function quadratic programming optimization is developed, where the nonconvex orientation constraints are losslessly replaced by convex quadratic ones. The uniform asymptotic stability of the closed-loop system is proved, and the preassigned safety sets are forward invariant with the largest safe region. Simulation results validate and access the proposed control strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2024.3458934