Inequalities for the generalized trigonometric and hyperbolic functions
The generalized trigonometric functions occur as an eigenfunction of the Dirichlet problem for the one-dimensional p-Laplacian. The generalized hyperbolic functions are defined similarly. Some classical inequalities for trigonometric and hyperbolic functions, such as Mitrinović–Adamović’s inequality...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 409; číslo 1; s. 521 - 529 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.01.2014
|
| Predmet: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The generalized trigonometric functions occur as an eigenfunction of the Dirichlet problem for the one-dimensional p-Laplacian. The generalized hyperbolic functions are defined similarly. Some classical inequalities for trigonometric and hyperbolic functions, such as Mitrinović–Adamović’s inequality, Lazarević’s inequality, Huygens-type inequalities, Wilker-type inequalities, and Cusa–Huygens-type inequalities, are generalized to the case of generalized functions. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2013.07.021 |