On the robustness of a divergence based test of simple statistical hypotheses

The most popular hypothesis testing procedure, the likelihood ratio test, is known to be highly non-robust in many real situations. Basu et al. (2013a) provided an alternative robust procedure of hypothesis testing based on the density power divergence; however, although the robustness properties of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical planning and inference Jg. 161; S. 91 - 108
Hauptverfasser: Ghosh, Abhik, Basu, Ayanendranath, Pardo, Leandro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2015
Schlagworte:
ISSN:0378-3758, 1873-1171
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The most popular hypothesis testing procedure, the likelihood ratio test, is known to be highly non-robust in many real situations. Basu et al. (2013a) provided an alternative robust procedure of hypothesis testing based on the density power divergence; however, although the robustness properties of the latter test were intuitively argued for by the authors together with extensive empirical substantiation of the same, no theoretical robustness properties were presented in that work. In the present paper we will consider a more general class of tests which forms a superfamily of the procedures described by Basu et al. (2013a). This superfamily derives from the class of S-divergences recently proposed by Ghosh et al. (2013). In this context we theoretically prove several robustness results of the new class of tests and illustrate them in the normal model. All the theoretical robustness properties of the Basu et al. (2013a) proposal follows as special cases of our results. •Generalizes DPD based tests to the case of the S-divergence.•Presents theoretical robustness results for S-divergence based tests.•Derives the power and level influence functions of the tests.•Introduces the chi-square inflation factor in connection with the S-divergence tests.
AbstractList The most popular hypothesis testing procedure, the likelihood ratio test, is known to be highly non-robust in many real situations. Basu et al. (2013a) provided an alternative robust procedure of hypothesis testing based on the density power divergence; however, although the robustness properties of the latter test were intuitively argued for by the authors together with extensive empirical substantiation of the same, no theoretical robustness properties were presented in that work. In the present paper we will consider a more general class of tests which forms a superfamily of the procedures described by Basu et al. (2013a). This superfamily derives from the class of S-divergences recently proposed by Ghosh et al. (2013). In this context we theoretically prove several robustness results of the new class of tests and illustrate them in the normal model. All the theoretical robustness properties of the Basu et al. (2013a) proposal follows as special cases of our results. •Generalizes DPD based tests to the case of the S-divergence.•Presents theoretical robustness results for S-divergence based tests.•Derives the power and level influence functions of the tests.•Introduces the chi-square inflation factor in connection with the S-divergence tests.
Author Basu, Ayanendranath
Ghosh, Abhik
Pardo, Leandro
Author_xml – sequence: 1
  givenname: Abhik
  surname: Ghosh
  fullname: Ghosh, Abhik
  email: abhianik@gmail.com
  organization: Indian Statistical Institute, Kolkata, India
– sequence: 2
  givenname: Ayanendranath
  surname: Basu
  fullname: Basu, Ayanendranath
  email: ayanbasu@isical.ac.in
  organization: Indian Statistical Institute, Kolkata, India
– sequence: 3
  givenname: Leandro
  surname: Pardo
  fullname: Pardo, Leandro
  email: lpardo@mat.ucm.es
  organization: Complutense University, Madrid, Spain
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP2B3JPmhQDcl9AUp2bRrIcvjRsaxg0YN5O9rk666yGxmYDgX7lmwWT_0yNi9gFSAKB7atKWDTyWIPAWRAqgrNhe6VIkQpZixOahSJ6rM9Q1bELUwTgH5nH1sex53yMNQ_VDskYgPDbe89kcM39g75JUlrHlEitOL_P7QIadoo6fone347nQYxgxCumXXje0I7_72kn29PH-u35LN9vV9_bRJnCqKmGSAeVZJXUqEJsukKzHXhRwPVeVQiaYQGWq90g4yUcpaVrKxVtWuWUGt1UotmTznujAQBWzMIfi9DScjwExCTGsmIWYSYkCYUcgI6X-Q81OLoY_B-u4y-nhGcSx19BgMOT_JqX1AF009-Ev4L_6efqg
CitedBy_id crossref_primary_10_1109_TIT_2018_2794537
crossref_primary_10_1016_j_jmva_2021_104846
crossref_primary_10_1007_s10463_018_0678_5
crossref_primary_10_1007_s13171_025_00382_0
crossref_primary_10_1080_03610926_2019_1615093
crossref_primary_10_1016_j_jmva_2016_01_004
crossref_primary_10_1007_s10260_024_00760_2
crossref_primary_10_1515_ijb_2017_0023
crossref_primary_10_1007_s00184_018_0653_4
crossref_primary_10_1080_00949655_2020_1842407
crossref_primary_10_1080_03610926_2017_1307405
crossref_primary_10_1007_s13571_025_00384_w
crossref_primary_10_1007_s00362_015_0701_3
crossref_primary_10_1016_j_spl_2016_02_007
Cites_doi 10.1111/j.2517-6161.1984.tb01318.x
10.1007/s10463-012-0372-y
10.1098/rsta.1933.0009
10.1016/j.csda.2008.11.025
10.1017/S030500410001152X
10.1016/j.jmva.2010.07.010
10.1214/aoms/1177732360
10.1214/aoms/1177699531
10.1080/01621459.1994.10476822
10.1214/aoms/1177693437
10.1214/aos/1176325512
10.1214/15-EJS1025
10.1016/0771-050X(81)90013-9
10.1093/biomet/85.3.549
10.2307/2342435
10.1214/aoms/1177698877
10.1214/aoms/1177698878
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jspi.2015.01.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1873-1171
EndPage 108
ExternalDocumentID 10_1016_j_jspi_2015_01_003
S0378375815000051
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6P2
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEHJ
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
NHB
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UNMZH
VH1
WUQ
XFK
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-40e54b2872e0f442c7e586242c3b50b1f614e8898c04172d2b2faa3dcf90d8393
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352921300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-3758
IngestDate Sat Nov 29 01:39:57 EST 2025
Tue Nov 18 22:19:40 EST 2025
Fri Feb 23 02:26:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hypothesis testing
Robustness
S-divergence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-40e54b2872e0f442c7e586242c3b50b1f614e8898c04172d2b2faa3dcf90d8393
PageCount 18
ParticipantIDs crossref_primary_10_1016_j_jspi_2015_01_003
crossref_citationtrail_10_1016_j_jspi_2015_01_003
elsevier_sciencedirect_doi_10_1016_j_jspi_2015_01_003
PublicationCentury 2000
PublicationDate June 2015
2015-06-00
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationTitle Journal of statistical planning and inference
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Neyman, Pearson (br000100) 1933; 231
Liu, Tang, Zhang (br000090) 2009; 53
Basu, A., Mandal, A., Martin, N., Pardo, L., 2013b. Density Power Divergence Tests for Composite Null Hypotheses. ArXiv Pre-Print
Lindsay (br000085) 1994; 22
Kotz, Johnson, Boyd (br000075) 1967; 38
Rousseeuw, Ronchetti (br000120) 1981; 7
Fisher (br000035) 1935; 98
Fisher (br000030) 1925
Neyman, Pearson (br000095) 1928; 20A
Basu, Shioya, Park (br000010) 2011
[stat.ME].
Basu, Mandal, Martin, Pardo (br000015) 2013; 65
Lehmann (br000080) 1983
Harville (br000055) 1971; 42
Heritier, Ronchetti (br000060) 1994; 89
Wilks (br000130) 1938; 9
Ghosh, A., 2014. Influence Function of the Restricted Minimum Divergence Estimators: A General Form. Pre-Print
Neyman, Pearson (br000105) 1933; 29
Basu, Harris, Hjort, Jones (br000005) 1998; 85
Cressie, Read (br000025) 1984; 46
Rousseeuw, Ronchetti (br000115) 1979
Press (br000110) 1966; 37
Toma, Broniatowski (br000125) 2011; 102
Ghosh, A., Harris, I.R., Maji, A., Basu, A., Pardo, L., 2013. A Generalized Divergence for Statistical Inference. Technical Report, BIRU/2013/3, Bayesian and Interdisciplinary Research Unit, Indian Statistical Institute, Kolkata, India.
Huber-Carol (br000065) 1970
Kotz, Johnson, Boyd (br000070) 1967; 38
[math.ST].
Hampel, Ronchetti, Rousseeuw, Stahel (br000050) 1986
Basu (10.1016/j.jspi.2015.01.003_br000010) 2011
Harville (10.1016/j.jspi.2015.01.003_br000055) 1971; 42
Heritier (10.1016/j.jspi.2015.01.003_br000060) 1994; 89
Hampel (10.1016/j.jspi.2015.01.003_br000050) 1986
Huber-Carol (10.1016/j.jspi.2015.01.003_br000065) 1970
Kotz (10.1016/j.jspi.2015.01.003_br000070) 1967; 38
Cressie (10.1016/j.jspi.2015.01.003_br000025) 1984; 46
Toma (10.1016/j.jspi.2015.01.003_br000125) 2011; 102
Liu (10.1016/j.jspi.2015.01.003_br000090) 2009; 53
Basu (10.1016/j.jspi.2015.01.003_br000005) 1998; 85
Kotz (10.1016/j.jspi.2015.01.003_br000075) 1967; 38
Neyman (10.1016/j.jspi.2015.01.003_br000105) 1933; 29
Neyman (10.1016/j.jspi.2015.01.003_br000095) 1928; 20A
Basu (10.1016/j.jspi.2015.01.003_br000015) 2013; 65
Fisher (10.1016/j.jspi.2015.01.003_br000030) 1925
Rousseeuw (10.1016/j.jspi.2015.01.003_br000115) 1979
10.1016/j.jspi.2015.01.003_br000045
Fisher (10.1016/j.jspi.2015.01.003_br000035) 1935; 98
Wilks (10.1016/j.jspi.2015.01.003_br000130) 1938; 9
Press (10.1016/j.jspi.2015.01.003_br000110) 1966; 37
Lehmann (10.1016/j.jspi.2015.01.003_br000080) 1983
10.1016/j.jspi.2015.01.003_br000020
10.1016/j.jspi.2015.01.003_br000040
Neyman (10.1016/j.jspi.2015.01.003_br000100) 1933; 231
Lindsay (10.1016/j.jspi.2015.01.003_br000085) 1994; 22
Rousseeuw (10.1016/j.jspi.2015.01.003_br000120) 1981; 7
References_xml – year: 1925
  ident: br000030
  article-title: Statistical Methods for Research Workers
– volume: 46
  start-page: 440
  year: 1984
  end-page: 464
  ident: br000025
  article-title: Multinomial goodness-of-fit tests
  publication-title: J. Roy. Statist. Soc. Ser. B
– volume: 38
  start-page: 838
  year: 1967
  end-page: 848
  ident: br000075
  article-title: Series representations of distributions of quadratic forms in normal variables.~I.~Non-central case
  publication-title: Ann. Math. Statist.
– volume: 9
  start-page: 60
  year: 1938
  end-page: 62
  ident: br000130
  article-title: The large sample distribution of the likelihood ratio for testing composite hypothesis
  publication-title: Ann. Math. Statist.
– year: 1970
  ident: br000065
  article-title: Etude asymptotique de tests robustes
– reference:  [math.ST].
– reference:  [stat.ME].
– volume: 22
  start-page: 1081
  year: 1994
  end-page: 1114
  ident: br000085
  article-title: Efficiency versus robustness: The case for minimum Hellinger distance and related methods
  publication-title: Ann. Statist.
– volume: 89
  start-page: 897
  year: 1994
  end-page: 904
  ident: br000060
  article-title: Robust bounded-influence tests in general parametric models
  publication-title: J. Amer. Statist. Assoc.
– volume: 20A
  start-page: 175
  year: 1928
  end-page: 240
  ident: br000095
  article-title: On the use and interpretation of certain test criteria for purposes of statistical inference
  publication-title: Biometrika
– volume: 65
  start-page: 319
  year: 2013
  end-page: 348
  ident: br000015
  article-title: Testing statistical hypotheses based on the density power divergence
  publication-title: Ann. Inst. Statist. Math.
– reference: Basu, A., Mandal, A., Martin, N., Pardo, L., 2013b. Density Power Divergence Tests for Composite Null Hypotheses. ArXiv Pre-Print, 
– volume: 42
  start-page: 809
  year: 1971
  end-page: 811
  ident: br000055
  article-title: On the distribution of linear combinations of non-central chi-squares
  publication-title: Ann. Math. Statist.
– volume: 102
  start-page: 20
  year: 2011
  end-page: 36
  ident: br000125
  article-title: Dual divergence estimators and tests: robustness results
  publication-title: J. Multivariate Anal.
– year: 1979
  ident: br000115
  article-title: The influence curve for tests. Research Report 21, Fachgruppe für Statistik
– year: 1986
  ident: br000050
  article-title: Robust Statistics: The Approach Based on Influence Functions
– reference: Ghosh, A., 2014. Influence Function of the Restricted Minimum Divergence Estimators: A General Form. Pre-Print, 
– volume: 7
  start-page: 161
  year: 1981
  end-page: 166
  ident: br000120
  article-title: Influence curves for general statistics
  publication-title: J. Comput. Appl. Math.
– year: 2011
  ident: br000010
  article-title: Statistical Inference: The Minimum Distance Approach
– volume: 37
  start-page: 480
  year: 1966
  end-page: 487
  ident: br000110
  article-title: Linear combinations of non-central chi-square variates
  publication-title: Ann. Math. Statist.
– reference: Ghosh, A., Harris, I.R., Maji, A., Basu, A., Pardo, L., 2013. A Generalized Divergence for Statistical Inference. Technical Report, BIRU/2013/3, Bayesian and Interdisciplinary Research Unit, Indian Statistical Institute, Kolkata, India.
– volume: 231
  start-page: 289
  year: 1933
  end-page: 337
  ident: br000100
  article-title: On the problem of the most efficient tests of statistical hypotheses
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A
– volume: 98
  start-page: 39
  year: 1935
  end-page: 82
  ident: br000035
  article-title: The logic of inductive inference (with discussion)
  publication-title: J. Roy. Statist. Soc.
– volume: 53
  start-page: 853
  year: 2009
  end-page: 856
  ident: br000090
  article-title: General oracle inequalities for gibbs posterior with application to ranking
  publication-title: Comput. Statist. Data Anal.
– volume: 29
  start-page: 492
  year: 1933
  end-page: 510
  ident: br000105
  article-title: The testing of statistical hypotheses in relation to probabilities a priori
  publication-title: Proc. Cambridge Philos. Soc.
– volume: 38
  start-page: 823
  year: 1967
  end-page: 837
  ident: br000070
  article-title: Series representations of distributions of quadratic forms in normal variables.~I.~Central case
  publication-title: Ann. Math. Statist.
– year: 1983
  ident: br000080
  article-title: Theory of Point Estimation
– volume: 85
  start-page: 549
  year: 1998
  end-page: 559
  ident: br000005
  article-title: Robust and efficient estimation by minimising a density power divergence
  publication-title: Biometrika
– volume: 46
  start-page: 440
  year: 1984
  ident: 10.1016/j.jspi.2015.01.003_br000025
  article-title: Multinomial goodness-of-fit tests
  publication-title: J. Roy. Statist. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1984.tb01318.x
– ident: 10.1016/j.jspi.2015.01.003_br000020
– volume: 65
  start-page: 319
  year: 2013
  ident: 10.1016/j.jspi.2015.01.003_br000015
  article-title: Testing statistical hypotheses based on the density power divergence
  publication-title: Ann. Inst. Statist. Math.
  doi: 10.1007/s10463-012-0372-y
– volume: 20A
  start-page: 175
  year: 1928
  ident: 10.1016/j.jspi.2015.01.003_br000095
  article-title: On the use and interpretation of certain test criteria for purposes of statistical inference
  publication-title: Biometrika
– volume: 231
  start-page: 289
  year: 1933
  ident: 10.1016/j.jspi.2015.01.003_br000100
  article-title: On the problem of the most efficient tests of statistical hypotheses
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A
  doi: 10.1098/rsta.1933.0009
– year: 1925
  ident: 10.1016/j.jspi.2015.01.003_br000030
– volume: 53
  start-page: 853
  year: 2009
  ident: 10.1016/j.jspi.2015.01.003_br000090
  article-title: General oracle inequalities for gibbs posterior with application to ranking
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2008.11.025
– ident: 10.1016/j.jspi.2015.01.003_br000045
– volume: 29
  start-page: 492
  year: 1933
  ident: 10.1016/j.jspi.2015.01.003_br000105
  article-title: The testing of statistical hypotheses in relation to probabilities a priori
  publication-title: Proc. Cambridge Philos. Soc.
  doi: 10.1017/S030500410001152X
– volume: 102
  start-page: 20
  year: 2011
  ident: 10.1016/j.jspi.2015.01.003_br000125
  article-title: Dual divergence estimators and tests: robustness results
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2010.07.010
– volume: 9
  start-page: 60
  year: 1938
  ident: 10.1016/j.jspi.2015.01.003_br000130
  article-title: The large sample distribution of the likelihood ratio for testing composite hypothesis
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177732360
– year: 1979
  ident: 10.1016/j.jspi.2015.01.003_br000115
– volume: 37
  start-page: 480
  year: 1966
  ident: 10.1016/j.jspi.2015.01.003_br000110
  article-title: Linear combinations of non-central chi-square variates
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177699531
– year: 2011
  ident: 10.1016/j.jspi.2015.01.003_br000010
– volume: 89
  start-page: 897
  year: 1994
  ident: 10.1016/j.jspi.2015.01.003_br000060
  article-title: Robust bounded-influence tests in general parametric models
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1994.10476822
– volume: 42
  start-page: 809
  year: 1971
  ident: 10.1016/j.jspi.2015.01.003_br000055
  article-title: On the distribution of linear combinations of non-central chi-squares
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177693437
– volume: 22
  start-page: 1081
  year: 1994
  ident: 10.1016/j.jspi.2015.01.003_br000085
  article-title: Efficiency versus robustness: The case for minimum Hellinger distance and related methods
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176325512
– ident: 10.1016/j.jspi.2015.01.003_br000040
  doi: 10.1214/15-EJS1025
– volume: 7
  start-page: 161
  year: 1981
  ident: 10.1016/j.jspi.2015.01.003_br000120
  article-title: Influence curves for general statistics
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0771-050X(81)90013-9
– volume: 85
  start-page: 549
  year: 1998
  ident: 10.1016/j.jspi.2015.01.003_br000005
  article-title: Robust and efficient estimation by minimising a density power divergence
  publication-title: Biometrika
  doi: 10.1093/biomet/85.3.549
– volume: 98
  start-page: 39
  year: 1935
  ident: 10.1016/j.jspi.2015.01.003_br000035
  article-title: The logic of inductive inference (with discussion)
  publication-title: J. Roy. Statist. Soc.
  doi: 10.2307/2342435
– volume: 38
  start-page: 823
  year: 1967
  ident: 10.1016/j.jspi.2015.01.003_br000070
  article-title: Series representations of distributions of quadratic forms in normal variables.~I.~Central case
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177698877
– year: 1970
  ident: 10.1016/j.jspi.2015.01.003_br000065
– year: 1983
  ident: 10.1016/j.jspi.2015.01.003_br000080
– volume: 38
  start-page: 838
  year: 1967
  ident: 10.1016/j.jspi.2015.01.003_br000075
  article-title: Series representations of distributions of quadratic forms in normal variables.~I.~Non-central case
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177698878
– year: 1986
  ident: 10.1016/j.jspi.2015.01.003_br000050
SSID ssj0000605
Score 2.1905599
Snippet The most popular hypothesis testing procedure, the likelihood ratio test, is known to be highly non-robust in many real situations. Basu et al. (2013a)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 91
SubjectTerms [formula omitted]-divergence
Hypothesis testing
Robustness
Title On the robustness of a divergence based test of simple statistical hypotheses
URI https://dx.doi.org/10.1016/j.jspi.2015.01.003
Volume 161
WOSCitedRecordID wos000352921300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-1171
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605
  issn: 0378-3758
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZL0kN6KG3a0qQPdOgtuFh-rOzjUlLakhckLXszsh5kQ9AusTckt_70zkjyg24JbaEXs8jWrtCMNbPD931DyHsFYVlnvIyEECqCeKwikZssqpOSQ_qqOHcs1-9H_OSkmM_Ls8nkR8eFub3m1hZ3d-Xqv5oaxsDYSJ39C3P3XwoD8BmMDlcwO1z_yPCnNsAG63XTuoPMUSAVAjC88iZGLnUAOaZDATQLFAjGmkLrRJuRHHm_QmJWE_CFm7nr-OFVaHsUdJwCf7DH9VwuG1e5mdWXi4EVJJq1G7wXVlsF8VK0fV36DJzWFXCPtEA5hXFhguUDgMpXyzYYM56lhXAM7uXaP2h_6BY8jRjzrVj6U9lrtIdz1Xf0ChGaOSWIzcPf1yGuUGtygaA9L8gap0Oo6wGI57gOXAbDhhAxcvC3E56XcC5uz74czr-OormHwXbrDsQrjxH89Zd-n9yMEpaLp-RJsBadeQ95Riba7pLHx71Mb7NLds47OzbPyfGppXCPDo5Dl4YKOjgOdY5D0XHwlnccOvIFOjjOC_Lt0-HFx89RaLYRyXQ6baMs1nlWw__nRMcmyxLJde7IQzKt87hmBvI4XRRlIeMMkl6V1IkRIlXSlLGCLDt9Sbbs0upXhML7b6ZaFDLHfFEykZkih3k6mabcqHSPsG6XKhmU6LEhynXVQQ6vKtzZCne2ihnq1-6Rg37OyuuwPPh03m1-FTJJnyFW4CsPzNv_x3mvyc7wBrwhW-3NWr8lj-Qt7P_Nu-BSPwFwjplp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+robustness+of+a+divergence+based+test+of+simple+statistical+hypotheses&rft.jtitle=Journal+of+statistical+planning+and+inference&rft.au=Ghosh%2C+Abhik&rft.au=Basu%2C+Ayanendranath&rft.au=Pardo%2C+Leandro&rft.date=2015-06-01&rft.pub=Elsevier+B.V&rft.issn=0378-3758&rft.eissn=1873-1171&rft.volume=161&rft.spage=91&rft.epage=108&rft_id=info:doi/10.1016%2Fj.jspi.2015.01.003&rft.externalDocID=S0378375815000051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3758&client=summon