A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism

Constrained multi-objective optimization problems (CMOPs) are common in real-world engineering application, and are difficult to solve because of the conflicting nature of the objectives and many constraints. Some constrained multi-objective evolutionary algorithms (CMOEAs) have been developed for C...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 89; s. 106104
Hlavní autoři: Yang, Yongkuan, Liu, Jianchang, Tan, Shubin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2020
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Constrained multi-objective optimization problems (CMOPs) are common in real-world engineering application, and are difficult to solve because of the conflicting nature of the objectives and many constraints. Some constrained multi-objective evolutionary algorithms (CMOEAs) have been developed for CMOPs, but they still suffer from the problems of easily getting trapped into local optimal solutions and low convergence. This paper introduces a multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism (MOEA/D-DCH) to tackle this issue. Firstly, the dynamic constraint-handling mechanism divides the search modes into the unconstrained search mode and the constrained search mode, which are dynamically adjusted by the generation number and the proportion of feasible solutions in the population. This mechanism could lead to a faster convergence than the traditional constraint-handling mechanisms. For the constrained search mode, an improved epsilon constraint-handling method is used to enhance the diversity of the population. Then, an individual update mechanism based on the best feasible solution of each sub-problem is designed to update the feasible individuals for maintaining the convergence of the feasible solutions. Finally, MOEA/D-DCH dynamically regulates the parameters of the differential evolution operator to enhance the local search ability. Experiments on 21 benchmark test functions are conducted to test MOEA/D-DCH and five other typical CMOEAs. Meanwhile, a real-world problem is employed to evaluate the practical performance of MOEA/D-DCH. MOEA/D-DCH achieves significantly better results than the other five algorithms on most of the test problems. The results indicate the effectiveness and competitiveness of MOEA/D-DCH for solving CMOPs. •A MOEA based on decomposition and dynamic constraint-handling mechanism for CMOPs.•Search modes based on the unconstrained search and the constrained search.•An improved epsilon constraint handling technology to maintain population diversity.•A selection operator based on best feasible solutions to update the individuals.•Dynamical adjustment of DE parameters to enhance the local search ability.
AbstractList Constrained multi-objective optimization problems (CMOPs) are common in real-world engineering application, and are difficult to solve because of the conflicting nature of the objectives and many constraints. Some constrained multi-objective evolutionary algorithms (CMOEAs) have been developed for CMOPs, but they still suffer from the problems of easily getting trapped into local optimal solutions and low convergence. This paper introduces a multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism (MOEA/D-DCH) to tackle this issue. Firstly, the dynamic constraint-handling mechanism divides the search modes into the unconstrained search mode and the constrained search mode, which are dynamically adjusted by the generation number and the proportion of feasible solutions in the population. This mechanism could lead to a faster convergence than the traditional constraint-handling mechanisms. For the constrained search mode, an improved epsilon constraint-handling method is used to enhance the diversity of the population. Then, an individual update mechanism based on the best feasible solution of each sub-problem is designed to update the feasible individuals for maintaining the convergence of the feasible solutions. Finally, MOEA/D-DCH dynamically regulates the parameters of the differential evolution operator to enhance the local search ability. Experiments on 21 benchmark test functions are conducted to test MOEA/D-DCH and five other typical CMOEAs. Meanwhile, a real-world problem is employed to evaluate the practical performance of MOEA/D-DCH. MOEA/D-DCH achieves significantly better results than the other five algorithms on most of the test problems. The results indicate the effectiveness and competitiveness of MOEA/D-DCH for solving CMOPs. •A MOEA based on decomposition and dynamic constraint-handling mechanism for CMOPs.•Search modes based on the unconstrained search and the constrained search.•An improved epsilon constraint handling technology to maintain population diversity.•A selection operator based on best feasible solutions to update the individuals.•Dynamical adjustment of DE parameters to enhance the local search ability.
ArticleNumber 106104
Author Yang, Yongkuan
Liu, Jianchang
Tan, Shubin
Author_xml – sequence: 1
  givenname: Yongkuan
  surname: Yang
  fullname: Yang, Yongkuan
– sequence: 2
  givenname: Jianchang
  orcidid: 0000-0002-2801-8312
  surname: Liu
  fullname: Liu, Jianchang
  email: liujianchang@ise.neu.edu.cn
– sequence: 3
  givenname: Shubin
  surname: Tan
  fullname: Tan, Shubin
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP-BU8kOWoZsQ-oJAN-1a6DFOZGwpSE4gf1-ZFApdZDXDcM_APQs0c94BQo-UrCih7Klbyej1Kif5dGCUlDdoTnmdZw3jdJb2ivGsbEp2hxYxdiRBTc7n6LjG2rs4BmkdGDwc-9FmXnWgR3sCDCffH0frnQxnLPudD3bcD1jJmMLeYQPaDwcf7ZTB0hlszk4OVv99HbN9uvfW7fAAOu02DvfotpV9hIffuUTfry9fm_ds-_n2sVlvM10wNma8rSklHKRSNSOq1SVvqOFKFlQpmpcaKqCqUTWhvOR5U3DeFgp4pakhlSyLJcovf3XwMQZoxSHYIXURlIhJnOjEJE5M4sRFXIL4P0jbUU4Fpz79dfT5gkIqdbIQRNQWnAZjQzIqjLfX8B-Ieo7M
CitedBy_id crossref_primary_10_1007_s40819_025_01966_y
crossref_primary_10_1109_TEVC_2023_3345470
crossref_primary_10_1007_s12293_021_00349_2
crossref_primary_10_1016_j_swevo_2021_100940
crossref_primary_10_1109_ACCESS_2023_3254210
crossref_primary_10_1016_j_asoc_2024_111800
crossref_primary_10_1016_j_asoc_2022_109855
crossref_primary_10_1049_cit2_12398
crossref_primary_10_1016_j_swevo_2025_102006
crossref_primary_10_1016_j_heliyon_2024_e37286
crossref_primary_10_1016_j_ins_2021_08_038
crossref_primary_10_1007_s10660_024_09944_0
crossref_primary_10_1016_j_asoc_2024_112297
crossref_primary_10_1109_TETCI_2023_3236633
crossref_primary_10_1016_j_asoc_2023_110845
crossref_primary_10_1016_j_asoc_2021_108297
crossref_primary_10_1109_TEVC_2022_3155533
crossref_primary_10_1016_j_asoc_2020_106892
crossref_primary_10_1016_j_asoc_2021_107442
crossref_primary_10_1016_j_asoc_2025_113051
crossref_primary_10_1109_TEVC_2023_3270483
crossref_primary_10_1007_s13369_021_06178_2
crossref_primary_10_1016_j_matcom_2024_02_012
crossref_primary_10_1016_j_swevo_2023_101417
crossref_primary_10_1007_s12667_022_00549_w
crossref_primary_10_1016_j_swevo_2024_101819
crossref_primary_10_1007_s12293_022_00360_1
crossref_primary_10_1016_j_asoc_2023_110612
crossref_primary_10_1155_2021_6672131
crossref_primary_10_1016_j_asoc_2024_111703
crossref_primary_10_1016_j_ins_2024_121751
crossref_primary_10_3390_math13111851
crossref_primary_10_1016_j_engappai_2025_111419
crossref_primary_10_1007_s11831_022_09859_9
crossref_primary_10_1016_j_swevo_2025_102044
crossref_primary_10_1007_s00521_022_07097_5
crossref_primary_10_1109_TCYB_2023_3329947
crossref_primary_10_1016_j_apenergy_2022_120106
crossref_primary_10_1007_s10489_022_03990_7
crossref_primary_10_1007_s44336_024_00006_5
crossref_primary_10_1016_j_swevo_2021_100932
crossref_primary_10_1007_s40747_022_00761_2
crossref_primary_10_1016_j_swevo_2021_101020
crossref_primary_10_1016_j_swevo_2020_100799
crossref_primary_10_1109_TEVC_2022_3194729
crossref_primary_10_1016_j_swevo_2024_101685
crossref_primary_10_1109_TCYB_2024_3524457
crossref_primary_10_1002_tee_24200
crossref_primary_10_1007_s40747_024_01379_2
Cites_doi 10.1109/TEVC.2014.2350987
10.1080/0305215X.2010.493937
10.1080/0305215X.2016.1271661
10.1162/evco_a_00259
10.1007/s00500-012-0816-6
10.1016/j.swevo.2018.08.017
10.1109/TEVC.2008.925798
10.1109/TEVC.2012.2196800
10.1007/s00500-006-0068-4
10.1016/j.ins.2018.01.014
10.1016/j.asoc.2012.07.027
10.1023/A:1008202821328
10.1016/S0045-7825(99)00389-8
10.1016/j.asoc.2018.02.048
10.1109/4235.996017
10.1109/TCYB.2014.2337117
10.1016/j.asoc.2018.10.027
10.1016/j.swevo.2011.10.001
10.1080/03052150210915
10.1016/j.asoc.2019.02.041
10.1016/j.asoc.2017.06.053
10.1016/j.ifacol.2018.09.294
10.1109/TEVC.2007.892759
10.1109/TEVC.2013.2281534
10.1109/TEVC.2003.810761
10.1109/TEVC.2008.2009032
10.1109/TEVC.2017.2669098
10.1109/TEVC.2010.2093582
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106104
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106104
S1568494620300442
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-8f71108eabb760bfc4891d8ba31bb124ce5e1b9b70184829388f3be85c1d05a43
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520042200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:21:03 EST 2025
Sat Nov 29 07:03:14 EST 2025
Fri Feb 23 02:47:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Epsilon constraint-handling
Constrained multi-objective optimization
Differential evolution
Constraint-handling techniques
MOEA/D
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-8f71108eabb760bfc4891d8ba31bb124ce5e1b9b70184829388f3be85c1d05a43
ORCID 0000-0002-2801-8312
ParticipantIDs crossref_primary_10_1016_j_asoc_2020_106104
crossref_citationtrail_10_1016_j_asoc_2020_106104
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106104
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ray, Singh, Isaacs, Smith (b12) 2009
Deb (b16) 2000; 186
Deb, Pratap, Agarwal, Meyarivan (b17) 2002; 6
Zhang, Zhou, Zhao, Suganthan, Liu, Tiwari (b32) 2008
Li, Wang, Yang, Cai (b23) 2016
Jain, Deb (b33) 2014; 18
Ponsich, Jaimes, Coello (b5) 2013; 17
Peng, Liu, Gu (b20) 2017; 60
Mezura-Montes, Coello (b9) 2011; 1
Fan, Fang, Li, Cai, Wei, Goodman (b34) 2019; 74
Liu, Wang (b14) 2019
Ray, Liew (b36) 2002; 34
Yang, Liu, Tan, Wang (b28) 2019; 80
Wang, Jiao, Yao (b1) 2015; 19
Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, E. Goodman, Difficulty Adjustable and Scalable Constrained Multi-objective Test Problem Toolkit, Evol. Comput., 0 (ja) 0, 1–28, [in press] Posted Online May 23, 2019.
Wang, Cai (b29) 2012; 16
Coello Coello (b15) 2012
Li, Zhang (b24) 2009; 13
Woldesenbet, Yen, Tessema (b10) 2009; 13
Castillo, Trujillo, Melin (b6) 2007; 11
Jan, Khanum (b11) 2013; 13
Fan, Li, Wei, Li, Huang, Cai, Cai (b18) 2016
Qian, Xu, Qi, Tianfield (b8) 2012; 16
Bosman, Thierens (b35) 2003; 7
Zhang, Li (b25) 2007; 11
Xu, Chen, Tao (b30) 2018; 435
Takahama, Sakai (b19) 2013
Yang, Liu, Tan, Wang (b4) 2018; 51
Storn, Price (b27) 1997; 11
Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (b13) 2019; 44
Ning, Guo, Yan, Wu, Wu, Zhao (b21) 2017; 49
.
Lin, Du, Du (b7) 2018
Qu, Suganthan (b22) 2011; 43
Li, Cheng, Liu, Jin (b3) 2018; 67
Wang, Li, Yen, Song (b2) 2015; 45
Wang, Xu, Sun, Yang (b26) 2017; 21
Qian (10.1016/j.asoc.2020.106104_b8) 2012; 16
Zhang (10.1016/j.asoc.2020.106104_b32) 2008
Yang (10.1016/j.asoc.2020.106104_b4) 2018; 51
Jain (10.1016/j.asoc.2020.106104_b33) 2014; 18
Zhang (10.1016/j.asoc.2020.106104_b25) 2007; 11
Yang (10.1016/j.asoc.2020.106104_b28) 2019; 80
Xu (10.1016/j.asoc.2020.106104_b30) 2018; 435
Ponsich (10.1016/j.asoc.2020.106104_b5) 2013; 17
Castillo (10.1016/j.asoc.2020.106104_b6) 2007; 11
Qu (10.1016/j.asoc.2020.106104_b22) 2011; 43
Li (10.1016/j.asoc.2020.106104_b3) 2018; 67
Peng (10.1016/j.asoc.2020.106104_b20) 2017; 60
Wang (10.1016/j.asoc.2020.106104_b29) 2012; 16
Woldesenbet (10.1016/j.asoc.2020.106104_b10) 2009; 13
Ray (10.1016/j.asoc.2020.106104_b36) 2002; 34
Mezura-Montes (10.1016/j.asoc.2020.106104_b9) 2011; 1
Fan (10.1016/j.asoc.2020.106104_b34) 2019; 74
Wang (10.1016/j.asoc.2020.106104_b2) 2015; 45
Lin (10.1016/j.asoc.2020.106104_b7) 2018
Wang (10.1016/j.asoc.2020.106104_b1) 2015; 19
Wang (10.1016/j.asoc.2020.106104_b26) 2017; 21
Takahama (10.1016/j.asoc.2020.106104_b19) 2013
Li (10.1016/j.asoc.2020.106104_b24) 2009; 13
Deb (10.1016/j.asoc.2020.106104_b16) 2000; 186
Fan (10.1016/j.asoc.2020.106104_b18) 2016
Ning (10.1016/j.asoc.2020.106104_b21) 2017; 49
Coello Coello (10.1016/j.asoc.2020.106104_b15) 2012
Storn (10.1016/j.asoc.2020.106104_b27) 1997; 11
Deb (10.1016/j.asoc.2020.106104_b17) 2002; 6
Jan (10.1016/j.asoc.2020.106104_b11) 2013; 13
10.1016/j.asoc.2020.106104_b31
Liu (10.1016/j.asoc.2020.106104_b14) 2019
Li (10.1016/j.asoc.2020.106104_b23) 2016
Bosman (10.1016/j.asoc.2020.106104_b35) 2003; 7
Ray (10.1016/j.asoc.2020.106104_b12) 2009
Fan (10.1016/j.asoc.2020.106104_b13) 2019; 44
References_xml – volume: 1
  start-page: 173
  year: 2011
  end-page: 194
  ident: b9
  article-title: Constraint-handling in nature-inspired numerical optimization: Past, present and future
  publication-title: Swarm Evol. Comput.
– volume: 51
  start-page: 168
  year: 2018
  end-page: 173
  ident: b4
  article-title: Application of constrained multi-objective evolutionary algorithm in multi-source compressed-air pipeline optimization problems
  publication-title: IFAC-PapersOnLine
– start-page: 1
  year: 2016
  end-page: 8
  ident: b18
  article-title: An improved epsilon constraint handling method embedded in MOEA/d for constrained multi-objective optimization problems
  publication-title: 2016 IEEE Symposium Series on Computational Intelligence (SSCI)
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: b16
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 49
  start-page: 1645
  year: 2017
  end-page: 1664
  ident: b21
  article-title: Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm
  publication-title: Eng. Optim.
– start-page: 4175
  year: 2016
  end-page: 4182
  ident: b23
  article-title: A comparative study of constraint-handling techniques in evolutionary constrained multiobjective optimization
  publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC)
– volume: 13
  start-page: 128
  year: 2013
  end-page: 148
  ident: b11
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D
  publication-title: Appl. Soft Comput. J.
– reference: Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, E. Goodman, Difficulty Adjustable and Scalable Constrained Multi-objective Test Problem Toolkit, Evol. Comput., 0 (ja) 0, 1–28, [in press] Posted Online May 23, 2019.
– volume: 435
  start-page: 240
  year: 2018
  end-page: 262
  ident: b30
  article-title: Differential evolution with adaptive trial vector generation strategy and cluster-replacement-based feasibility rule for constrained optimization
  publication-title: Inform. Sci.
– volume: 21
  start-page: 665
  year: 2017
  end-page: 680
  ident: b26
  article-title: A two-phase differential evolution for uniform designs in constrained experimental domains
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2019
  ident: b14
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
– volume: 17
  start-page: 321
  year: 2013
  end-page: 344
  ident: b5
  article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 269
  year: 2007
  end-page: 279
  ident: b6
  article-title: Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots
  publication-title: Soft Comput.
– volume: 7
  start-page: 174
  year: 2003
  end-page: 188
  ident: b35
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: b33
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 67
  start-page: 245
  year: 2018
  end-page: 260
  ident: b3
  article-title: A two-stage R2 indicator based evolutionary algorithm for many-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 80
  start-page: 42
  year: 2019
  end-page: 56
  ident: b28
  article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
  publication-title: Appl. Soft Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b17
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2008
  end-page: 20
  ident: b32
  article-title: Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition
– volume: 34
  start-page: 141
  year: 2002
  end-page: 153
  ident: b36
  article-title: A swarm metaphor for multiobjective design optimization
  publication-title: Eng. Optim.
– start-page: 1
  year: 2018
  end-page: 15
  ident: b7
  article-title: Multi-objective differential evolution with dynamic hybrid constraint handling mechanism
  publication-title: Soft Computing
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b27
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 16
  start-page: 1353
  year: 2012
  end-page: 1372
  ident: b8
  article-title: Self-adaptive differential evolution algorithm with
  publication-title: Soft Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b25
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– reference: .
– volume: 45
  start-page: 830
  year: 2015
  end-page: 843
  ident: b2
  article-title: MOMMOP: Multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: 60
  start-page: 613
  year: 2017
  end-page: 622
  ident: b20
  article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 524
  year: 2015
  end-page: 541
  ident: b1
  article-title: Two arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 44
  start-page: 665
  year: 2019
  end-page: 679
  ident: b13
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: b24
  article-title: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 849
  year: 2012
  end-page: 872
  ident: b15
  article-title: Constraint-handling techniques used with evolutionary algorithms
  publication-title: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation
– volume: 43
  start-page: 403
  year: 2011
  end-page: 416
  ident: b22
  article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods
  publication-title: Eng. Optim.
– volume: 74
  start-page: 621
  year: 2019
  end-page: 633
  ident: b34
  article-title: MOEA/d with angle-based constrained dominance principle for constrained multi-objective optimization problems
  publication-title: Appl. Soft Comput.
– volume: 13
  start-page: 514
  year: 2009
  end-page: 525
  ident: b10
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1334
  year: 2013
  end-page: 1341
  ident: b19
  article-title: Efficient constrained optimization by the
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 16
  start-page: 117
  year: 2012
  end-page: 134
  ident: b29
  article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 145
  year: 2009
  end-page: 165
  ident: b12
  article-title: Infeasibility Driven Evolutionary Algorithm for Constrained Optimization
– start-page: 1334
  year: 2013
  ident: 10.1016/j.asoc.2020.106104_b19
  article-title: Efficient constrained optimization by the ε constrained differential evolution with rough approximation using kernel regression
– volume: 19
  start-page: 524
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2020.106104_b1
  article-title: Two arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2350987
– start-page: 145
  year: 2009
  ident: 10.1016/j.asoc.2020.106104_b12
– volume: 43
  start-page: 403
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2020.106104_b22
  article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2010.493937
– volume: 49
  start-page: 1645
  issue: 10
  year: 2017
  ident: 10.1016/j.asoc.2020.106104_b21
  article-title: Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2016.1271661
– ident: 10.1016/j.asoc.2020.106104_b31
  doi: 10.1162/evco_a_00259
– volume: 16
  start-page: 1353
  issue: 8
  year: 2012
  ident: 10.1016/j.asoc.2020.106104_b8
  article-title: Self-adaptive differential evolution algorithm with α-constrained-domination principle for constrained multi-objective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-012-0816-6
– start-page: 849
  year: 2012
  ident: 10.1016/j.asoc.2020.106104_b15
  article-title: Constraint-handling techniques used with evolutionary algorithms
– volume: 44
  start-page: 665
  year: 2019
  ident: 10.1016/j.asoc.2020.106104_b13
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.017
– start-page: 4175
  year: 2016
  ident: 10.1016/j.asoc.2020.106104_b23
  article-title: A comparative study of constraint-handling techniques in evolutionary constrained multiobjective optimization
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2020.106104_b24
  article-title: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– volume: 17
  start-page: 321
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2020.106104_b5
  article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2196800
– volume: 11
  start-page: 269
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2020.106104_b6
  article-title: Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots
  publication-title: Soft Comput.
  doi: 10.1007/s00500-006-0068-4
– volume: 435
  start-page: 240
  year: 2018
  ident: 10.1016/j.asoc.2020.106104_b30
  article-title: Differential evolution with adaptive trial vector generation strategy and cluster-replacement-based feasibility rule for constrained optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.01.014
– volume: 13
  start-page: 128
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2020.106104_b11
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2012.07.027
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2020.106104_b18
  article-title: An improved epsilon constraint handling method embedded in MOEA/d for constrained multi-objective optimization problems
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.asoc.2020.106104_b27
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 186
  start-page: 311
  issue: 2
  year: 2000
  ident: 10.1016/j.asoc.2020.106104_b16
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 67
  start-page: 245
  year: 2018
  ident: 10.1016/j.asoc.2020.106104_b3
  article-title: A two-stage R2 indicator based evolutionary algorithm for many-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.048
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2020.106104_b17
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– start-page: 1
  year: 2008
  ident: 10.1016/j.asoc.2020.106104_b32
– volume: 45
  start-page: 830
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2020.106104_b2
  article-title: MOMMOP: Multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2337117
– volume: 74
  start-page: 621
  year: 2019
  ident: 10.1016/j.asoc.2020.106104_b34
  article-title: MOEA/d with angle-based constrained dominance principle for constrained multi-objective optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.027
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106104_b7
  article-title: Multi-objective differential evolution with dynamic hybrid constraint handling mechanism
  publication-title: Soft Computing
– volume: 1
  start-page: 173
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2020.106104_b9
  article-title: Constraint-handling in nature-inspired numerical optimization: Past, present and future
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.10.001
– volume: 34
  start-page: 141
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2020.106104_b36
  article-title: A swarm metaphor for multiobjective design optimization
  publication-title: Eng. Optim.
  doi: 10.1080/03052150210915
– volume: 80
  start-page: 42
  year: 2019
  ident: 10.1016/j.asoc.2020.106104_b28
  article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.02.041
– volume: 60
  start-page: 613
  year: 2017
  ident: 10.1016/j.asoc.2020.106104_b20
  article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.053
– volume: 51
  start-page: 168
  issue: 18
  year: 2018
  ident: 10.1016/j.asoc.2020.106104_b4
  article-title: Application of constrained multi-objective evolutionary algorithm in multi-source compressed-air pipeline optimization problems
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.294
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2020.106104_b25
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106104_b14
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 602
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2020.106104_b33
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– volume: 7
  start-page: 174
  issue: 2
  year: 2003
  ident: 10.1016/j.asoc.2020.106104_b35
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810761
– volume: 13
  start-page: 514
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2020.106104_b10
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.2009032
– volume: 21
  start-page: 665
  issue: 5
  year: 2017
  ident: 10.1016/j.asoc.2020.106104_b26
  article-title: A two-phase differential evolution for uniform designs in constrained experimental domains
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2669098
– volume: 16
  start-page: 117
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2020.106104_b29
  article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2093582
SSID ssj0016928
Score 2.5010579
Snippet Constrained multi-objective optimization problems (CMOPs) are common in real-world engineering application, and are difficult to solve because of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106104
SubjectTerms Constrained multi-objective optimization
Constraint-handling techniques
Differential evolution
Epsilon constraint-handling
MOEA/D
Title A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism
URI https://dx.doi.org/10.1016/j.asoc.2020.106104
Volume 89
WOSCitedRecordID wos000520042200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbQxgMvjJ9iDJAfeKtcJY1jO48V2jQQmpAYqDxFcexuLVsytcm0P58720lDN02AxEtUWXUc-T6fz-fv7gh5b2MDxlA6Z6XWJePCGFhzE8uyKFVKyFLHLjz6-2d5cqJms-xLoA6tXTkBWVXq5ia7-q-ihjYQNobO_oW4-5dCA_wGocMTxA7PPxL8FJnka1f6AYxJRxhktV56xTay12FwZMsVF2f1atGcX45wMzN4cWAskswDk8vdLBhfs37z1oa51AzoY7i0GDjcZSHsktkGw3YNGt5R1tum2x9RvQQH9Y-6OvvZDhhBi9YhCp0s6MTeuBS8h_a81SFJePBRTKIBtcU5zm4Fz3hdKxTjWfBAWt8GQGGZ8FVcOgXtawzd0vXe7bAcFwDjMY46xuOtL2a8lUP7K46FQ00izDDGYc_encg0AzW4O_14OPvUXzyJzJXj7b8txFl5SuD2SHfbMgP75PQJeRwOFnTqAfGUPLDVM7LXFe2gQYc_J-2UDvBBt_BBh_igPT6owwetK_obPijggAZ80DvwQXt8vCDfjg5PPxyzUHuDlYkQDVNziQEittBaikjPS64yWNa6SGKtwSYsbWpjnWkZxYorsBmVmifaqrSMTZQWPHlJdqq6sq8I5SaWiSgiAZsjN5HRXKqUGzjpg-2sZbxP4m4W8zIkpsfPvcg7BuIyx5nPceZzP_P7ZNT3ufJpWe79d9oJJw-GpTcYc8DSPf1e_2O_A_JoswrekJ1m1dq35GF53SzWq3cBcr8A0f2iMA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+constrained+multi-objective+evolutionary+algorithm+based+on+decomposition+and+dynamic+constraint-handling+mechanism&rft.jtitle=Applied+soft+computing&rft.au=Yang%2C+Yongkuan&rft.au=Liu%2C+Jianchang&rft.au=Tan%2C+Shubin&rft.date=2020-04-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=89&rft_id=info:doi/10.1016%2Fj.asoc.2020.106104&rft.externalDocID=S1568494620300442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon