High-fidelity realization of the AKLT state on a NISQ-era quantum processor

The AKLT state is the ground state of an isotropic quantum Heisenberg spin-1 model. It exhibits an excitation gap and an exponentially decaying correlation function, with fractionalized excitations at its boundaries. So far, the one-dimensional AKLT model has only been experimentally realized with t...

Full description

Saved in:
Bibliographic Details
Published in:SciPost physics Vol. 15; no. 4; p. 170
Main Authors: Chen, Tianqi, Shen, Ruizhe, Lee, Ching Hua, Yang, Bo
Format: Journal Article
Language:English
Published: SciPost 01.10.2023
ISSN:2542-4653, 2542-4653
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The AKLT state is the ground state of an isotropic quantum Heisenberg spin-1 model. It exhibits an excitation gap and an exponentially decaying correlation function, with fractionalized excitations at its boundaries. So far, the one-dimensional AKLT model has only been experimentally realized with trapped-ions as well as photonic systems. In this work, we successfully prepared the AKLT state on a noisy intermediate-scale quantum (NISQ) era quantum device. In particular, we developed a non-deterministic algorithm on the IBM quantum processor, where the non-unitary operator necessary for the AKLT state preparation is embedded in a unitary operator with an additional ancilla qubit for each pair of auxiliary spin-1/2’s. Such a unitary operator is effectively represented by a parametrized circuit composed of single-qubit and nearest-neighbor CX gates. Compared with the conventional operator decomposition method from Qiskit, our approach results in a much shallower circuit depth with only nearest-neighbor gates, while maintaining a fidelity in excess of 99.99% with the original operator. By simultaneously post-selecting each ancilla qubit such that it belongs to the subspace of spin-up |↑>, an AKLT state can be systematically obtained by evolving from an initial trivial product state of singlets plus ancilla qubits in spin-up on a quantum computer, and it is subsequently recorded by performing measurements on all the other physical qubits. We show how the accuracy of our implementation can be further improved on the IBM quantum processor with readout error mitigation.
AbstractList The AKLT state is the ground state of an isotropic quantum Heisenberg spin-1 model. It exhibits an excitation gap and an exponentially decaying correlation function, with fractionalized excitations at its boundaries. So far, the one-dimensional AKLT model has only been experimentally realized with trapped-ions as well as photonic systems. In this work, we successfully prepared the AKLT state on a noisy intermediate-scale quantum (NISQ) era quantum device. In particular, we developed a non-deterministic algorithm on the IBM quantum processor, where the non-unitary operator necessary for the AKLT state preparation is embedded in a unitary operator with an additional ancilla qubit for each pair of auxiliary spin-1/2’s. Such a unitary operator is effectively represented by a parametrized circuit composed of single-qubit and nearest-neighbor CX gates. Compared with the conventional operator decomposition method from Qiskit, our approach results in a much shallower circuit depth with only nearest-neighbor gates, while maintaining a fidelity in excess of 99.99% with the original operator. By simultaneously post-selecting each ancilla qubit such that it belongs to the subspace of spin-up |↑>, an AKLT state can be systematically obtained by evolving from an initial trivial product state of singlets plus ancilla qubits in spin-up on a quantum computer, and it is subsequently recorded by performing measurements on all the other physical qubits. We show how the accuracy of our implementation can be further improved on the IBM quantum processor with readout error mitigation.
ArticleNumber 170
Author Yang, Bo
Chen, Tianqi
Shen, Ruizhe
Lee, Ching Hua
Author_xml – sequence: 1
  givenname: Tianqi
  surname: Chen
  fullname: Chen, Tianqi
  organization: Nanyang Technological University
– sequence: 2
  givenname: Ruizhe
  surname: Shen
  fullname: Shen, Ruizhe
  organization: National University of Singapore
– sequence: 3
  givenname: Ching Hua
  surname: Lee
  fullname: Lee, Ching Hua
  organization: National University of Singapore
– sequence: 4
  givenname: Bo
  surname: Yang
  fullname: Yang, Bo
  organization: Nanyang Technological University
BookMark eNp9kNtKAzEQhoNUsGofQcgLbE02yTaLV6V4KBYPWK9DNpm0KdumJulFfXqXqlC88GqGH76Pmf8c9TZhAwhdUTIsKa_k9ZvxLyHll-U-DakY8iEdkRPULwUvC14J1jvaz9AgpRUhpKS0ppXoo8cHv1gWzltofd7jCLr1nzr7sMHB4bwEPH6czXHKOgPuQo2fpm-vBUSNP3Z6k3drvI3BQEohXqJTp9sEg595gd7vbueTh2L2fD-djGeFYVWVi0rWkjW1lTWAlUwQXlvhgFDnuGksc6XVpNK0GQHISlpu60Ywa0kNNQdesgs0_fbaoFdqG_1ax70K2qtDEOJC6Zi9aUE1ICiRBpqSSg6kE42s1qxkjXPUSN65br5dJoaUIjhlfD78n6P2raJEHWpWRzUrKhRXXc0dLf7Qv9f8z30BIxGITA
CitedBy_id crossref_primary_10_1038_s42005_025_01947_z
crossref_primary_10_1038_s41467_025_55953_4
crossref_primary_10_1038_s42005_024_01591_z
crossref_primary_10_1038_s42005_025_02011_6
crossref_primary_10_1103_PRXQuantum_5_030301
crossref_primary_10_1038_s41534_024_00898_7
crossref_primary_10_1103_PhysRevLett_133_216601
crossref_primary_10_1103_PhysRevB_111_064308
crossref_primary_10_1103_PhysRevB_111_045420
crossref_primary_10_1007_s11467_023_1309_z
crossref_primary_10_3390_app14198579
crossref_primary_10_1103_PRXQuantum_6_020349
Cites_doi 10.17637/RH.7000520
10.1109/QCE52317.2021.00058
10.1038/nphys1777
10.1103/PhysRevLett.129.080501
10.1088/0953-8984/2/26/010
10.1103/PhysRevX.10.021019
10.1038/s41598-019-53253-8
10.1103/PRXQuantum.2.030334
10.1103/PhysRevLett.59.799
10.1038/s41567-022-01914-3
10.1103/PhysRevA.103.032606
10.1038/s41534-019-0187-2
10.1038/s41586-021-04257-w
10.48550/arXiv.1810.12745
10.1038/s41586-019-1040-7
10.1126/science.aaa7432
10.1103/PhysRevLett.109.016401
10.1007/BF01218021
10.48550/arXiv.2208.14944
10.1126/science.abb9811
10.1073/pnas.84.19.6611
10.21105/joss.00819
10.1103/RevModPhys.80.885
10.1038/s42005-022-01015-w
10.1016/j.aop.2011.03.006
10.3389/fphy.2022.906399
10.1103/PhysRevA.103.042605
10.1103/PhysRevApplied.15.034026
10.1103/PhysRevLett.128.010402
10.1119/10.0006204
10.1103/PhysRevX.8.031027
10.22331/q-2019-05-13-140
10.1021/jp970984n
10.1103/PhysRevA.82.052309
10.1103/PhysRevA.86.032328
10.22331/q-2018-12-21-114
10.1038/ncomms15791
10.1103/PhysRevB.106.224308
10.5281/zenodo.8131793
10.1103/PhysRevLett.119.180509
10.22331/q-2018-08-06-79
10.3115/1118853.1118871
10.1103/PhysRevLett.121.086808
10.1103/PhysRevResearch.3.023190
10.1038/s41586-019-1666-5
10.1103/PhysRevA.107.042616
10.1103/PhysRevResearch.2.033069
10.1103/PhysRevB.48.3844
10.1103/PhysRevB.98.235156
10.1038/s42005-021-00547-x
10.1038/s41567-019-0704-4
10.1103/PhysRevA.107.L010202
10.1103/PRXQuantum.2.010317
10.1038/s41534-021-00420-3
10.1103/PhysRevB.105.054304
10.1126/science.177.4047.393
10.1103/PhysRevB.98.241108
10.1103/PhysRevX.7.041047
10.1103/PhysRevResearch.5.L022037
10.1038/s41467-022-33737-4
10.1103/PhysRevX.9.041015
10.1038/s42254-019-0086-7
10.1109/QCE49297.2020.00045
10.1103/PhysRevLett.106.070501
10.1017/CBO9780511721724
10.1103/PhysRevLett.129.056801
10.1103/PRXQuantum.1.020309
10.1145/1273496.1273501
10.1109/QCE49297.2020.00030
10.1103/PRXQuantum.4.020315
10.1515/crll.1909.136.210
10.1038/nphys3784
10.1103/PhysRevA.107.032614
10.1038/nphys1157
10.1038/s42254-021-00348-9
10.1088/0953-8984/1/19/001
10.1038/s41467-021-25355-3
10.1103/PhysRevLett.125.120502
10.1103/PhysRevB.104.195102
10.1103/PhysRevLett.125.160503
10.1038/s41534-019-0217-0
10.1103/PhysRevA.101.032310
10.1103/PhysRevX.5.021026
10.1007/978-3-031-03998-0_5
10.1007/978-3-030-41265-4
10.1103/PRXQuantum.2.040326
10.1016/j.aop.2010.09.012
10.1103/PhysRevResearch.5.013190
10.1080/00018732.2021.1876991
10.1103/PhysRevLett.95.010501
10.1142/S0219749905001456
10.1038/s41534-022-00527-1
10.1103/RevModPhys.71.1253
10.1103/PhysRevA.106.022414
10.1016/j.physrep.2021.08.003
10.1103/PhysRevB.98.125431
10.1103/RevModPhys.93.045003
10.1088/1751-8121/ac6bd0
10.1126/sciadv.abm7652
10.1038/nphys4323
10.1103/PhysRevResearch.4.L022020
10.1103/PhysRevB.102.125112
10.1103/PhysRevLett.129.140502
10.1103/RevModPhys.91.015005
10.1126/science.285.5432.1368
10.1126/science.aaf8834
10.1103/PhysRevB.102.081115
10.1103/PhysRevB.102.054303
10.1103/PhysRevLett.122.180501
10.1007/BFb0119591
10.1103/PhysRevA.93.032318
10.1103/PRXQuantum.2.017003
10.1103/physrevlett.131.110602
10.1103/PhysRevLett.94.170201
10.1103/PhysRevLett.127.120502
10.1109/TQE.2022.3174547
10.3390/e24020244
10.1088/1751-8121/abad76
10.1103/PhysRevResearch.2.033428
10.1126/science.abi8794
10.1103/PhysRevB.98.094434
10.1126/science.abe8770
10.1103/PRXQuantum.2.010342
10.1103/PhysRevLett.86.5188
10.5281/zenodo.2573505
10.1038/s41598-018-23764-x
10.1103/PRXQuantum.3.020342
10.1103/PhysRevB.102.085117
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21468/SciPostPhys.15.4.170
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2542-4653
ExternalDocumentID oai_doaj_org_article_be5108ceb2184e09b57daa323bff1c84
10_21468_SciPostPhys_15_4_170
GroupedDBID 5VS
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c366t-68983b9d89eed835049d5fe01ff4cbd3f2da06a1b7ee868d4d9b53dd09e94e423
IEDL.DBID DOA
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122874400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2542-4653
IngestDate Fri Oct 03 12:41:59 EDT 2025
Sat Nov 29 06:22:47 EST 2025
Tue Nov 18 21:12:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-68983b9d89eed835049d5fe01ff4cbd3f2da06a1b7ee868d4d9b53dd09e94e423
OpenAccessLink https://doaj.org/article/be5108ceb2184e09b57daa323bff1c84
ParticipantIDs doaj_primary_oai_doaj_org_article_be5108ceb2184e09b57daa323bff1c84
crossref_citationtrail_10_21468_SciPostPhys_15_4_170
crossref_primary_10_21468_SciPostPhys_15_4_170
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle SciPost physics
PublicationYear 2023
Publisher SciPost
Publisher_xml – name: SciPost
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref131
ref94
ref130
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref123
  doi: 10.17637/RH.7000520
– ident: ref131
  doi: 10.1109/QCE52317.2021.00058
– ident: ref52
  doi: 10.1038/nphys1777
– ident: ref122
  doi: 10.1103/PhysRevLett.129.080501
– ident: ref39
  doi: 10.1088/0953-8984/2/26/010
– ident: ref115
  doi: 10.1103/PhysRevX.10.021019
– ident: ref106
  doi: 10.1038/s41598-019-53253-8
– ident: ref20
  doi: 10.1103/PRXQuantum.2.030334
– ident: ref36
  doi: 10.1103/PhysRevLett.59.799
– ident: ref129
  doi: 10.1038/s41567-022-01914-3
– ident: ref19
  doi: 10.1103/PhysRevA.103.032606
– ident: ref32
  doi: 10.1038/s41534-019-0187-2
– ident: ref10
  doi: 10.1038/s41586-021-04257-w
– ident: ref60
  doi: 10.48550/arXiv.1810.12745
– ident: ref127
  doi: 10.1038/s41586-019-1040-7
– ident: ref3
  doi: 10.1126/science.aaa7432
– ident: ref30
  doi: 10.1103/PhysRevLett.109.016401
– ident: ref37
  doi: 10.1007/BF01218021
– ident: ref101
  doi: 10.48550/arXiv.2208.14944
– ident: ref12
  doi: 10.1126/science.abb9811
– ident: ref80
  doi: 10.1073/pnas.84.19.6611
– ident: ref59
  doi: 10.21105/joss.00819
– ident: ref2
  doi: 10.1103/RevModPhys.80.885
– ident: ref110
  doi: 10.1038/s42005-022-01015-w
– ident: ref48
  doi: 10.1016/j.aop.2011.03.006
– ident: ref87
  doi: 10.3389/fphy.2022.906399
– ident: ref130
  doi: 10.1103/PhysRevA.103.042605
– ident: ref128
  doi: 10.1103/PhysRevApplied.15.034026
– ident: ref102
  doi: 10.1103/PhysRevLett.128.010402
– ident: ref26
  doi: 10.1119/10.0006204
– ident: ref125
  doi: 10.1103/PhysRevX.8.031027
– ident: ref61
  doi: 10.22331/q-2019-05-13-140
– ident: ref81
  doi: 10.1021/jp970984n
– ident: ref92
  doi: 10.1103/PhysRevA.82.052309
– ident: ref93
  doi: 10.1103/PhysRevA.86.032328
– ident: ref15
  doi: 10.22331/q-2018-12-21-114
– ident: ref111
  doi: 10.1038/ncomms15791
– ident: ref116
  doi: 10.1103/PhysRevB.106.224308
– ident: ref86
  doi: 10.5281/zenodo.8131793
– ident: ref124
  doi: 10.1103/PhysRevLett.119.180509
– ident: ref7
  doi: 10.22331/q-2018-08-06-79
– ident: ref78
  doi: 10.3115/1118853.1118871
– ident: ref45
  doi: 10.1103/PhysRevLett.121.086808
– ident: ref120
  doi: 10.1103/PhysRevResearch.3.023190
– ident: ref8
  doi: 10.1038/s41586-019-1666-5
– ident: ref35
  doi: 10.1103/PhysRevA.107.042616
– ident: ref99
  doi: 10.1103/PhysRevResearch.2.033069
– ident: ref40
  doi: 10.1103/PhysRevB.48.3844
– ident: ref68
  doi: 10.1103/PhysRevB.98.235156
– ident: ref107
  doi: 10.1038/s42005-021-00547-x
– ident: ref33
  doi: 10.1038/s41567-019-0704-4
– ident: ref109
  doi: 10.1103/PhysRevA.107.L010202
– ident: ref62
  doi: 10.1103/PRXQuantum.2.010317
– ident: ref63
  doi: 10.1038/s41534-021-00420-3
– ident: ref70
  doi: 10.1103/PhysRevB.105.054304
– ident: ref1
  doi: 10.1126/science.177.4047.393
– ident: ref114
  doi: 10.1103/PhysRevB.98.241108
– ident: ref5
  doi: 10.1103/PhysRevX.7.041047
– ident: ref57
  doi: 10.1103/PhysRevResearch.5.L022037
– ident: ref64
  doi: 10.1038/s41467-022-33737-4
– ident: ref104
  doi: 10.1103/PhysRevX.9.041015
– ident: ref77
  doi: 10.1103/PRXQuantum.2.010317
– ident: ref24
  doi: 10.1038/s42254-019-0086-7
– ident: ref126
  doi: 10.1109/QCE49297.2020.00045
– ident: ref47
  doi: 10.1103/PhysRevLett.106.070501
– ident: ref83
  doi: 10.1017/CBO9780511721724
– ident: ref14
  doi: 10.1103/PhysRevLett.129.056801
– ident: ref13
  doi: 10.1103/PRXQuantum.1.020309
– ident: ref79
  doi: 10.1145/1273496.1273501
– ident: ref28
  doi: 10.1109/QCE49297.2020.00030
– ident: ref55
  doi: 10.1103/PRXQuantum.4.020315
– ident: ref88
  doi: 10.1515/crll.1909.136.210
– ident: ref95
  doi: 10.1038/nphys3784
– ident: ref41
  doi: 10.1103/PhysRevA.107.032614
– ident: ref50
  doi: 10.1038/nphys1157
– ident: ref75
  doi: 10.1038/s42254-021-00348-9
– ident: ref84
  doi: 10.21105/joss.00819
– ident: ref38
  doi: 10.1088/0953-8984/1/19/001
– ident: ref113
  doi: 10.1038/s41467-021-25355-3
– ident: ref43
  doi: 10.1103/PhysRevLett.125.120502
– ident: ref94
  doi: 10.1103/PhysRevB.104.195102
– ident: ref42
  doi: 10.1103/PhysRevLett.125.160503
– ident: ref16
  doi: 10.1038/s41534-019-0217-0
– ident: ref27
  doi: 10.1103/PhysRevA.101.032310
– ident: ref54
  doi: 10.1103/PhysRevX.5.021026
– ident: ref51
  doi: 10.1007/978-3-031-03998-0_5
– ident: ref67
  doi: 10.1007/978-3-030-41265-4
– ident: ref91
  doi: 10.1103/PRXQuantum.2.040326
– ident: ref66
  doi: 10.1016/j.aop.2010.09.012
– ident: ref56
  doi: 10.1103/PhysRevResearch.5.013190
– ident: ref98
  doi: 10.1080/00018732.2021.1876991
– ident: ref53
  doi: 10.1103/PhysRevLett.95.010501
– ident: ref69
  doi: 10.1142/S0219749905001456
– ident: ref17
  doi: 10.1038/s41534-022-00527-1
– ident: ref22
  doi: 10.1103/RevModPhys.71.1253
– ident: ref31
  doi: 10.1103/PhysRevA.106.022414
– ident: ref117
  doi: 10.1016/j.physrep.2021.08.003
– ident: ref96
  doi: 10.1103/PhysRevB.98.125431
– ident: ref25
  doi: 10.1103/RevModPhys.93.045003
– ident: ref121
  doi: 10.1088/1751-8121/ac6bd0
– ident: ref11
  doi: 10.1126/sciadv.abm7652
– ident: ref103
  doi: 10.1038/nphys4323
– ident: ref44
  doi: 10.1103/PhysRevResearch.4.L022020
– ident: ref119
  doi: 10.1103/PhysRevB.102.125112
– ident: ref18
  doi: 10.1103/PhysRevLett.129.140502
– ident: ref6
  doi: 10.1103/RevModPhys.91.015005
– ident: ref82
  doi: 10.1126/science.285.5432.1368
– ident: ref4
  doi: 10.1126/science.aaf8834
– ident: ref105
  doi: 10.1103/PhysRevB.102.081115
– ident: ref112
  doi: 10.1103/PhysRevB.102.054303
– ident: ref85
  doi: 10.1103/PhysRevLett.122.180501
– ident: ref71
  doi: 10.1007/BFb0119591
– ident: ref74
  doi: 10.1103/PhysRevA.93.032318
– ident: ref46
  doi: 10.1103/PRXQuantum.2.017003
– ident: ref34
  doi: 10.1103/physrevlett.131.110602
– ident: ref23
  doi: 10.1103/PhysRevLett.94.170201
– ident: ref76
  doi: 10.1103/PhysRevLett.127.120502
– ident: ref89
  doi: 10.1109/TQE.2022.3174547
– ident: ref90
  doi: 10.3390/e24020244
– ident: ref118
  doi: 10.1088/1751-8121/abad76
– ident: ref108
  doi: 10.1103/PhysRevResearch.2.033428
– ident: ref21
  doi: 10.1126/science.abi8794
– ident: ref100
  doi: 10.1103/PhysRevLett.128.010402
– ident: ref97
  doi: 10.1103/PhysRevB.98.094434
– ident: ref9
  doi: 10.1126/science.abe8770
– ident: ref29
  doi: 10.1103/PRXQuantum.2.010342
– ident: ref49
  doi: 10.1103/PhysRevLett.86.5188
– ident: ref65
  doi: 10.5281/zenodo.2573505
– ident: ref72
  doi: 10.1038/s41598-018-23764-x
– ident: ref73
  doi: 10.1103/PRXQuantum.3.020342
– ident: ref58
  doi: 10.1103/PhysRevB.102.085117
SSID ssj0002119165
Score 2.4290214
Snippet The AKLT state is the ground state of an isotropic quantum Heisenberg spin-1 model. It exhibits an excitation gap and an exponentially decaying correlation...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 170
Title High-fidelity realization of the AKLT state on a NISQ-era quantum processor
URI https://doaj.org/article/be5108ceb2184e09b57daa323bff1c84
Volume 15
WOSCitedRecordID wos001122874400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2542-4653
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002119165
  issn: 2542-4653
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2542-4653
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002119165
  issn: 2542-4653
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yFLyIP3H-Igev3dqmTZPjlA1lOhQn7BbyE4S5zW7z6N_uS1pHb7t46SE0pXwvab5H3_s-hG4tp4XkREWUcRZlqdWRslkacSnTwhSO6VQFs4liNGKTCX9pWH35mrBKHrgCrqssrBqmIQGEXMTGXOWFkZKkRDmXaBaUQOOCN5Ip_w0OumU0r1p2vHc168Je8f63vrCyk-SdrJN4g-LGYdTQ7A-Hy-AQHdSsEPeqtzlCO3Z2jPZCdaZenqChr8aInFekAtKMgedN6_ZJPHcYKBzuDZ_GODQHYRiUePT49hrZUuKvNUC3_sSLqiFgXp6i90F_fP8Q1S4IkSaUrgKIRHHDOBxnwJeA0pvc2ThxLtPKEJcaGVOZqMJaRpnJDGBEjIm55RnATs5Qazaf2XOEHXVApol1_n8o4AlcANIFaylg5ZzO2yj7g0PoWiLcO1VMBaQKAUXRQFEkucgEoNhGnc20RaWRsW3Cncd6c7OXuA4DEHhRB15sC_zFfzzkEu17__iqOu8KtVbl2l6jXf29-liWN2FNwfX5p_8L1yvUjQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-fidelity+realization+of+the+AKLT+state+on+a+NISQ-era+quantum+processor&rft.jtitle=SciPost+physics&rft.au=Chen%2C+Tianqi&rft.au=Shen%2C+Ruizhe&rft.au=Lee%2C+Ching+Hua&rft.au=Yang%2C+Bo&rft.date=2023-10-01&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=15&rft.issue=4&rft_id=info:doi/10.21468%2FSciPostPhys.15.4.170&rft.externalDBID=n%2Fa&rft.externalDocID=10_21468_SciPostPhys_15_4_170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon