Accelerating a Geometrical Approximated PCA Algorithm Using AVX2 and CUDA
Remote sensing data has known an explosive growth in the past decade. This has led to the need for efficient dimensionality reduction techniques, mathematical procedures that transform the high-dimensional data into a meaningful, reduced representation. Projection Pursuit (PP) based algorithms were...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 12; no. 12; p. 1918 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
MDPI AG
01.06.2020
|
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Remote sensing data has known an explosive growth in the past decade. This has led to the need for efficient dimensionality reduction techniques, mathematical procedures that transform the high-dimensional data into a meaningful, reduced representation. Projection Pursuit (PP) based algorithms were shown to be efficient solutions for performing dimensionality reduction on large datasets by searching low-dimensional projections of the data where meaningful structures are exposed. However, PP faces computational difficulties in dealing with very large datasets—which are common in hyperspectral imaging, thus raising the challenge for implementing such algorithms using the latest High Performance Computing approaches. In this paper, a PP-based geometrical approximated Principal Component Analysis algorithm (gaPCA) for hyperspectral image analysis is implemented and assessed on multi-core Central Processing Units (CPUs), Graphics Processing Units (GPUs) and multi-core CPUs using Single Instruction, Multiple Data (SIMD) AVX2 (Advanced Vector eXtensions) intrinsics, which provide significant improvements in performance and energy usage over the single-core implementation. Thus, this paper presents a cross-platform and cross-language perspective, having several implementations of the gaPCA algorithm in Matlab, Python, C++ and GPU implementations based on NVIDIA Compute Unified Device Architecture (CUDA). The evaluation of the proposed solutions is performed with respect to the execution time and energy consumption. The experimental evaluation has shown not only the advantage of using CUDA programming in implementing the gaPCA algorithm on a GPU in terms of performance and energy consumption, but also significant benefits in implementing it on the multi-core CPU using AVX2 intrinsics. |
|---|---|
| AbstractList | Remote sensing data has known an explosive growth in the past decade. This has led to the need for efficient dimensionality reduction techniques, mathematical procedures that transform the high-dimensional data into a meaningful, reduced representation. Projection Pursuit (PP) based algorithms were shown to be efficient solutions for performing dimensionality reduction on large datasets by searching low-dimensional projections of the data where meaningful structures are exposed. However, PP faces computational difficulties in dealing with very large datasets—which are common in hyperspectral imaging, thus raising the challenge for implementing such algorithms using the latest High Performance Computing approaches. In this paper, a PP-based geometrical approximated Principal Component Analysis algorithm (gaPCA) for hyperspectral image analysis is implemented and assessed on multi-core Central Processing Units (CPUs), Graphics Processing Units (GPUs) and multi-core CPUs using Single Instruction, Multiple Data (SIMD) AVX2 (Advanced Vector eXtensions) intrinsics, which provide significant improvements in performance and energy usage over the single-core implementation. Thus, this paper presents a cross-platform and cross-language perspective, having several implementations of the gaPCA algorithm in Matlab, Python, C++ and GPU implementations based on NVIDIA Compute Unified Device Architecture (CUDA). The evaluation of the proposed solutions is performed with respect to the execution time and energy consumption. The experimental evaluation has shown not only the advantage of using CUDA programming in implementing the gaPCA algorithm on a GPU in terms of performance and energy consumption, but also significant benefits in implementing it on the multi-core CPU using AVX2 intrinsics. |
| Author | Ciobanu, Cătălin Ogrutan, Petre Machidon, Alina Machidon, Octavian |
| Author_xml | – sequence: 1 givenname: Alina orcidid: 0000-0002-9330-3865 surname: Machidon fullname: Machidon, Alina – sequence: 2 givenname: Octavian orcidid: 0000-0003-3133-1008 surname: Machidon fullname: Machidon, Octavian – sequence: 3 givenname: Cătălin orcidid: 0000-0002-3329-3773 surname: Ciobanu fullname: Ciobanu, Cătălin – sequence: 4 givenname: Petre orcidid: 0000-0003-4688-4086 surname: Ogrutan fullname: Ogrutan, Petre |
| BookMark | eNptUU1LAzEQDVJBrV78BXsUoZqv3STHpWotFPRgxVuYzWZrZLupSQT990arKOLMYYbhzWPmvQM0GvxgETom-Iwxhc9DJDSnInIH7VMs6IRTRUe_-j10FOMTzsEYUZjvo3ltjO1tgOSGVQHFzPq1TcEZ6It6swn-1a0h2ba4ndZF3a98cOlxXSzjB7y-f6AFDG0xXV7Uh2i3gz7ao686Rsury7vp9WRxM5tP68XEsKpKk7IBLLksRUMMCOgaBZgrArwiqiLcVMzKtpO2kxiAqVYYwCUIoUQnS1tyNkbzLW_r4UlvQr4vvGkPTn8OfFhpCMmZ3mrOgFLRQWfzrw2VirSiKivBhQLBG5a5TrZc-dHnFxuTXruY9ehhsP4laqpkKWmJK5WheAs1wccYbKeNS1k1P6QArtcE6w8T9I8JeeX0z8r3tf-A3wHYQYYr |
| CitedBy_id | crossref_primary_10_3390_rs13010085 crossref_primary_10_1016_j_compag_2024_109037 |
| Cites_doi | 10.1016/j.csda.2005.01.009 10.1214/11-AOS923 10.1109/36.885200 10.1080/14786440109462720 10.1109/T-C.1974.224051 10.1016/j.aca.2007.02.058 10.1109/TSP.2019.8768864 10.1007/978-3-642-15552-9_12 10.1198/106186005X77702 10.1109/ACCESS.2019.2926306 10.2352/CGIV.2010.5.1.art00086 10.1007/978-3-642-20267-4_10 10.3390/rs12111698 10.1109/EWDTS.2014.7027099 10.1109/TSP.2018.8441244 10.1109/TENCON.2010.5686614 10.1007/s11554-016-0650-7 10.1109/JSTARS.2016.2542193 10.1016/j.csda.2017.11.001 10.1109/DASIP.2017.8122111 10.1002/9781118269787 10.4236/jwarp.2011.36051 10.3390/w11122620 10.1109/TSP.2005.857007 10.1016/j.chemolab.2019.103867 10.1016/j.jmva.2010.04.014 10.1007/BF02295996 10.1109/ROEDUNET.2019.8909644 10.1109/40.526924 10.1007/s13571-011-0008-x 10.1016/j.bmcl.2007.02.025 10.1186/s41044-016-0002-4 10.1089/cmb.2008.0221 10.1214/13-EJS810 10.1016/j.jmva.2004.08.002 10.3390/rs10060864 10.1109/MM.2008.31 10.1109/40.865866 10.1007/s11265-018-1380-9 10.1109/PRIME.2019.8787782 10.1007/s11554-010-0190-5 10.1080/03610918.2011.558652 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7S9 L.6 DOA |
| DOI | 10.3390/rs12121918 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_43a227fafe904b2891d76567479a74b3 10_3390_rs12121918 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7S9 L.6 |
| ID | FETCH-LOGICAL-c366t-5ba084857b1ca7afb9a0491a4619614c63e8df8ef80aa39d7ca05a7797f85e543 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552486700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:52:27 EDT 2025 Sun Nov 09 13:16:14 EST 2025 Tue Nov 18 22:30:40 EST 2025 Sat Nov 29 07:19:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-5ba084857b1ca7afb9a0491a4619614c63e8df8ef80aa39d7ca05a7797f85e543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3133-1008 0000-0002-9330-3865 0000-0003-4688-4086 0000-0002-3329-3773 |
| OpenAccessLink | https://doaj.org/article/43a227fafe904b2891d76567479a74b3 |
| PQID | 2985825069 |
| PQPubID | 24069 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_43a227fafe904b2891d76567479a74b3 proquest_miscellaneous_2985825069 crossref_citationtrail_10_3390_rs12121918 crossref_primary_10_3390_rs12121918 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Friedman (ref_7) 1974; 100 ref_50 Ali (ref_1) 2016; 1 Wu (ref_43) 2016; 9 ref_58 ref_12 ref_56 ref_11 ref_55 Wang (ref_15) 2019; 7 ref_54 ref_53 ref_51 ref_17 Barcaru (ref_6) 2019; 194 ref_59 ref_61 ref_60 Lee (ref_14) 2005; 14 Lazcano (ref_38) 2019; 91 ref_25 ref_68 ref_67 ref_66 ref_65 ref_62 ref_29 Touboul (ref_21) 2011; 40 ref_28 McNemar (ref_57) 1947; 12 Ren (ref_18) 2007; 17 Lindholm (ref_10) 2008; 28 Hui (ref_30) 2010; 72 Andrecut (ref_34) 2009; 16 Antikainen (ref_33) 2012; 7 ref_36 ref_35 ref_32 ref_31 Bali (ref_22) 2011; 39 Ifarraguerri (ref_52) 2000; 38 ref_39 ref_37 Peleg (ref_63) 1996; 16 Aladjem (ref_20) 2005; 53 Croux (ref_27) 2005; 95 Lee (ref_13) 2013; 7 Choulakian (ref_24) 2006; 50 Prieto (ref_26) 2010; 101 ref_47 Ren (ref_19) 2007; 589 ref_46 ref_45 ref_44 ref_42 ref_41 ref_40 ref_3 Loperfido (ref_23) 2018; 120 ref_2 Huang (ref_16) 2011; 3 ref_49 ref_48 ref_9 Pearson (ref_8) 1901; 2 Raman (ref_64) 2000; 20 ref_5 ref_4 |
| References_xml | – ident: ref_5 – ident: ref_51 – volume: 50 start-page: 1441 year: 2006 ident: ref_24 article-title: L1-norm projection pursuit principal component analysis publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2005.01.009 – volume: 39 start-page: 2852 year: 2011 ident: ref_22 article-title: Robust functional principal components: A projection-pursuit approach publication-title: Ann. Stat. doi: 10.1214/11-AOS923 – volume: 38 start-page: 2529 year: 2000 ident: ref_52 article-title: Unsupervised hyperspectral image analysis with projection pursuit publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.885200 – ident: ref_68 – volume: 2 start-page: 559 year: 1901 ident: ref_8 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440109462720 – volume: 100 start-page: 881 year: 1974 ident: ref_7 article-title: A Projection Pursuit Algorithm for Exploratory Data Analysis publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1974.224051 – volume: 589 start-page: 150 year: 2007 ident: ref_19 article-title: Prediction of ozone tropospheric degradation rate constants by projection pursuit regression publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2007.02.058 – ident: ref_65 – ident: ref_54 doi: 10.1109/TSP.2019.8768864 – ident: ref_61 – ident: ref_58 – ident: ref_31 doi: 10.1007/978-3-642-15552-9_12 – volume: 14 start-page: 831 year: 2005 ident: ref_14 article-title: Projection pursuit for exploratory supervised classification publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186005X77702 – volume: 7 start-page: 87396 year: 2019 ident: ref_15 article-title: Toward the Health Measure for Open Source Software Ecosystem Via Projection Pursuit and Real-Coded Accelerated Genetic publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2926306 – ident: ref_36 doi: 10.2352/CGIV.2010.5.1.art00086 – ident: ref_4 – ident: ref_56 – ident: ref_48 – ident: ref_29 doi: 10.1007/978-3-642-20267-4_10 – ident: ref_41 – ident: ref_55 doi: 10.3390/rs12111698 – ident: ref_66 – ident: ref_62 – ident: ref_17 – ident: ref_45 – ident: ref_35 doi: 10.1109/EWDTS.2014.7027099 – ident: ref_53 doi: 10.1109/TSP.2018.8441244 – ident: ref_59 – ident: ref_32 doi: 10.1109/TENCON.2010.5686614 – ident: ref_28 – ident: ref_40 doi: 10.1007/s11554-016-0650-7 – volume: 9 start-page: 2270 year: 2016 ident: ref_43 article-title: Parallel and distributed dimensionality reduction of hyperspectral data on cloud computing architectures publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2016.2542193 – volume: 120 start-page: 42 year: 2018 ident: ref_23 article-title: Skewness-based projection pursuit: A computational approach publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2017.11.001 – ident: ref_37 doi: 10.1109/DASIP.2017.8122111 – ident: ref_9 doi: 10.1002/9781118269787 – volume: 3 start-page: 415 year: 2011 ident: ref_16 article-title: Projection pursuit flood disaster classification assessment method based on multi-swarm cooperative particle swarm optimization publication-title: J. Water Resour. Prot. doi: 10.4236/jwarp.2011.36051 – ident: ref_3 – ident: ref_11 doi: 10.3390/w11122620 – volume: 53 start-page: 4376 year: 2005 ident: ref_20 article-title: Projection pursuit mixture density estimation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.857007 – volume: 194 start-page: 103867 year: 2019 ident: ref_6 article-title: Supervised Projection Pursuit—A Dimensionality Reduction Technique Optimized for Probabilistic Classification publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2019.103867 – volume: 101 start-page: 1995 year: 2010 ident: ref_26 article-title: Eigenvectors of a kurtosis matrix as interesting directions to reveal cluster structure publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2010.04.014 – ident: ref_47 – volume: 12 start-page: 153 year: 1947 ident: ref_57 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika doi: 10.1007/BF02295996 – ident: ref_49 doi: 10.1109/ROEDUNET.2019.8909644 – volume: 16 start-page: 42 year: 1996 ident: ref_63 article-title: MMX technology extension to the Intel architecture publication-title: IEEE Micro doi: 10.1109/40.526924 – ident: ref_67 – volume: 72 start-page: 123 year: 2010 ident: ref_30 article-title: Projection pursuit via white noise matrices publication-title: Sankhya B doi: 10.1007/s13571-011-0008-x – volume: 17 start-page: 2474 year: 2007 ident: ref_18 article-title: Prediction of binding affinities to β1 isoform of human thyroid hormone receptor by genetic algorithm and projection pursuit regression publication-title: Bioorganic Med. Chem. Lett. doi: 10.1016/j.bmcl.2007.02.025 – ident: ref_44 – volume: 1 start-page: 2 year: 2016 ident: ref_1 article-title: Big Data for Development: Applications and Techniques publication-title: Big Data Anal. doi: 10.1186/s41044-016-0002-4 – volume: 16 start-page: 1593 year: 2009 ident: ref_34 article-title: Parallel GPU implementation of iterative PCA algorithms publication-title: J. Comput. Biol. doi: 10.1089/cmb.2008.0221 – volume: 7 start-page: 1369 year: 2013 ident: ref_13 article-title: PPtree: Projection pursuit classification tree publication-title: Electron. J. Stat. doi: 10.1214/13-EJS810 – ident: ref_25 – ident: ref_50 – volume: 95 start-page: 206 year: 2005 ident: ref_27 article-title: High breakdown estimators for principal components: The projection-pursuit approach revisited publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2004.08.002 – ident: ref_39 doi: 10.3390/rs10060864 – ident: ref_2 – volume: 28 start-page: 39 year: 2008 ident: ref_10 article-title: NVIDIA Tesla: A Unified Graphics and Computing Architecture publication-title: IEEE Micro doi: 10.1109/MM.2008.31 – ident: ref_46 – ident: ref_12 – volume: 20 start-page: 47 year: 2000 ident: ref_64 article-title: Implementing streaming SIMD extensions on the Pentium III processor publication-title: IEEE Micro doi: 10.1109/40.865866 – volume: 91 start-page: 759 year: 2019 ident: ref_38 article-title: Adaptation of an iterative PCA to a manycore architecture for hyperspectral image processing publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-018-1380-9 – ident: ref_42 doi: 10.1109/PRIME.2019.8787782 – volume: 7 start-page: 95 year: 2012 ident: ref_33 article-title: Real-time PCA calculation for spectral imaging (using SIMD and GP-GPU) publication-title: J. Real Time Image Process. doi: 10.1007/s11554-010-0190-5 – volume: 40 start-page: 854 year: 2011 ident: ref_21 article-title: Projection pursuit through relative entropy minimization publication-title: Commun. Stat. Simul. Comput. doi: 10.1080/03610918.2011.558652 – ident: ref_60 |
| SSID | ssj0000331904 |
| Score | 2.2495275 |
| Snippet | Remote sensing data has known an explosive growth in the past decade. This has led to the need for efficient dimensionality reduction techniques, mathematical... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1918 |
| SubjectTerms | algorithms computer software CUDA data collection energy GPU hyperspectral imagery image analysis parallel computing Principal Component Analysis remote sensing SIMD spatial data |
| Title | Accelerating a Geometrical Approximated PCA Algorithm Using AVX2 and CUDA |
| URI | https://www.proquest.com/docview/2985825069 https://doaj.org/article/43a227fafe904b2891d76567479a74b3 |
| Volume | 12 |
| WOSCitedRecordID | wos000552486700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQILUXxKvq8lgZ0UsPEXk4sX0MyyKQYBWVghYu0dixAQmyaHdBcOG3M3bCo6JSL734EI-VaGYyM18y-oaQHyaTOo4lBJG1JmApYlalgAcY-FgWg1RG-aklR3wwEMOhLD6M-nI9YQ09cKO4HZZAHHML1uBphfAgqjjWIFgFS-BMeZ7PkMsPYMrH4ARdK2QNH2mCuH5nPIkwSiM6EX9kIE_U_ykO--Syv0gW2qqQ5s3TLJEZUy-TL-2A8qunFXKYa40JwpmrvqRAcevWzcLS7pSjBX-8xtLTVLTo5TS_uRwh5r-6pb4hgOZnw5hCXdHe6V6-Sk73-797B0E7BSHQSZZNg1SB47xPuYo0cLBKAlb1ETCEPphbdZYYUVlhrAgBEllxDWEKnEtuRWpSlnwjs_WoNt8JBYgkCitjIoMvrgWJMFTYkFlWGQG8Q36-aqbULUW4m1RxUyJUcFos37XYIdtvsncNMcZfpXadgt8kHJm1v4AmLlsTl_8ycYdsvZqnROd3fzSgNqP7SRlLkSLEDTO59j9utE6-xg5O-48sG2R2Or43m2ReP0yvJ-MumdvtD4pfXe9pXdckeuLW5z6uRXqB-8XhcXH-Al4A2bI |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+a+Geometrical+Approximated+PCA+Algorithm+Using+AVX2+and+CUDA&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Machidon%2C+Alina+L&rft.au=Machidon%2C+Octavian+M&rft.au=Ciobanu%2C+C%C4%83t%C4%83lin+B&rft.au=Ogrutan%2C+Petre+L&rft.date=2020-06-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=12&rft_id=info:doi/10.3390%2Frs12121918&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |