Relative cluster entropy for power-law correlated sequences

We propose an information-theoretical measure, the relative cluster entropy \mathcal{D_C}[P\|Q] [ P ∥ Q ] , to discriminate among cluster partitions characterised by probability distribution functions P and Q. The measure is illustrated with the clusters generated by pairs of fractional Brownian mot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SciPost physics Jg. 13; H. 3; S. 076
Hauptverfasser: Carbone, Anna, Ponta, Linda
Format: Journal Article
Sprache:Englisch
Veröffentlicht: SciPost 01.09.2022
ISSN:2542-4653, 2542-4653
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We propose an information-theoretical measure, the relative cluster entropy \mathcal{D_C}[P\|Q] [ P ∥ Q ] , to discriminate among cluster partitions characterised by probability distribution functions P and Q. The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents H_1 H 1 and H_2 H 2 respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between H_1 H 1 and H_2 H 2 . By using the minimum relative entropy principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The minimum relative cluster entropy yields optimal Hurst exponents H_1 H 1 =0.55, H_1 H 1 =0.57, and H_1 H 1 =0.63 respectively for the prices of DJIA, S and P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables.
AbstractList We propose an information-theoretical measure, the relative cluster entropy \mathcal{D_C}[P\|Q] [ P ∥ Q ] , to discriminate among cluster partitions characterised by probability distribution functions P and Q. The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents H_1 H 1 and H_2 H 2 respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between H_1 H 1 and H_2 H 2 . By using the minimum relative entropy principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The minimum relative cluster entropy yields optimal Hurst exponents H_1 H 1 =0.55, H_1 H 1 =0.57, and H_1 H 1 =0.63 respectively for the prices of DJIA, S and P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables.
We propose an information-theoretical measure, the \textit{relative cluster entropy} $\mathcal{D_{C}}[P \| Q] $, to discriminate among cluster partitions characterised by probability distribution functions $P$ and $Q$. The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents $H_1$ and $H_2$ respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between $H_1$ and $H_2$. By using the \textit{minimum relative entropy} principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The \textit{minimum relative cluster entropy} yields optimal Hurst exponents $H_1=0.55$, $H_1=0.57$, and $H_1=0.63$ respectively for the prices of DJIA, S\&P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables.
ArticleNumber 076
Author Carbone, Anna
Ponta, Linda
Author_xml – sequence: 1
  givenname: Anna
  surname: Carbone
  fullname: Carbone, Anna
  organization: Polytechnic University of Turin
– sequence: 2
  givenname: Linda
  surname: Ponta
  fullname: Ponta, Linda
  organization: University Carlo Cattaneo
BookMark eNp9kNtKw0AQhhepYK19BCEvkLqnbDb0SoqHQsHi4XrZw6ymxGzdTS19e2OrULzwaoZh_n_--c7RoA0tIHRJ8IQSLuTVk62XIXXLt12aEDZhE1yKEzSkBac5FwUbHPVnaJzSCmNMCamIKIZo-giN7upPyGyzSR3EDNouhvUu8yFm67CFmDd6m9kQ4_cmuCzBxwZaC-kCnXrdJBj_1BF6ub15nt3ni4e7-ex6kVsmRJeXBigxRBNtpRcFdmAL8JJQa6x03nhXcOOwLmRZEWxKb4h0jBrsOFBcGjZC84OvC3ql1rF-13Gngq7VfhDiq9Kxq20DCgtqnfXSO255JSrtKe9PGS1BA6es95oevGwMKUXwytZdDyD0X-u6UQSrPVZ1hFURppjqsfbq4o_6N83_ui9w0oTW
CitedBy_id crossref_primary_10_1016_j_patrec_2025_03_004
crossref_primary_10_1016_j_cnsns_2024_108469
crossref_primary_10_1103_PhysRevE_111_014311
Cites_doi 10.1038/nphys3230
10.1103/PhysRevLett.95.244101
10.1103/PhysRevE.97.013107
10.1111/jofi.12090
10.1007/s11063-019-10187-6
10.1038/srep02721
10.1103/PhysRevE.93.022114
10.1103/PhysRevE.69.026105
10.1103/PhysRevX.4.031015
10.1016/j.patcog.2005.01.025
10.1016/j.physa.2007.04.105
10.1103/PhysRevLett.98.080602
10.1016/j.physa.2021.125777
10.1137/070710111
10.1002/widm.1444
10.1103/PhysRevLett.109.120604
10.1103/RevModPhys.74.197
10.1007/s11229-020-02895-7
10.1098/rspa.2012.0683
10.1016/j.jmva.2006.11.013
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21468/SciPostPhys.13.3.076
DatabaseName CrossRef
DOAJ
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2542-4653
ExternalDocumentID oai_doaj_org_article_062cdcf8fd4c4969af24f81ba8eae423
10_21468_SciPostPhys_13_3_076
GroupedDBID 5VS
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c366t-7be21b1a1ac8f650dec5ef812cbc8dfbfd54bd0a587910b7fb18d32b0d4e207b3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000921681700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2542-4653
IngestDate Fri Oct 03 12:49:22 EDT 2025
Tue Nov 18 22:15:18 EST 2025
Sat Nov 29 06:22:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-7be21b1a1ac8f650dec5ef812cbc8dfbfd54bd0a587910b7fb18d32b0d4e207b3
OpenAccessLink https://doaj.org/article/062cdcf8fd4c4969af24f81ba8eae423
ParticipantIDs doaj_primary_oai_doaj_org_article_062cdcf8fd4c4969af24f81ba8eae423
crossref_citationtrail_10_21468_SciPostPhys_13_3_076
crossref_primary_10_21468_SciPostPhys_13_3_076
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle SciPost physics
PublicationYear 2022
Publisher SciPost
Publisher_xml – name: SciPost
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1038/nphys3230
– ident: ref7
  doi: 10.1103/PhysRevLett.95.244101
– ident: ref10
  doi: 10.1103/PhysRevE.97.013107
– ident: ref11
  doi: 10.1111/jofi.12090
– ident: ref8
  doi: 10.1007/s11063-019-10187-6
– ident: ref18
  doi: 10.1038/srep02721
– ident: ref1
  doi: 10.1103/PhysRevE.93.022114
– ident: ref16
  doi: 10.1103/PhysRevE.69.026105
– ident: ref4
  doi: 10.1103/PhysRevX.4.031015
– ident: ref15
  doi: 10.1016/j.patcog.2005.01.025
– ident: ref17
  doi: 10.1016/j.physa.2007.04.105
– ident: ref3
  doi: 10.1103/PhysRevLett.98.080602
– ident: ref19
  doi: 10.1016/j.physa.2021.125777
– ident: ref20
  doi: 10.1137/070710111
– ident: ref13
  doi: 10.1002/widm.1444
– ident: ref5
  doi: 10.1103/PhysRevLett.109.120604
– ident: ref9
  doi: 10.1103/RevModPhys.74.197
– ident: ref12
  doi: 10.1007/s11229-020-02895-7
– ident: ref6
  doi: 10.1098/rspa.2012.0683
– ident: ref14
  doi: 10.1016/j.jmva.2006.11.013
SSID ssj0002119165
Score 2.21496
Snippet We propose an information-theoretical measure, the relative cluster entropy \mathcal{D_C}[P\|Q] [ P ∥ Q ] , to discriminate among cluster partitions...
We propose an information-theoretical measure, the \textit{relative cluster entropy} $\mathcal{D_{C}}[P \| Q] $, to discriminate among cluster partitions...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 076
Title Relative cluster entropy for power-law correlated sequences
URI https://doaj.org/article/062cdcf8fd4c4969af24f81ba8eae423
Volume 13
WOSCitedRecordID wos000921681700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2542-4653
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002119165
  issn: 2542-4653
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2542-4653
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002119165
  issn: 2542-4653
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kKHgRn1hf5OA1bbK7STZ4UrF40OJBobewj1kQSlv6Ei_-dmc2seTWi5ccwu6S_SbZmQkz38fYLVdGJobrWPtMxlKDiLVwNgYuPS9UorMyNAq_FMOhGo3Kt5bUF9WE1fTANXD9JOfWWa-8k1aWeak9roKxllagAWMBOn2TomwlU3QGB96yPKtbdki7WvXxWyH9Wyqs7KWiJ3oJ8Yy0nFGLsz84l8EhO2iiwui-fpojtgOTY7YXqjPt4oTd1SVra4jseEXMBhH9k53OviMMOaMZCZ3FY_0VWZLawJHgok2J9Cn7GDy9Pz7HjepBbEWeL-PCAE9NqlNtlcf4yYHNAHfMrbHKeeNdJo1DEFWBrt4U3qTKCW4SJwGRMOKMdSbTCZyzSIEFBNtREoPOKtMp5BJzmIT0Dw0kXSb_tl_ZhhKclCnGFaYGAbWqhVqVikpUiFqX9TbTZjUnxrYJD4TtZjBRWocbaOiqMXS1zdAX_7HIJdvn1L8QisSuWGc5X8E127Xr5edifhPeIby-_jz9AodD0ZI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+cluster+entropy+for+power-law+correlated+sequences&rft.jtitle=SciPost+physics&rft.au=Anna+Carbone%2C+Linda+Ponta&rft.date=2022-09-01&rft.pub=SciPost&rft.eissn=2542-4653&rft.volume=13&rft.issue=3&rft.spage=076&rft_id=info:doi/10.21468%2FSciPostPhys.13.3.076&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_062cdcf8fd4c4969af24f81ba8eae423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon