Robust Two-Way Cognitive Relaying: Precoder Designs under Interference Constraints and Imperfect CSI

We present various robust precoder designs for two-way relaying in a cognitive radio network, where a pair of cognitive (or secondary) transceiver nodes communicate with each other assisted by a set of cognitive two-way relays. The secondary nodes share the spectrum with a licensed primary user (PU)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 13; no. 5; pp. 2478 - 2489
Main Authors: Ubaidulla, P., Aissa, Sonia
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.05.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present various robust precoder designs for two-way relaying in a cognitive radio network, where a pair of cognitive (or secondary) transceiver nodes communicate with each other assisted by a set of cognitive two-way relays. The secondary nodes share the spectrum with a licensed primary user (PU) node while keeping the interference to the PU below a specified threshold. The PU node and the cognitive transceivers employ single transmit/receive antennas whereas the secondary relay nodes employ multiple transmit/receive antennas. The proposed precoder designs ensure robust performance in the presence of errors in the channel state information (CSI). Such robust designs are of significant interest since in practice it is very difficult to obtain perfect CSI. We consider CSI errors with two different types of characterization and corresponding robust designs. First, we consider robust relay precoder designs that are applicable when CSI errors have known first and second moments. Next, we consider robust designs that are applicable when the CSI error can be characterized in terms of spherical uncertainty region. We show that the proposed designs can be reformulated as convex optimization problems that can be solved efficiently. Through numerical simulations and comparisons we illustrate the performance of the proposed designs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2014.031714.130082