Influence of nuclear structure on the formation of radiation-induced lethal lesions
Purpose The rejoining of fragmented nuclear DNA caused by ionizing radiation may lead to lethal chromosome rearrangements, such as rings or dicentrics. The clinically useful linear quadratic relationship between dose and cell survival has been interpreted as the generation of lethal lesions secondar...
Uložené v:
| Vydané v: | International journal of radiation biology Ročník 92; číslo 5; s. 229 - 240 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Taylor & Francis
03.05.2016
|
| Predmet: | |
| ISSN: | 0955-3002, 1362-3095, 1362-3095 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Purpose The rejoining of fragmented nuclear DNA caused by ionizing radiation may lead to lethal chromosome rearrangements, such as rings or dicentrics. The clinically useful linear quadratic relationship between dose and cell survival has been interpreted as the generation of lethal lesions secondary to damage occurring in two separate chromosomes simultaneously (α component), or as potentially repairable separate events (β component). Here, the generation of such lesions is discussed, synthesizing existing knowledge with new insights gleaned from spatial proximity data made possible by high-throughput sequencing of chromosome conformation capture experiments. Over a range of several Mbp, the linear DNA strand is organized as a fractal globule generating multiple sites of contact that may facilitate deletions or inversions if the points of contact are damaged. On a larger scale, transcriptionally active euchromatin occupies a physically identifiable space separate from inactive areas and is preferentially susceptible to free radical attack after irradiation. Specific transcriptional programs link genomic locations within that space, potentially enhancing their interaction if subject to simultaneous fragmentation by a single radiation event.
Conclusions High throughput spatial analysis of the factors that control chromosome proximity has the potential to better describe the formation of the lethal chromosome aberrations that kill irradiated cells. |
|---|---|
| AbstractList | Purpose The rejoining of fragmented nuclear DNA caused by ionizing radiation may lead to lethal chromosome rearrangements, such as rings or dicentrics. The clinically useful linear quadratic relationship between dose and cell survival has been interpreted as the generation of lethal lesions secondary to damage occurring in two separate chromosomes simultaneously (α component), or as potentially repairable separate events (β component). Here, the generation of such lesions is discussed, synthesizing existing knowledge with new insights gleaned from spatial proximity data made possible by high-throughput sequencing of chromosome conformation capture experiments. Over a range of several Mbp, the linear DNA strand is organized as a fractal globule generating multiple sites of contact that may facilitate deletions or inversions if the points of contact are damaged. On a larger scale, transcriptionally active euchromatin occupies a physically identifiable space separate from inactive areas and is preferentially susceptible to free radical attack after irradiation. Specific transcriptional programs link genomic locations within that space, potentially enhancing their interaction if subject to simultaneous fragmentation by a single radiation event.
Conclusions High throughput spatial analysis of the factors that control chromosome proximity has the potential to better describe the formation of the lethal chromosome aberrations that kill irradiated cells. Purpose The rejoining of fragmented nuclear DNA caused by ionizing radiation may lead to lethal chromosome rearrangements, such as rings or dicentrics. The clinically useful linear quadratic relationship between dose and cell survival has been interpreted as the generation of lethal lesions secondary to damage occurring in two separate chromosomes simultaneously (α component), or as potentially repairable separate events (β component). Here, the generation of such lesions is discussed, synthesizing existing knowledge with new insights gleaned from spatial proximity data made possible by high-throughput sequencing of chromosome conformation capture experiments. Over a range of several Mbp, the linear DNA strand is organized as a fractal globule generating multiple sites of contact that may facilitate deletions or inversions if the points of contact are damaged. On a larger scale, transcriptionally active euchromatin occupies a physically identifiable space separate from inactive areas and is preferentially susceptible to free radical attack after irradiation. Specific transcriptional programs link genomic locations within that space, potentially enhancing their interaction if subject to simultaneous fragmentation by a single radiation event. Conclusions High throughput spatial analysis of the factors that control chromosome proximity has the potential to better describe the formation of the lethal chromosome aberrations that kill irradiated cells. Purpose The rejoining of fragmented nuclear DNA caused by ionizing radiation may lead to lethal chromosome rearrangements, such as rings or dicentrics. The clinically useful linear quadratic relationship between dose and cell survival has been interpreted as the generation of lethal lesions secondary to damage occurring in two separate chromosomes simultaneously (α component), or as potentially repairable separate events (β component). Here, the generation of such lesions is discussed, synthesizing existing knowledge with new insights gleaned from spatial proximity data made possible by high-throughput sequencing of chromosome conformation capture experiments. Over a range of several Mbp, the linear DNA strand is organized as a fractal globule generating multiple sites of contact that may facilitate deletions or inversions if the points of contact are damaged. On a larger scale, transcriptionally active euchromatin occupies a physically identifiable space separate from inactive areas and is preferentially susceptible to free radical attack after irradiation. Specific transcriptional programs link genomic locations within that space, potentially enhancing their interaction if subject to simultaneous fragmentation by a single radiation event. Conclusions High throughput spatial analysis of the factors that control chromosome proximity has the potential to better describe the formation of the lethal chromosome aberrations that kill irradiated cells.Purpose The rejoining of fragmented nuclear DNA caused by ionizing radiation may lead to lethal chromosome rearrangements, such as rings or dicentrics. The clinically useful linear quadratic relationship between dose and cell survival has been interpreted as the generation of lethal lesions secondary to damage occurring in two separate chromosomes simultaneously (α component), or as potentially repairable separate events (β component). Here, the generation of such lesions is discussed, synthesizing existing knowledge with new insights gleaned from spatial proximity data made possible by high-throughput sequencing of chromosome conformation capture experiments. Over a range of several Mbp, the linear DNA strand is organized as a fractal globule generating multiple sites of contact that may facilitate deletions or inversions if the points of contact are damaged. On a larger scale, transcriptionally active euchromatin occupies a physically identifiable space separate from inactive areas and is preferentially susceptible to free radical attack after irradiation. Specific transcriptional programs link genomic locations within that space, potentially enhancing their interaction if subject to simultaneous fragmentation by a single radiation event. Conclusions High throughput spatial analysis of the factors that control chromosome proximity has the potential to better describe the formation of the lethal chromosome aberrations that kill irradiated cells. |
| Author | Friedman, Daniel A. Vaughan, Andrew T. M. Tait, Lauren |
| Author_xml | – sequence: 1 givenname: Daniel A. surname: Friedman fullname: Friedman, Daniel A. organization: Department of Biology, Gilbert Hall, Stanford University – sequence: 2 givenname: Lauren surname: Tait fullname: Tait, Lauren organization: Department of Radiation Oncology, University of California, Davis – sequence: 3 givenname: Andrew T. M. surname: Vaughan fullname: Vaughan, Andrew T. M. email: atvaughan@ucdavis.edu organization: Department of Radiation Oncology, University of California, Davis |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26917327$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkMlOBCEQhonR6Iz6CJo-eumRAnqLF41xS0w8qGdCs0QMQyvQMb699CwXD3oqqvj-InxztOsHrxE6AbyggLtz3FUVxZgsCIZ6AcBYx2AHzYDWpKT5dhfNJqacoAM0j_Ed5xOm7T46IHUHDSXNDD0_eONG7aUuBlP4UTotQhFTGGUaQx76Ir3pwgxhKZLNXaaCUHbVlNarUWpVOJ3ehMsl5mk8QntGuKiPN_UQvd7evFzfl49Pdw_XV4-lpHWdStYQJrA2fUuZgkoQo7qqZ7WivQFCNasMkS1mvcEKMBhDQQogVWfqttUV0EN0tt77EYbPUcfElzZK7Zzwehgjh6ZtcNsSUmf0dIOO_VIr_hHsUoRvvhWRgYs1IMMQY9CGS5tWn0xBWMcB80k732rnk3a-0Z7T1a_09oH_cpfrnPUrw19DcIon8e2GYILw0sYp_teKH23AmJY |
| CitedBy_id | crossref_primary_10_1016_j_physb_2022_414004 crossref_primary_10_1080_09553002_2024_2369077 crossref_primary_10_1093_biomethods_bpaf058 crossref_primary_10_3389_fonc_2024_1478078 crossref_primary_10_1080_14737159_2019_1597707 |
| Cites_doi | 10.1016/j.cell.2013.02.011 10.1038/embor.2012.139 10.1080/09553008514552891 10.1073/pnas.0530291100 10.1083/jcb.200206009 10.1016/j.mrrev.2012.06.002 10.1126/science.1181369 10.1371/journal.pcbi.0030155 10.1126/science.290.5489.138 10.1016/j.mrgentox.2013.06.013 10.2307/3583518 10.2307/3579807 10.1016/j.dnarep.2014.02.011 10.1242/jcs.22.2.287 10.1126/science.1237150 10.1007/BF01211239 10.1089/ars.2012.5151 10.1371/journal.pone.0001057 10.1038/cdd.2008.47 10.1038/nature12593 10.1259/bjr/31372149 10.1038/nature10909 10.1093/rpd/ncl498 10.2307/3577559 10.1371/journal.pone.0044196 10.1038/nrurol.2009.127 10.1080/09553000802640401 10.1089/dna.1997.16.1051 10.1016/j.cell.2013.09.006 10.1371/journal.pone.0083923 10.1093/nar/gkt556 10.1038/nature12420 10.1159/000077460 10.1016/j.bpj.2013.08.043 10.1016/j.cell.2009.11.030 10.1083/jcb.130.6.1239 10.4161/15384101.2015.941743 10.1016/j.gde.2012.11.006 10.1038/nature08467 10.1007/s00018-009-0181-5 10.1016/j.mrrev.2013.07.003 10.1038/onc.2009.349 10.1038/sj.onc.1203019 10.1667/RRAV17.1 10.1038/nature08497 10.1007/s10577-010-9177-0 10.1016/j.celrep.2012.09.022 10.4161/cc.10.2.14543 10.1038/nature03128 10.1073/pnas.97.1.103 10.1016/j.mrfmmm.2010.06.008 10.1101/gr.160374.113 10.1088/0031-9155/18/1/007 10.1667/RR1891.1 10.1002/j.1460-2075.1990.tb08144.x 10.1016/j.molcel.2012.07.029 10.1016/j.mrfmmm.2010.12.018 10.2307/3579651 10.1080/095530097144364 10.1016/j.tig.2008.08.007 10.4061/2010/350608 10.1158/0008-5472.CAN-12-4704 10.1038/35066075 10.1126/science.1088845 10.1002/em.2850220410 10.1016/j.cell.2013.02.014 10.1038/nature06008 10.2307/3579899 10.1016/0360-3016(86)90209-9 10.1080/07391102.1999.10508387 10.1038/nrc1560 10.1371/journal.pone.0075622 10.1088/0031-9155/56/7/005 10.1371/journal.pbio.0050192 10.1016/j.pbiomolbio.2014.02.002 10.1016/j.mrfmmm.2011.01.003 10.1016/j.ijrobp.2007.10.059 10.1016/j.cell.2011.07.049 10.1038/nbt.2057 10.1016/j.semcancer.2006.10.008 10.1038/35015097 10.1016/j.cell.2012.02.002 10.1038/nrg3454 10.1080/09553007914550861 10.1038/nrclinonc.2012.194 10.1080/095530098141834 10.1016/j.cell.2014.11.021 10.1073/pnas.201271098 10.1038/79896 10.1002/bies.950131204 10.1126/science.1056794 10.1038/emboj.2012.35 10.1093/jrr/rrt075 10.1073/pnas.1112570109 10.1016/j.mrgentox.2010.05.010 10.1093/genetics/25.1.41 |
| ContentType | Journal Article |
| Copyright | 2016 Taylor & Francis 2016 |
| Copyright_xml | – notice: 2016 Taylor & Francis 2016 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.3109/09553002.2016.1144941 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Sciences (General) Biology |
| EISSN | 1362-3095 |
| EndPage | 240 |
| ExternalDocumentID | 26917327 10_3109_09553002_2016_1144941 1144941 |
| Genre | Review Journal Article |
| GroupedDBID | --- 00X 03L 0R~ 29J 36B 4.4 5GY 5RE A8Z AAGDL AALUX AAMIU AAPUL AAQRR ABBKH ABDBF ABEIZ ABJNI ABLIJ ABLKL ABUPF ABWVI ABXYU ACENM ACGEJ ACGFS ACIEZ ACUHS ADCVX ADRBQ ADXPE AECIN AENEX AEOZL AEXWM AFKVX AFRVT AGDLA AGFJD AGRBW AGYJP AIJEM AIRBT AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU ALYBC AMDAE AQTUD BABNJ BLEHA BOHLJ CCCUG CS3 DKSSO DU5 EAP EAS EBB EBC EBD EBO EBS EBX EHN EJD EMB EMK EMOBN EPL EPT ESTFP ESX F5P H13 HZ~ KRBQP KSSTO KWAYT KYCEM LJTGL M4Z O9- P2P Q~Q RNANH RVRKI SV3 TASJS TBQAZ TDBHL TERGH TFDNU TFL TFW TH9 TUROJ TUS UEQFS V1S ~1N AAYXX CITATION .55 .GJ 53G 5VS 8WZ A6W AALIY AAORF AAPXX ABWCV ABZEW ACKZS ACOPL ACYZI ADFOM ADFZZ ADYSH AEIIZ AFFNX AFLEI AJVHN AWYRJ BRMBE CAG CGR COF CUY CVF CYYVM CZDIS DRXRE DWTOO ECM EIF J5H JENTW M44 NPM NUSFT QQXMO UDS X7M ZGI ZXP 7X8 |
| ID | FETCH-LOGICAL-c366t-4724a0efb834d15a2fd95b46d3bf123e45f2c804bf0d101ff31ca1259f688e513 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375624000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0955-3002 1362-3095 |
| IngestDate | Thu Oct 02 06:56:52 EDT 2025 Mon Jul 21 06:02:24 EDT 2025 Tue Nov 18 21:09:14 EST 2025 Sat Nov 29 04:13:52 EST 2025 Mon Oct 20 23:43:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Cellular radiobiology microdosimetry chromosome abberations molecular radiobiology double-strand breaks models of cell killing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-4724a0efb834d15a2fd95b46d3bf123e45f2c804bf0d101ff31ca1259f688e513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 26917327 |
| PQID | 1787088226 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_3109_09553002_2016_1144941 crossref_primary_10_3109_09553002_2016_1144941 pubmed_primary_26917327 informaworld_taylorfrancis_310_3109_09553002_2016_1144941 proquest_miscellaneous_1787088226 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-03 |
| PublicationDateYYYYMMDD | 2016-05-03 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | International journal of radiation biology |
| PublicationTitleAlternate | Int J Radiat Biol |
| PublicationYear | 2016 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0072 CIT0071 CIT0074 CIT0073 CIT0076 CIT0075 CIT0078 CIT0077 Sax K. (CIT0086) 1940; 25 CIT0070 CIT0079 CIT0083 CIT0082 CIT0085 CIT0084 CIT0087 CIT0001 CIT0089 CIT0088 CIT0081 CIT0080 CIT0003 CIT0002 CIT0005 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 CIT0094 CIT0093 CIT0096 CIT0095 CIT0010 CIT0098 CIT0097 CIT0012 CIT0011 CIT0099 Charafe-Jauffret E (CIT0013) 2009; 69 CIT0090 CIT0092 CIT0091 Hall EJ (CIT0042) 2012 CIT0014 CIT0016 CIT0015 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 CIT0032 CIT0031 CIT0034 CIT0033 Hakim O (CIT0041) 2012; 484 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0040 CIT0043 Franken NA (CIT0030) 2012; 27 CIT0045 CIT0044 CIT0047 CIT0049 CIT0048 CIT0050 CIT0052 CIT0051 CIT0054 CIT0053 CIT0056 Jackson DA (CIT0046) 1990; 9 CIT0058 CIT0057 CIT0059 Lea DE. (CIT0055) 1955 CIT0061 CIT0060 CIT0063 CIT0062 CIT0065 CIT0064 CIT0067 CIT0100 CIT0066 Cook PR (CIT0018) 1976; 22 CIT0069 CIT0068 |
| References_xml | – ident: CIT0077 doi: 10.1016/j.cell.2013.02.011 – ident: CIT0034 doi: 10.1038/embor.2012.139 – ident: CIT0091 doi: 10.1080/09553008514552891 – ident: CIT0002 doi: 10.1073/pnas.0530291100 – ident: CIT0020 doi: 10.1083/jcb.200206009 – ident: CIT0092 doi: 10.1016/j.mrrev.2012.06.002 – ident: CIT0057 doi: 10.1126/science.1181369 – ident: CIT0021 doi: 10.1371/journal.pcbi.0030155 – ident: CIT0067 doi: 10.1126/science.290.5489.138 – ident: CIT0032 doi: 10.1016/j.mrgentox.2013.06.013 – ident: CIT0035 doi: 10.2307/3583518 – ident: CIT0072 doi: 10.2307/3579807 – ident: CIT0097 doi: 10.1016/j.dnarep.2014.02.011 – volume: 22 start-page: 287 year: 1976 ident: CIT0018 publication-title: J Cell Sci doi: 10.1242/jcs.22.2.287 – volume-title: Actions of radiation on living cells year: 1955 ident: CIT0055 – ident: CIT0081 doi: 10.1126/science.1237150 – ident: CIT0027 doi: 10.1007/BF01211239 – ident: CIT0051 doi: 10.1089/ars.2012.5151 – ident: CIT0022 doi: 10.1371/journal.pone.0001057 – ident: CIT0093 doi: 10.1038/cdd.2008.47 – ident: CIT0064 doi: 10.1038/nature12593 – ident: CIT0029 doi: 10.1259/bjr/31372149 – volume: 484 start-page: 69 year: 2012 ident: CIT0041 publication-title: Nature doi: 10.1038/nature10909 – ident: CIT0036 doi: 10.1093/rpd/ncl498 – ident: CIT0019 doi: 10.2307/3577559 – ident: CIT0028 doi: 10.1371/journal.pone.0044196 – ident: CIT0016 doi: 10.1038/nrurol.2009.127 – ident: CIT0070 doi: 10.1080/09553000802640401 – ident: CIT0053 doi: 10.1089/dna.1997.16.1051 – ident: CIT0054 doi: 10.1016/j.cell.2013.09.006 – ident: CIT0043 doi: 10.1371/journal.pone.0083923 – ident: CIT0087 doi: 10.1093/nar/gkt556 – ident: CIT0025 doi: 10.1038/nature12420 – ident: CIT0076 doi: 10.1159/000077460 – ident: CIT0040 doi: 10.1016/j.bpj.2013.08.043 – ident: CIT0058 doi: 10.1016/j.cell.2009.11.030 – ident: CIT0099 doi: 10.1083/jcb.130.6.1239 – ident: CIT0005 doi: 10.4161/15384101.2015.941743 – ident: CIT0044 doi: 10.1016/j.gde.2012.11.006 – ident: CIT0047 doi: 10.1038/nature08467 – ident: CIT0094 doi: 10.1007/s00018-009-0181-5 – ident: CIT0084 doi: 10.1016/j.mrrev.2013.07.003 – ident: CIT0096 doi: 10.1038/onc.2009.349 – ident: CIT0066 doi: 10.1038/sj.onc.1203019 – ident: CIT0052 doi: 10.1667/RRAV17.1 – ident: CIT0033 doi: 10.1038/nature08497 – ident: CIT0063 doi: 10.1007/s10577-010-9177-0 – ident: CIT0083 doi: 10.1016/j.celrep.2012.09.022 – ident: CIT0098 doi: 10.4161/cc.10.2.14543 – volume: 27 start-page: 769 year: 2012 ident: CIT0030 publication-title: Oncol Rep – ident: CIT0088 doi: 10.1038/nature03128 – ident: CIT0089 doi: 10.1073/pnas.97.1.103 – ident: CIT0065 doi: 10.1016/j.mrfmmm.2010.06.008 – ident: CIT0006 doi: 10.1101/gr.160374.113 – ident: CIT0010 doi: 10.1088/0031-9155/18/1/007 – ident: CIT0059 doi: 10.1667/RR1891.1 – volume: 9 start-page: 567 year: 1990 ident: CIT0046 publication-title: EMBO J doi: 10.1002/j.1460-2075.1990.tb08144.x – ident: CIT0011 doi: 10.1016/j.molcel.2012.07.029 – ident: CIT0039 doi: 10.1016/j.mrfmmm.2010.12.018 – ident: CIT0024 doi: 10.2307/3579651 – ident: CIT0082 doi: 10.1080/095530097144364 – ident: CIT0060 doi: 10.1016/j.tig.2008.08.007 – ident: CIT0007 doi: 10.4061/2010/350608 – ident: CIT0012 doi: 10.1158/0008-5472.CAN-12-4704 – ident: CIT0023 doi: 10.1038/35066075 – ident: CIT0004 doi: 10.1126/science.1088845 – ident: CIT0085 doi: 10.1002/em.2850220410 – ident: CIT0056 doi: 10.1016/j.cell.2013.02.014 – ident: CIT0062 doi: 10.1038/nature06008 – ident: CIT0049 doi: 10.2307/3579899 – ident: CIT0015 doi: 10.1016/0360-3016(86)90209-9 – ident: CIT0074 doi: 10.1080/07391102.1999.10508387 – ident: CIT0008 doi: 10.1038/nrc1560 – ident: CIT0090 doi: 10.1371/journal.pone.0075622 – ident: CIT0095 doi: 10.1088/0031-9155/56/7/005 – ident: CIT0073 doi: 10.1371/journal.pbio.0050192 – ident: CIT0003 doi: 10.1016/j.pbiomolbio.2014.02.002 – ident: CIT0031 doi: 10.1016/j.mrfmmm.2011.01.003 – ident: CIT0075 doi: 10.1016/j.ijrobp.2007.10.059 – ident: CIT0014 doi: 10.1016/j.cell.2011.07.049 – ident: CIT0050 doi: 10.1038/nbt.2057 – ident: CIT0061 doi: 10.1016/j.semcancer.2006.10.008 – ident: CIT0079 doi: 10.1038/35015097 – ident: CIT0100 doi: 10.1016/j.cell.2012.02.002 – ident: CIT0026 doi: 10.1038/nrg3454 – ident: CIT0037 doi: 10.1080/09553007914550861 – ident: CIT0048 doi: 10.1038/nrclinonc.2012.194 – ident: CIT0038 doi: 10.1080/095530098141834 – ident: CIT0078 doi: 10.1016/j.cell.2014.11.021 – ident: CIT0001 doi: 10.1073/pnas.201271098 – volume: 69 start-page: 1302 year: 2009 ident: CIT0013 publication-title: Res – ident: CIT0017 doi: 10.1038/79896 – ident: CIT0045 doi: 10.1002/bies.950131204 – ident: CIT0009 doi: 10.1126/science.1056794 – volume-title: Radiobiology for the radiologist year: 2012 ident: CIT0042 – ident: CIT0068 doi: 10.1038/emboj.2012.35 – ident: CIT0069 doi: 10.1093/jrr/rrt075 – ident: CIT0080 doi: 10.1073/pnas.1112570109 – ident: CIT0071 doi: 10.1016/j.mrgentox.2010.05.010 – volume: 25 start-page: 41 year: 1940 ident: CIT0086 publication-title: Genetics doi: 10.1093/genetics/25.1.41 |
| SSID | ssj0002038 |
| Score | 2.1653733 |
| SecondaryResourceType | review_article |
| Snippet | Purpose The rejoining of fragmented nuclear DNA caused by ionizing radiation may lead to lethal chromosome rearrangements, such as rings or dicentrics. The... |
| SourceID | proquest pubmed crossref informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 229 |
| SubjectTerms | Animals Apoptosis - genetics Apoptosis - radiation effects Cell Nucleus - physiology Cell Nucleus - radiation effects Cellular radiobiology chromosome abberations Chromosome Aberrations - radiation effects Computer Simulation DNA - genetics DNA - radiation effects DNA Damage - physiology Dose-Response Relationship, Radiation double-strand breaks Evidence-Based Medicine Humans microdosimetry models of cell killing Models, Genetic molecular radiobiology Radiation Dosage |
| Title | Influence of nuclear structure on the formation of radiation-induced lethal lesions |
| URI | https://www.tandfonline.com/doi/abs/10.3109/09553002.2016.1144941 https://www.ncbi.nlm.nih.gov/pubmed/26917327 https://www.proquest.com/docview/1787088226 |
| Volume | 92 |
| WOSCitedRecordID | wos000375624000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1362-3095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002038 issn: 0955-3002 databaseCode: TFW dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4V1CIuLSyPbgvIlXooh9DEcZz4iBArOICQoOreIscPFQll0WZB4t93xvGu4AAc4BZHmcQZz9gzfnwfwM_SFFxI6RMjVZkIZYpEaY-Ja5V6YzAf074KZBPl-Xk1HquLuJuwi9sqKYf2PVBE6KvJuXUTGEgIx_I3oablaThGlUkCuxUqHF3HyJ5s_Gr0d9EX8zRwWZNEQiL9GZ7n3_JkdHqCXfp8BBpGotGXd_iHNfgcw1B22NvNOnxw7QA-9cSUDwNYOYtL7gNYj97fsV8Ronp_Ay5P59wmbOJZS5jIesp6LNq7Kd5sGQaWbHEykp6aEgoCFZLr1qJBWYYm8w8rceNoxq7bhD-j46ujkyTSMyQml3KWiJILnTrfVLmwWaG5t6pohLR543E8dKLw3FSpaHxq0fG9zzOjMZ5SXlaVK7J8C5bbSeu-ArOWQGqazJaYsTWl1I7jpefaitTaTA1BzJulNhG7nCg0bmrMYUif9VyfNemzjvocwsFC7LYH73hNQD1u83oWZk18T3FCci_K_pgbSI0uSusuunWTu67OqFPETIbLIWz3lrOoDpeYL-e8_PaGL3-HVSqGbZj5DixjY7td-GjuZ9fddA-WynG1F9ziPzkvBFU |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGdK9Lt2Rbl-6lAj2sB7e2LMvWsRgWtFiby1I0N0HWAy1QOEOSFti_Hyk7QXPoethuftGWKVIkJfEjwH5pCy6kDImVqkyEskWiTMDAtUqDtRiPmVDFYhPleFxNp-p-Lgxtq6QYOrRAEXGsJuWmyeijGGKm6ohg0_I05lFlktBuhaLc9a0CbS1t65uMLtejMU9jNWsiSYimzeJ5-DUb9mkDvfRhHzTaotGr__EXr2G780TZcSs6fXjimwE8a2tT_h7A8_Nu1X0A_W4AWLCvHUr1wRv4eboqb8JmgTUEi2zmrIWjvZ3jxYahb8nWyZH01JyAEOgkuW4cypRjKDVX2IgbT5N2i7dwMfo--XaSdBUaEptLuUxEyYVJfairXLisMDw4VdRCurwOaBK9KAK3VSrqkDrU_RDyzBp0qVSQVeWLLH8HvWbW-PfAnCOcmjpzJQZtdSmN53gYuHEidS5TQxCrftG2gy-nKho3GsMY4qde8VMTP3XHzyEcrsl-tfgdjxGo-52ul3HiJLRVTojur7R7KwnRqKW09GIaP7td6IzGRQxmuBzCTis66-ZwiSFzzsvdf_jyF3hxMjk_02en4x8f4CXdirsy84_Qw473n-CpvVteL-afo3b8AX-cB44 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VLVRcWrq8llJwJQ5wCE0cx4mPVemqFXRViSJ6sxw_RKUqW222SPx7Zhzvih4KB7jlNYljz9jz2Z5vAN7WtuJCypBZqepMKFtlygQErk0erEU8ZkITk03U02lzeanO027CPm2rJAwdBqKI2FeTcd-4cBARZq4OiDWtzGMYVSGJ7FYoCl3fiORYqNIXk2-rzpjnMZk1iWQkMwTx3P-aO8PTHfLS-13QOBRNtv_DTzyGreSHssNBcXZgzXcjeDhkpvw5gs2ztOY-gp1k_j17lziq3z-BL6fL5CZsFlhHpMhmzgYy2ts5XuwYepZsFRpJT82JBoFOsqvOoUY5hjrzHQtx7WnKrn8KXyfHF0cnWcrPkNlSykUmai5M7kPblMIVleHBqaoV0pVtwAHRiypw2-SiDblDyw-hLKxBh0oF2TS-KspnsN7NOv8CmHPEUtMWrkbI1tbSeI6HgRsncucKNQaxbBZtE3k55dC41ghiqD71sj411adO9TmGDyuxm4G9428C6vc214s4bRKGHCck90fZ_aWCaLRRWngxnZ_d9rqgXhGhDJdjeD5ozqo4XCJgLnn98h--_AY2zz9O9OfT6addeER34pbM8hWsY7v7PXhgfyyu-vnraBu_ACUmBjI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+nuclear+structure+on+the+formation+of+radiation-induced+lethal+lesions&rft.jtitle=International+journal+of+radiation+biology&rft.au=Friedman%2C+Daniel+A&rft.au=Tait%2C+Lauren&rft.au=Vaughan%2C+Andrew+T+M&rft.date=2016-05-03&rft.eissn=1362-3095&rft.volume=92&rft.issue=5&rft.spage=229&rft_id=info:doi/10.3109%2F09553002.2016.1144941&rft_id=info%3Apmid%2F26917327&rft.externalDocID=26917327 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-3002&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-3002&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-3002&client=summon |