Mhorseshoe package in R: Approximate algorithm for the horseshoe prior in Bayesian linear model

The horseshoe prior is a continuous shrinkage prior frequently used in high-dimensional Bayesian sparse linear regression models. Although the horseshoe prior theoretically guarantees excellent shrinkage properties, performing a Markov Chain Monte Carlo (MCMC) algorithm incurs high computational cos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SoftwareX Jg. 31; S. 102236
Hauptverfasser: Kang, Mingi, Lee, Kyoungjae
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2025
Elsevier
Schlagworte:
ISSN:2352-7110, 2352-7110
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The horseshoe prior is a continuous shrinkage prior frequently used in high-dimensional Bayesian sparse linear regression models. Although the horseshoe prior theoretically guarantees excellent shrinkage properties, performing a Markov Chain Monte Carlo (MCMC) algorithm incurs high computational costs per iteration. We introduce the Mhorseshoe package in R, which implements posterior inference under the horseshoe prior, based on the exact and approximate algorithms proposed in Johndrow et al. (2020). Furthermore, this package incorporates a novel adaptive selection method, which we developed and implemented to determine the tuning parameter in the approximate algorithm. We conducted a simulation study and confirmed that the algorithm can be effectively applied to large datasets.
ISSN:2352-7110
2352-7110
DOI:10.1016/j.softx.2025.102236