Accelerating a Geometrical Approximated PCA Algorithm Using AVX2 and CUDA

Remote sensing data has known an explosive growth in the past decade. This has led to the need for efficient dimensionality reduction techniques, mathematical procedures that transform the high-dimensional data into a meaningful, reduced representation. Projection Pursuit (PP) based algorithms were...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 12; no. 12; p. 1918
Main Authors: Machidon, Alina, Machidon, Octavian, Ciobanu, Cătălin, Ogrutan, Petre
Format: Journal Article
Language:English
Published: MDPI AG 01.06.2020
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Remote sensing data has known an explosive growth in the past decade. This has led to the need for efficient dimensionality reduction techniques, mathematical procedures that transform the high-dimensional data into a meaningful, reduced representation. Projection Pursuit (PP) based algorithms were shown to be efficient solutions for performing dimensionality reduction on large datasets by searching low-dimensional projections of the data where meaningful structures are exposed. However, PP faces computational difficulties in dealing with very large datasets—which are common in hyperspectral imaging, thus raising the challenge for implementing such algorithms using the latest High Performance Computing approaches. In this paper, a PP-based geometrical approximated Principal Component Analysis algorithm (gaPCA) for hyperspectral image analysis is implemented and assessed on multi-core Central Processing Units (CPUs), Graphics Processing Units (GPUs) and multi-core CPUs using Single Instruction, Multiple Data (SIMD) AVX2 (Advanced Vector eXtensions) intrinsics, which provide significant improvements in performance and energy usage over the single-core implementation. Thus, this paper presents a cross-platform and cross-language perspective, having several implementations of the gaPCA algorithm in Matlab, Python, C++ and GPU implementations based on NVIDIA Compute Unified Device Architecture (CUDA). The evaluation of the proposed solutions is performed with respect to the execution time and energy consumption. The experimental evaluation has shown not only the advantage of using CUDA programming in implementing the gaPCA algorithm on a GPU in terms of performance and energy consumption, but also significant benefits in implementing it on the multi-core CPU using AVX2 intrinsics.
AbstractList Remote sensing data has known an explosive growth in the past decade. This has led to the need for efficient dimensionality reduction techniques, mathematical procedures that transform the high-dimensional data into a meaningful, reduced representation. Projection Pursuit (PP) based algorithms were shown to be efficient solutions for performing dimensionality reduction on large datasets by searching low-dimensional projections of the data where meaningful structures are exposed. However, PP faces computational difficulties in dealing with very large datasets—which are common in hyperspectral imaging, thus raising the challenge for implementing such algorithms using the latest High Performance Computing approaches. In this paper, a PP-based geometrical approximated Principal Component Analysis algorithm (gaPCA) for hyperspectral image analysis is implemented and assessed on multi-core Central Processing Units (CPUs), Graphics Processing Units (GPUs) and multi-core CPUs using Single Instruction, Multiple Data (SIMD) AVX2 (Advanced Vector eXtensions) intrinsics, which provide significant improvements in performance and energy usage over the single-core implementation. Thus, this paper presents a cross-platform and cross-language perspective, having several implementations of the gaPCA algorithm in Matlab, Python, C++ and GPU implementations based on NVIDIA Compute Unified Device Architecture (CUDA). The evaluation of the proposed solutions is performed with respect to the execution time and energy consumption. The experimental evaluation has shown not only the advantage of using CUDA programming in implementing the gaPCA algorithm on a GPU in terms of performance and energy consumption, but also significant benefits in implementing it on the multi-core CPU using AVX2 intrinsics.
Author Ciobanu, Cătălin
Ogrutan, Petre
Machidon, Alina
Machidon, Octavian
Author_xml – sequence: 1
  givenname: Alina
  orcidid: 0000-0002-9330-3865
  surname: Machidon
  fullname: Machidon, Alina
– sequence: 2
  givenname: Octavian
  orcidid: 0000-0003-3133-1008
  surname: Machidon
  fullname: Machidon, Octavian
– sequence: 3
  givenname: Cătălin
  orcidid: 0000-0002-3329-3773
  surname: Ciobanu
  fullname: Ciobanu, Cătălin
– sequence: 4
  givenname: Petre
  orcidid: 0000-0003-4688-4086
  surname: Ogrutan
  fullname: Ogrutan, Petre
BookMark eNptUU1LAzEQDVJBrV78BXsUoZqv3STHpWotFPRgxVuYzWZrZLupSQT990arKOLMYYbhzWPmvQM0GvxgETom-Iwxhc9DJDSnInIH7VMs6IRTRUe_-j10FOMTzsEYUZjvo3ltjO1tgOSGVQHFzPq1TcEZ6It6swn-1a0h2ba4ndZF3a98cOlxXSzjB7y-f6AFDG0xXV7Uh2i3gz7ao686Rsury7vp9WRxM5tP68XEsKpKk7IBLLksRUMMCOgaBZgrArwiqiLcVMzKtpO2kxiAqVYYwCUIoUQnS1tyNkbzLW_r4UlvQr4vvGkPTn8OfFhpCMmZ3mrOgFLRQWfzrw2VirSiKivBhQLBG5a5TrZc-dHnFxuTXruY9ehhsP4laqpkKWmJK5WheAs1wccYbKeNS1k1P6QArtcE6w8T9I8JeeX0z8r3tf-A3wHYQYYr
CitedBy_id crossref_primary_10_3390_rs13010085
crossref_primary_10_1016_j_compag_2024_109037
Cites_doi 10.1016/j.csda.2005.01.009
10.1214/11-AOS923
10.1109/36.885200
10.1080/14786440109462720
10.1109/T-C.1974.224051
10.1016/j.aca.2007.02.058
10.1109/TSP.2019.8768864
10.1007/978-3-642-15552-9_12
10.1198/106186005X77702
10.1109/ACCESS.2019.2926306
10.2352/CGIV.2010.5.1.art00086
10.1007/978-3-642-20267-4_10
10.3390/rs12111698
10.1109/EWDTS.2014.7027099
10.1109/TSP.2018.8441244
10.1109/TENCON.2010.5686614
10.1007/s11554-016-0650-7
10.1109/JSTARS.2016.2542193
10.1016/j.csda.2017.11.001
10.1109/DASIP.2017.8122111
10.1002/9781118269787
10.4236/jwarp.2011.36051
10.3390/w11122620
10.1109/TSP.2005.857007
10.1016/j.chemolab.2019.103867
10.1016/j.jmva.2010.04.014
10.1007/BF02295996
10.1109/ROEDUNET.2019.8909644
10.1109/40.526924
10.1007/s13571-011-0008-x
10.1016/j.bmcl.2007.02.025
10.1186/s41044-016-0002-4
10.1089/cmb.2008.0221
10.1214/13-EJS810
10.1016/j.jmva.2004.08.002
10.3390/rs10060864
10.1109/MM.2008.31
10.1109/40.865866
10.1007/s11265-018-1380-9
10.1109/PRIME.2019.8787782
10.1007/s11554-010-0190-5
10.1080/03610918.2011.558652
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/rs12121918
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_43a227fafe904b2891d76567479a74b3
10_3390_rs12121918
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7S9
L.6
ID FETCH-LOGICAL-c366t-5ba084857b1ca7afb9a0491a4619614c63e8df8ef80aa39d7ca05a7797f85e543
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552486700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:52:27 EDT 2025
Sun Nov 09 13:16:14 EST 2025
Tue Nov 18 22:30:40 EST 2025
Sat Nov 29 07:19:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-5ba084857b1ca7afb9a0491a4619614c63e8df8ef80aa39d7ca05a7797f85e543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3133-1008
0000-0002-9330-3865
0000-0003-4688-4086
0000-0002-3329-3773
OpenAccessLink https://doaj.org/article/43a227fafe904b2891d76567479a74b3
PQID 2985825069
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_43a227fafe904b2891d76567479a74b3
proquest_miscellaneous_2985825069
crossref_citationtrail_10_3390_rs12121918
crossref_primary_10_3390_rs12121918
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Friedman (ref_7) 1974; 100
ref_50
Ali (ref_1) 2016; 1
Wu (ref_43) 2016; 9
ref_58
ref_12
ref_56
ref_11
ref_55
Wang (ref_15) 2019; 7
ref_54
ref_53
ref_51
ref_17
Barcaru (ref_6) 2019; 194
ref_59
ref_61
ref_60
Lee (ref_14) 2005; 14
Lazcano (ref_38) 2019; 91
ref_25
ref_68
ref_67
ref_66
ref_65
ref_62
ref_29
Touboul (ref_21) 2011; 40
ref_28
McNemar (ref_57) 1947; 12
Ren (ref_18) 2007; 17
Lindholm (ref_10) 2008; 28
Hui (ref_30) 2010; 72
Andrecut (ref_34) 2009; 16
Antikainen (ref_33) 2012; 7
ref_36
ref_35
ref_32
ref_31
Bali (ref_22) 2011; 39
Ifarraguerri (ref_52) 2000; 38
ref_39
ref_37
Peleg (ref_63) 1996; 16
Aladjem (ref_20) 2005; 53
Croux (ref_27) 2005; 95
Lee (ref_13) 2013; 7
Choulakian (ref_24) 2006; 50
Prieto (ref_26) 2010; 101
ref_47
Ren (ref_19) 2007; 589
ref_46
ref_45
ref_44
ref_42
ref_41
ref_40
ref_3
Loperfido (ref_23) 2018; 120
ref_2
Huang (ref_16) 2011; 3
ref_49
ref_48
ref_9
Pearson (ref_8) 1901; 2
Raman (ref_64) 2000; 20
ref_5
ref_4
References_xml – ident: ref_5
– ident: ref_51
– volume: 50
  start-page: 1441
  year: 2006
  ident: ref_24
  article-title: L1-norm projection pursuit principal component analysis
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2005.01.009
– volume: 39
  start-page: 2852
  year: 2011
  ident: ref_22
  article-title: Robust functional principal components: A projection-pursuit approach
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS923
– volume: 38
  start-page: 2529
  year: 2000
  ident: ref_52
  article-title: Unsupervised hyperspectral image analysis with projection pursuit
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.885200
– ident: ref_68
– volume: 2
  start-page: 559
  year: 1901
  ident: ref_8
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440109462720
– volume: 100
  start-page: 881
  year: 1974
  ident: ref_7
  article-title: A Projection Pursuit Algorithm for Exploratory Data Analysis
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1974.224051
– volume: 589
  start-page: 150
  year: 2007
  ident: ref_19
  article-title: Prediction of ozone tropospheric degradation rate constants by projection pursuit regression
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2007.02.058
– ident: ref_65
– ident: ref_54
  doi: 10.1109/TSP.2019.8768864
– ident: ref_61
– ident: ref_58
– ident: ref_31
  doi: 10.1007/978-3-642-15552-9_12
– volume: 14
  start-page: 831
  year: 2005
  ident: ref_14
  article-title: Projection pursuit for exploratory supervised classification
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186005X77702
– volume: 7
  start-page: 87396
  year: 2019
  ident: ref_15
  article-title: Toward the Health Measure for Open Source Software Ecosystem Via Projection Pursuit and Real-Coded Accelerated Genetic
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926306
– ident: ref_36
  doi: 10.2352/CGIV.2010.5.1.art00086
– ident: ref_4
– ident: ref_56
– ident: ref_48
– ident: ref_29
  doi: 10.1007/978-3-642-20267-4_10
– ident: ref_41
– ident: ref_55
  doi: 10.3390/rs12111698
– ident: ref_66
– ident: ref_62
– ident: ref_17
– ident: ref_45
– ident: ref_35
  doi: 10.1109/EWDTS.2014.7027099
– ident: ref_53
  doi: 10.1109/TSP.2018.8441244
– ident: ref_59
– ident: ref_32
  doi: 10.1109/TENCON.2010.5686614
– ident: ref_28
– ident: ref_40
  doi: 10.1007/s11554-016-0650-7
– volume: 9
  start-page: 2270
  year: 2016
  ident: ref_43
  article-title: Parallel and distributed dimensionality reduction of hyperspectral data on cloud computing architectures
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2016.2542193
– volume: 120
  start-page: 42
  year: 2018
  ident: ref_23
  article-title: Skewness-based projection pursuit: A computational approach
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2017.11.001
– ident: ref_37
  doi: 10.1109/DASIP.2017.8122111
– ident: ref_9
  doi: 10.1002/9781118269787
– volume: 3
  start-page: 415
  year: 2011
  ident: ref_16
  article-title: Projection pursuit flood disaster classification assessment method based on multi-swarm cooperative particle swarm optimization
  publication-title: J. Water Resour. Prot.
  doi: 10.4236/jwarp.2011.36051
– ident: ref_3
– ident: ref_11
  doi: 10.3390/w11122620
– volume: 53
  start-page: 4376
  year: 2005
  ident: ref_20
  article-title: Projection pursuit mixture density estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.857007
– volume: 194
  start-page: 103867
  year: 2019
  ident: ref_6
  article-title: Supervised Projection Pursuit—A Dimensionality Reduction Technique Optimized for Probabilistic Classification
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.103867
– volume: 101
  start-page: 1995
  year: 2010
  ident: ref_26
  article-title: Eigenvectors of a kurtosis matrix as interesting directions to reveal cluster structure
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2010.04.014
– ident: ref_47
– volume: 12
  start-page: 153
  year: 1947
  ident: ref_57
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– ident: ref_49
  doi: 10.1109/ROEDUNET.2019.8909644
– volume: 16
  start-page: 42
  year: 1996
  ident: ref_63
  article-title: MMX technology extension to the Intel architecture
  publication-title: IEEE Micro
  doi: 10.1109/40.526924
– ident: ref_67
– volume: 72
  start-page: 123
  year: 2010
  ident: ref_30
  article-title: Projection pursuit via white noise matrices
  publication-title: Sankhya B
  doi: 10.1007/s13571-011-0008-x
– volume: 17
  start-page: 2474
  year: 2007
  ident: ref_18
  article-title: Prediction of binding affinities to β1 isoform of human thyroid hormone receptor by genetic algorithm and projection pursuit regression
  publication-title: Bioorganic Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2007.02.025
– ident: ref_44
– volume: 1
  start-page: 2
  year: 2016
  ident: ref_1
  article-title: Big Data for Development: Applications and Techniques
  publication-title: Big Data Anal.
  doi: 10.1186/s41044-016-0002-4
– volume: 16
  start-page: 1593
  year: 2009
  ident: ref_34
  article-title: Parallel GPU implementation of iterative PCA algorithms
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2008.0221
– volume: 7
  start-page: 1369
  year: 2013
  ident: ref_13
  article-title: PPtree: Projection pursuit classification tree
  publication-title: Electron. J. Stat.
  doi: 10.1214/13-EJS810
– ident: ref_25
– ident: ref_50
– volume: 95
  start-page: 206
  year: 2005
  ident: ref_27
  article-title: High breakdown estimators for principal components: The projection-pursuit approach revisited
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2004.08.002
– ident: ref_39
  doi: 10.3390/rs10060864
– ident: ref_2
– volume: 28
  start-page: 39
  year: 2008
  ident: ref_10
  article-title: NVIDIA Tesla: A Unified Graphics and Computing Architecture
  publication-title: IEEE Micro
  doi: 10.1109/MM.2008.31
– ident: ref_46
– ident: ref_12
– volume: 20
  start-page: 47
  year: 2000
  ident: ref_64
  article-title: Implementing streaming SIMD extensions on the Pentium III processor
  publication-title: IEEE Micro
  doi: 10.1109/40.865866
– volume: 91
  start-page: 759
  year: 2019
  ident: ref_38
  article-title: Adaptation of an iterative PCA to a manycore architecture for hyperspectral image processing
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-018-1380-9
– ident: ref_42
  doi: 10.1109/PRIME.2019.8787782
– volume: 7
  start-page: 95
  year: 2012
  ident: ref_33
  article-title: Real-time PCA calculation for spectral imaging (using SIMD and GP-GPU)
  publication-title: J. Real Time Image Process.
  doi: 10.1007/s11554-010-0190-5
– volume: 40
  start-page: 854
  year: 2011
  ident: ref_21
  article-title: Projection pursuit through relative entropy minimization
  publication-title: Commun. Stat. Simul. Comput.
  doi: 10.1080/03610918.2011.558652
– ident: ref_60
SSID ssj0000331904
Score 2.2495275
Snippet Remote sensing data has known an explosive growth in the past decade. This has led to the need for efficient dimensionality reduction techniques, mathematical...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1918
SubjectTerms algorithms
computer software
CUDA
data collection
energy
GPU
hyperspectral imagery
image analysis
parallel computing
Principal Component Analysis
remote sensing
SIMD
spatial data
Title Accelerating a Geometrical Approximated PCA Algorithm Using AVX2 and CUDA
URI https://www.proquest.com/docview/2985825069
https://doaj.org/article/43a227fafe904b2891d76567479a74b3
Volume 12
WOSCitedRecordID wos000552486700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQILUXxKvq8lgZ0UsPEXk4sX0MyyKQYBWVghYu0dixAQmyaHdBcOG3M3bCo6JSL734EI-VaGYyM18y-oaQHyaTOo4lBJG1JmApYlalgAcY-FgWg1RG-aklR3wwEMOhLD6M-nI9YQ09cKO4HZZAHHML1uBphfAgqjjWIFgFS-BMeZ7PkMsPYMrH4ARdK2QNH2mCuH5nPIkwSiM6EX9kIE_U_ykO--Syv0gW2qqQ5s3TLJEZUy-TL-2A8qunFXKYa40JwpmrvqRAcevWzcLS7pSjBX-8xtLTVLTo5TS_uRwh5r-6pb4hgOZnw5hCXdHe6V6-Sk73-797B0E7BSHQSZZNg1SB47xPuYo0cLBKAlb1ETCEPphbdZYYUVlhrAgBEllxDWEKnEtuRWpSlnwjs_WoNt8JBYgkCitjIoMvrgWJMFTYkFlWGQG8Q36-aqbULUW4m1RxUyJUcFos37XYIdtvsncNMcZfpXadgt8kHJm1v4AmLlsTl_8ycYdsvZqnROd3fzSgNqP7SRlLkSLEDTO59j9utE6-xg5O-48sG2R2Or43m2ReP0yvJ-MumdvtD4pfXe9pXdckeuLW5z6uRXqB-8XhcXH-Al4A2bI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+a+Geometrical+Approximated+PCA+Algorithm+Using+AVX2+and+CUDA&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Machidon%2C+Alina+L&rft.au=Machidon%2C+Octavian+M&rft.au=Ciobanu%2C+C%C4%83t%C4%83lin+B&rft.au=Ogrutan%2C+Petre+L&rft.date=2020-06-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=12&rft_id=info:doi/10.3390%2Frs12121918&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon