A fast randomized algorithm for the approximation of matrices
We introduce a randomized procedure that, given an m × n matrix A and a positive integer k, approximates A with a matrix Z of rank k. The algorithm relies on applying a structured l × m random matrix R to each column of A, where l is an integer near to, but greater than, k. The structure of R allows...
Gespeichert in:
| Veröffentlicht in: | Applied and computational harmonic analysis Jg. 25; H. 3; S. 335 - 366 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.11.2008
|
| Schlagworte: | |
| ISSN: | 1063-5203, 1096-603X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We introduce a randomized procedure that, given an
m
×
n
matrix
A and a positive integer
k, approximates
A with a matrix
Z of rank
k. The algorithm relies on applying a structured
l
×
m
random matrix
R
to each column of
A, where
l is an integer near to, but greater than,
k. The structure of
R
allows us to apply it to an arbitrary
m
×
1
vector at a cost proportional to
m
log
(
l
)
; the resulting procedure can construct a rank-
k approximation
Z from the entries of
A at a cost proportional to
m
n
log
(
k
)
+
l
2
(
m
+
n
)
. We prove several bounds on the accuracy of the algorithm; one such bound guarantees that the spectral norm
‖
A
−
Z
‖
of the discrepancy between
A and
Z is of the same order as
max
{
m
,
n
}
times the
(
k
+
1
)
st
greatest singular value
σ
k
+
1
of
A, with small probability of large deviations.
In contrast, the classical pivoted “
QR” decomposition algorithms (such as Gram–Schmidt or Householder) require at least
kmn floating-point operations in order to compute a similarly accurate rank-
k approximation. In practice, the algorithm of this paper runs faster than the classical algorithms, even when
k is quite small or large. Furthermore, the algorithm operates reliably independently of the structure of the matrix
A, can access each column of
A independently and at most twice, and parallelizes naturally. Thus, the algorithm provides an efficient, reliable means for computing several of the greatest singular values and corresponding singular vectors of
A. The results are illustrated via several numerical examples. |
|---|---|
| AbstractList | We introduce a randomized procedure that, given an
m
×
n
matrix
A and a positive integer
k, approximates
A with a matrix
Z of rank
k. The algorithm relies on applying a structured
l
×
m
random matrix
R
to each column of
A, where
l is an integer near to, but greater than,
k. The structure of
R
allows us to apply it to an arbitrary
m
×
1
vector at a cost proportional to
m
log
(
l
)
; the resulting procedure can construct a rank-
k approximation
Z from the entries of
A at a cost proportional to
m
n
log
(
k
)
+
l
2
(
m
+
n
)
. We prove several bounds on the accuracy of the algorithm; one such bound guarantees that the spectral norm
‖
A
−
Z
‖
of the discrepancy between
A and
Z is of the same order as
max
{
m
,
n
}
times the
(
k
+
1
)
st
greatest singular value
σ
k
+
1
of
A, with small probability of large deviations.
In contrast, the classical pivoted “
QR” decomposition algorithms (such as Gram–Schmidt or Householder) require at least
kmn floating-point operations in order to compute a similarly accurate rank-
k approximation. In practice, the algorithm of this paper runs faster than the classical algorithms, even when
k is quite small or large. Furthermore, the algorithm operates reliably independently of the structure of the matrix
A, can access each column of
A independently and at most twice, and parallelizes naturally. Thus, the algorithm provides an efficient, reliable means for computing several of the greatest singular values and corresponding singular vectors of
A. The results are illustrated via several numerical examples. |
| Author | Tygert, Mark Liberty, Edo Woolfe, Franco Rokhlin, Vladimir |
| Author_xml | – sequence: 1 givenname: Franco surname: Woolfe fullname: Woolfe, Franco email: francis.woolfe@yale.edu – sequence: 2 givenname: Edo surname: Liberty fullname: Liberty, Edo email: edo.liberty@yale.edu – sequence: 3 givenname: Vladimir surname: Rokhlin fullname: Rokhlin, Vladimir – sequence: 4 givenname: Mark surname: Tygert fullname: Tygert, Mark email: mark.tygert@yale.edu |
| BookMark | eNp9kE1LAzEQhoNUsFb_gKf8gV3z0U03oIdS_IKCFwVvIZ1MbEq7KUkQ9de7az156GleGJ5h3uecjLrYISFXnNWccXW9qS2sbS0Ym9Vc1IyJEzLmTKtKMfk2GrKSVSOYPCPnOW8Y43za6DG5nVNvc6HJdi7uwjc6arfvMYWy3lEfEy1rpHa_T_Ez7GwJsaPR0z6lAJgvyKm324yXf3NCXu_vXhaP1fL54WkxX1YglSqVZHqFq2kLUighLTReA5cCgWmnlEOUrVWzFgVY1zj0ut-tPEipvee29XJCxOEupJhzQm_2qX8nfRnOzCDAbMwgwAwCDBemF9BD7T8IQvmtUJIN2-PozQHFvtRHwGQyBOwAXUgIxbgYjuE_Fkx54A |
| CitedBy_id | crossref_primary_10_1016_j_acha_2014_04_002 crossref_primary_10_1016_j_acha_2016_04_006 crossref_primary_10_1088_0957_4484_27_41_414003 crossref_primary_10_1137_12086354X crossref_primary_10_1137_23M1565413 crossref_primary_10_1137_23M1595904 crossref_primary_10_1002_2017WR021870 crossref_primary_10_1137_080738970 crossref_primary_10_1016_j_acha_2017_04_002 crossref_primary_10_1002_wcms_1706 crossref_primary_10_1016_j_cam_2023_115331 crossref_primary_10_1016_j_laa_2020_03_041 crossref_primary_10_1137_23M1584733 crossref_primary_10_1016_j_jcp_2015_10_012 crossref_primary_10_1145_3699714 crossref_primary_10_1016_j_jcp_2020_109704 crossref_primary_10_1007_s10915_013_9714_z crossref_primary_10_1137_22M1538648 crossref_primary_10_1007_s10444_014_9342_7 crossref_primary_10_1109_TIT_2021_3112821 crossref_primary_10_1109_TIT_2012_2189196 crossref_primary_10_1007_s10444_025_10232_0 crossref_primary_10_1016_j_apnum_2012_06_032 crossref_primary_10_1016_j_matcom_2011_08_002 crossref_primary_10_1109_TAP_2018_2794059 crossref_primary_10_1109_TPAMI_2015_2448083 crossref_primary_10_1007_s42967_020_00061_x crossref_primary_10_1016_j_cma_2023_115971 crossref_primary_10_1002_mma_3116 crossref_primary_10_1016_j_cam_2020_113380 crossref_primary_10_1080_03610926_2022_2037644 crossref_primary_10_1137_20M1335571 crossref_primary_10_1017_S0962492920000021 crossref_primary_10_1137_18M118966X crossref_primary_10_1016_j_ecosta_2021_02_007 crossref_primary_10_1002_nla_2334 crossref_primary_10_1002_nla_70003 crossref_primary_10_1002_nla_2179 crossref_primary_10_1109_TVT_2023_3243244 crossref_primary_10_1109_LSP_2017_2698071 crossref_primary_10_1145_1646353_1646379 crossref_primary_10_1137_17M1150013 crossref_primary_10_1109_TIT_2024_3450412 crossref_primary_10_1137_22M150071X crossref_primary_10_1007_s11227_017_2164_x crossref_primary_10_1137_21M1467845 crossref_primary_10_1016_j_acha_2015_09_007 crossref_primary_10_1137_15M1030200 crossref_primary_10_1109_ACCESS_2021_3058103 crossref_primary_10_1007_s10444_022_09963_1 crossref_primary_10_1016_j_jcp_2011_12_032 crossref_primary_10_1137_120866683 crossref_primary_10_1007_s11075_025_02101_0 crossref_primary_10_1007_s40324_023_00340_6 crossref_primary_10_1137_130921544 crossref_primary_10_1016_j_jcp_2011_02_033 crossref_primary_10_1109_TIP_2014_2305840 crossref_primary_10_1007_s10444_018_09655_9 crossref_primary_10_1137_18M1205844 crossref_primary_10_1137_110852310 crossref_primary_10_1109_LSP_2019_2920054 crossref_primary_10_1109_TPAMI_2017_2677440 crossref_primary_10_1007_s13370_025_01290_0 crossref_primary_10_1016_j_jcp_2018_05_041 crossref_primary_10_1007_s10444_016_9494_8 crossref_primary_10_1016_j_enganabound_2016_07_012 crossref_primary_10_1088_2632_2153_abad87 crossref_primary_10_1016_j_ifacol_2015_10_308 crossref_primary_10_1109_TBDATA_2020_2972887 crossref_primary_10_1137_23M1588007 crossref_primary_10_32604_cmes_2023_031150 crossref_primary_10_1007_s11554_016_0655_2 crossref_primary_10_1137_17M1140480 crossref_primary_10_1007_s00453_014_9891_7 crossref_primary_10_1007_s10898_022_01182_8 crossref_primary_10_1137_11082436X crossref_primary_10_1016_j_patcog_2015_01_025 crossref_primary_10_1137_080736417 crossref_primary_10_1016_j_jcp_2014_10_009 crossref_primary_10_1142_S0217595916500238 crossref_primary_10_1137_21M1422963 crossref_primary_10_1137_090771806 crossref_primary_10_1137_130938700 crossref_primary_10_1016_j_jcp_2015_09_050 crossref_primary_10_1137_15M1042802 crossref_primary_10_1016_j_enganabound_2012_02_003 crossref_primary_10_3389_frspt_2023_1220011 crossref_primary_10_1007_s00034_013_9616_1 crossref_primary_10_1016_j_eswa_2024_123462 crossref_primary_10_1007_s00466_017_1407_2 crossref_primary_10_1016_j_laa_2012_12_022 crossref_primary_10_1109_JMMCT_2018_2870599 crossref_primary_10_1109_TIT_2017_2723898 crossref_primary_10_1016_j_enganabound_2019_06_020 crossref_primary_10_1137_15M1023774 crossref_primary_10_1016_j_inffus_2015_01_001 crossref_primary_10_1137_18M1201068 crossref_primary_10_1109_TAP_2019_2952014 crossref_primary_10_1137_19M1294873 crossref_primary_10_1109_ACCESS_2021_3098301 crossref_primary_10_1137_19M1272561 crossref_primary_10_1007_s10915_021_01545_5 crossref_primary_10_1145_3568682 crossref_primary_10_1016_j_acha_2019_05_001 crossref_primary_10_1016_j_ymssp_2024_112264 crossref_primary_10_1109_TSP_2016_2621728 crossref_primary_10_1137_17M1111590 crossref_primary_10_1016_j_advengsoft_2017_12_007 crossref_primary_10_1137_100804139 crossref_primary_10_1137_16M1077325 crossref_primary_10_1007_s10596_013_9364_0 crossref_primary_10_1109_TBDATA_2016_2617883 crossref_primary_10_1088_0266_5611_29_8_085008 crossref_primary_10_1155_2015_246019 crossref_primary_10_1016_j_engappai_2020_103722 crossref_primary_10_1109_TPAMI_2018_2839198 crossref_primary_10_1145_2483699_2483701 crossref_primary_10_1007_s10444_024_10194_9 crossref_primary_10_1007_s10915_022_01956_y crossref_primary_10_1007_s10915_024_02599_x crossref_primary_10_1103_PhysRevE_104_015206 crossref_primary_10_1137_15M1007173 crossref_primary_10_1007_s00211_016_0837_7 crossref_primary_10_1137_140986815 crossref_primary_10_1146_annurev_economics_022720_114138 crossref_primary_10_1007_s11704_016_5552_0 crossref_primary_10_1137_23M1594066 crossref_primary_10_1145_3130800_3130801 crossref_primary_10_1109_TIT_2010_2054251 crossref_primary_10_1109_LSP_2017_2723472 crossref_primary_10_1137_21M1418319 crossref_primary_10_1016_j_aml_2025_109531 crossref_primary_10_1002_nme_6009 crossref_primary_10_1088_2632_2153_ab8240 crossref_primary_10_1137_22M1518062 crossref_primary_10_1007_s11045_013_0247_2 crossref_primary_10_1007_s11075_024_01972_z crossref_primary_10_1016_j_acha_2011_01_008 crossref_primary_10_1515_mcma_2010_020 crossref_primary_10_1109_TAP_2022_3233426 crossref_primary_10_1007_s40314_024_02772_w crossref_primary_10_1007_s10915_025_03020_x crossref_primary_10_1016_j_neucom_2020_07_022 crossref_primary_10_1137_17M1151158 crossref_primary_10_1137_24M1679306 crossref_primary_10_1109_ACCESS_2021_3125069 crossref_primary_10_1137_130914966 crossref_primary_10_1137_120874540 crossref_primary_10_1007_s10915_016_0347_x crossref_primary_10_1007_s10444_023_10061_z crossref_primary_10_1137_22M1540363 crossref_primary_10_1137_23M1619472 crossref_primary_10_1016_j_jcp_2011_09_008 crossref_primary_10_1137_18M1207430 crossref_primary_10_1137_25M1749657 crossref_primary_10_1016_j_acha_2011_03_006 crossref_primary_10_1016_j_cam_2020_112797 crossref_primary_10_1002_nla_2596 crossref_primary_10_1016_j_jcp_2011_03_048 crossref_primary_10_1137_120902677 crossref_primary_10_1137_24M1683998 crossref_primary_10_1080_03081087_2016_1267104 crossref_primary_10_1515_MCMA_2009_015 crossref_primary_10_1109_TCPMT_2016_2636296 crossref_primary_10_1137_17M1138480 crossref_primary_10_1016_j_jcp_2015_09_014 crossref_primary_10_1007_s10444_020_09816_9 crossref_primary_10_1371_journal_pone_0225265 crossref_primary_10_1137_23M1610811 crossref_primary_10_1007_s40687_021_00285_0 crossref_primary_10_1016_j_cviu_2016_02_005 crossref_primary_10_1016_j_camwa_2016_09_014 crossref_primary_10_1137_15M1040827 |
| Cites_doi | 10.1109/78.205723 10.1109/FOCS.2006.37 10.1007/s006070070031 10.2140/camcos.2006.1.133 10.21236/ADA471857 10.1137/0613066 10.1137/0720053 10.21236/ADA458927 10.1145/1132516.1132597 10.1145/167088.167288 10.2307/2695466 10.1137/0913043 10.1137/0917055 10.1137/030602678 |
| ContentType | Journal Article |
| Copyright | 2007 Elsevier Inc. |
| Copyright_xml | – notice: 2007 Elsevier Inc. |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.acha.2007.12.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1096-603X |
| EndPage | 366 |
| ExternalDocumentID | 10_1016_j_acha_2007_12_002 S1063520307001364 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M26 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c366t-309beb48c32623ac5f9c132ec09d66dee38a678e2cad5def932ebfc339ff1a8f3 |
| ISICitedReferencesCount | 243 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260593900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-5203 |
| IngestDate | Tue Nov 18 22:43:19 EST 2025 Sat Nov 29 05:58:34 EST 2025 Fri Feb 23 02:28:03 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | SVD QR Randomized Matrix Lanczos Fast Algorithm Low rank |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c366t-309beb48c32623ac5f9c132ec09d66dee38a678e2cad5def932ebfc339ff1a8f3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.acha.2007.12.002 |
| PageCount | 32 |
| ParticipantIDs | crossref_primary_10_1016_j_acha_2007_12_002 crossref_citationtrail_10_1016_j_acha_2007_12_002 elsevier_sciencedirect_doi_10_1016_j_acha_2007_12_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-11-01 |
| PublicationDateYYYYMMDD | 2008-11-01 |
| PublicationDate_xml | – month: 11 year: 2008 text: 2008-11-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Applied and computational harmonic analysis |
| PublicationYear | 2008 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | N. Ailon, E. Liberty, Fast dimension reduction using Rademacher series on dual BCH codes, Tech. rep. 1385, Yale University, Department of Computer Science, July 2007 T. Sarlós, Improved approximation algorithms for large matrices via random projections, revised, extended long form, Manuscript in preparation, 2006, currently available at F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast randomized algorithm for the approximation of matrices—Preliminary report, Tech. rep. 1380, Yale University, Department of Computer Science, April 2007 S. Ar, M. Blum, B. Codenotti, P. Gemmell, Checking approximate computations over the reals, in: Proc. 25th Annual ACM Symposium on the Theory of Computing, 1993, pp. 786–795 Sorensen, Burrus (bib018) 1993; 41 Golub, Van Loan (bib008) 1996 Martinsson, Rokhlin, Tygert (bib013) 2006; 1 Goreinov, Tyrtyshnikov (bib009) 2001; vol. 280 Press, Teukolsky, Vetterling, Flannery (bib015) 1992 Lee, Strang (bib012) 2000; 107 T. Sarlós, Improved approximation algorithms for large matrices via random projections, in: Proc. FOCS 2006, 47th Annual IEEE Symposium on Foundations of Computer Science, October 2006, pp. 143–152 N. Ailon, B. Chazelle, Approximate nearest neighbors and the fast Johnson–Lindenstrauss transform, SIAM J. Comput. (2007), in press Gu, Eisenstat (bib010) 1996; 17 F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast randomized algorithm for the approximation of matrices, Tech. rep. 1386, Yale University, Department of Computer Science, July 2007 Dixon (bib006) 1983; 20 P.-G. Martinsson, V. Rokhlin, M. Tygert, A randomized algorithm for the approximation of matrices, Tech. rep. 1361, Yale University, Department of Computer Science, June 2006 Cheng, Gimbutas, Martinsson, Rokhlin (bib005) 2005; 26 P. Drineas, M. Mahoney, S. Muthukrishnan, Polynomial time algorithm for column-row-based relative-error low-rank matrix approximation, Tech. rep. 2006-04, DIMACS, March 2006 Tyrtyshnikov (bib019) 2000; 64 Chan, Hansen (bib004) 1992; 13 Kuczyński, Woźniakowski (bib011) 1992; 13 Golub (10.1016/j.acha.2007.12.002_bib008) 1996 Sorensen (10.1016/j.acha.2007.12.002_bib018) 1993; 41 Press (10.1016/j.acha.2007.12.002_bib015) 1992 10.1016/j.acha.2007.12.002_bib020 10.1016/j.acha.2007.12.002_bib003 10.1016/j.acha.2007.12.002_bib014 Kuczyński (10.1016/j.acha.2007.12.002_bib011) 1992; 13 10.1016/j.acha.2007.12.002_bib016 Cheng (10.1016/j.acha.2007.12.002_bib005) 2005; 26 10.1016/j.acha.2007.12.002_bib017 10.1016/j.acha.2007.12.002_bib021 10.1016/j.acha.2007.12.002_bib001 10.1016/j.acha.2007.12.002_bib002 Dixon (10.1016/j.acha.2007.12.002_bib006) 1983; 20 Goreinov (10.1016/j.acha.2007.12.002_bib009) 2001; vol. 280 10.1016/j.acha.2007.12.002_bib007 Lee (10.1016/j.acha.2007.12.002_bib012) 2000; 107 Chan (10.1016/j.acha.2007.12.002_bib004) 1992; 13 Martinsson (10.1016/j.acha.2007.12.002_bib013) 2006; 1 Gu (10.1016/j.acha.2007.12.002_bib010) 1996; 17 Tyrtyshnikov (10.1016/j.acha.2007.12.002_bib019) 2000; 64 |
| References_xml | – reference: N. Ailon, B. Chazelle, Approximate nearest neighbors and the fast Johnson–Lindenstrauss transform, SIAM J. Comput. (2007), in press – volume: 26 start-page: 1389 year: 2005 end-page: 1404 ident: bib005 article-title: On the compression of low rank matrices publication-title: SIAM J. Sci. Comput. – volume: 107 start-page: 681 year: 2000 end-page: 688 ident: bib012 article-title: Row reduction of a matrix and publication-title: Amer. Math. Monthly – volume: 64 start-page: 367 year: 2000 end-page: 380 ident: bib019 article-title: Incomplete cross approximation in the mosaic-skeleton method publication-title: Computing – reference: P. Drineas, M. Mahoney, S. Muthukrishnan, Polynomial time algorithm for column-row-based relative-error low-rank matrix approximation, Tech. rep. 2006-04, DIMACS, March 2006 – reference: P.-G. Martinsson, V. Rokhlin, M. Tygert, A randomized algorithm for the approximation of matrices, Tech. rep. 1361, Yale University, Department of Computer Science, June 2006 – year: 1992 ident: bib015 article-title: Numerical Recipes – volume: vol. 280 year: 2001 ident: bib009 article-title: The maximal-volume concept in approximation by low-rank matrices publication-title: Structured Matrices in Mathematics, Computer Science, and Engineering I, Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference, University of Colorado, Boulder, June 27–July 1, 1999 – reference: T. Sarlós, Improved approximation algorithms for large matrices via random projections, in: Proc. FOCS 2006, 47th Annual IEEE Symposium on Foundations of Computer Science, October 2006, pp. 143–152 – volume: 20 start-page: 812 year: 1983 end-page: 814 ident: bib006 article-title: Estimating extremal eigenvalues and condition numbers of matrices publication-title: SIAM J. Numer. Anal. – volume: 1 start-page: 133 year: 2006 end-page: 142 ident: bib013 article-title: On interpolation and integration in finite-dimensional spaces of bounded functions publication-title: Comm. Appl. Math. Comput. Sci. – reference: S. Ar, M. Blum, B. Codenotti, P. Gemmell, Checking approximate computations over the reals, in: Proc. 25th Annual ACM Symposium on the Theory of Computing, 1993, pp. 786–795 – year: 1996 ident: bib008 article-title: Matrix Computations – volume: 13 start-page: 727 year: 1992 end-page: 741 ident: bib004 article-title: Some applications of the rank-revealing QR factorization publication-title: SIAM J. Sci. Statist. Comput. – reference: F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast randomized algorithm for the approximation of matrices—Preliminary report, Tech. rep. 1380, Yale University, Department of Computer Science, April 2007 – reference: N. Ailon, E. Liberty, Fast dimension reduction using Rademacher series on dual BCH codes, Tech. rep. 1385, Yale University, Department of Computer Science, July 2007 – volume: 17 start-page: 848 year: 1996 end-page: 869 ident: bib010 article-title: Efficient algorithms for computing a strong rank-revealing QR factorization publication-title: SIAM J. Sci. Comput. – reference: T. Sarlós, Improved approximation algorithms for large matrices via random projections, revised, extended long form, Manuscript in preparation, 2006, currently available at: – reference: F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast randomized algorithm for the approximation of matrices, Tech. rep. 1386, Yale University, Department of Computer Science, July 2007 – volume: 13 start-page: 1094 year: 1992 end-page: 1122 ident: bib011 article-title: Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start publication-title: SIAM J. Matrix Anal. Appl. – volume: 41 start-page: 1184 year: 1993 end-page: 1200 ident: bib018 article-title: Efficient computation of the DFT with only a subset of input or output points publication-title: IEEE Trans. Signal Process. – volume: 41 start-page: 1184 year: 1993 ident: 10.1016/j.acha.2007.12.002_bib018 article-title: Efficient computation of the DFT with only a subset of input or output points publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.205723 – ident: 10.1016/j.acha.2007.12.002_bib016 doi: 10.1109/FOCS.2006.37 – volume: 64 start-page: 367 year: 2000 ident: 10.1016/j.acha.2007.12.002_bib019 article-title: Incomplete cross approximation in the mosaic-skeleton method publication-title: Computing doi: 10.1007/s006070070031 – volume: 1 start-page: 133 year: 2006 ident: 10.1016/j.acha.2007.12.002_bib013 article-title: On interpolation and integration in finite-dimensional spaces of bounded functions publication-title: Comm. Appl. Math. Comput. Sci. doi: 10.2140/camcos.2006.1.133 – ident: 10.1016/j.acha.2007.12.002_bib021 – ident: 10.1016/j.acha.2007.12.002_bib020 – ident: 10.1016/j.acha.2007.12.002_bib002 doi: 10.21236/ADA471857 – volume: 13 start-page: 1094 year: 1992 ident: 10.1016/j.acha.2007.12.002_bib011 article-title: Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/0613066 – ident: 10.1016/j.acha.2007.12.002_bib017 doi: 10.1109/FOCS.2006.37 – volume: 20 start-page: 812 year: 1983 ident: 10.1016/j.acha.2007.12.002_bib006 article-title: Estimating extremal eigenvalues and condition numbers of matrices publication-title: SIAM J. Numer. Anal. doi: 10.1137/0720053 – ident: 10.1016/j.acha.2007.12.002_bib014 doi: 10.21236/ADA458927 – ident: 10.1016/j.acha.2007.12.002_bib007 – year: 1996 ident: 10.1016/j.acha.2007.12.002_bib008 – ident: 10.1016/j.acha.2007.12.002_bib001 doi: 10.1145/1132516.1132597 – ident: 10.1016/j.acha.2007.12.002_bib003 doi: 10.1145/167088.167288 – volume: 107 start-page: 681 year: 2000 ident: 10.1016/j.acha.2007.12.002_bib012 article-title: Row reduction of a matrix and A=CaB publication-title: Amer. Math. Monthly doi: 10.2307/2695466 – volume: 13 start-page: 727 year: 1992 ident: 10.1016/j.acha.2007.12.002_bib004 article-title: Some applications of the rank-revealing QR factorization publication-title: SIAM J. Sci. Statist. Comput. doi: 10.1137/0913043 – volume: 17 start-page: 848 year: 1996 ident: 10.1016/j.acha.2007.12.002_bib010 article-title: Efficient algorithms for computing a strong rank-revealing QR factorization publication-title: SIAM J. Sci. Comput. doi: 10.1137/0917055 – volume: vol. 280 year: 2001 ident: 10.1016/j.acha.2007.12.002_bib009 article-title: The maximal-volume concept in approximation by low-rank matrices – volume: 26 start-page: 1389 year: 2005 ident: 10.1016/j.acha.2007.12.002_bib005 article-title: On the compression of low rank matrices publication-title: SIAM J. Sci. Comput. doi: 10.1137/030602678 – year: 1992 ident: 10.1016/j.acha.2007.12.002_bib015 |
| SSID | ssj0011459 |
| Score | 2.4037437 |
| Snippet | We introduce a randomized procedure that, given an
m
×
n
matrix
A and a positive integer
k, approximates
A with a matrix
Z of rank
k. The algorithm relies on... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 335 |
| SubjectTerms | Algorithm Fast Lanczos Low rank Matrix Randomized SVD |
| Title | A fast randomized algorithm for the approximation of matrices |
| URI | https://dx.doi.org/10.1016/j.acha.2007.12.002 |
| Volume | 25 |
| WOSCitedRecordID | wos000260593900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-603X dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0011459 issn: 1063-5203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLaqDgc4IFYxbPKBWxWpjpvGPnCo0CBAMEKooN4ix8s0Q5aqzYwKd_43L_HSUmDEHLhEiZXV78vzF-e97yH0ghPdOX54v-M8jwAUJGJqqiIN7JoqylIuep3Z9-npKVss-MfB4IfPhbks07pm2y1f_VdTQxsYu0udvYa5w0mhAdbB6LAEs8Pynww_GxmxaUcwBqmmKr4DoRTlWbMu2mUVYgp7JfFtUQW-WPVK_S6e0IvSOoLqMt9WF62fOOzkrvvKOcJJmgTX3jSl0Z4QyyaE-1gN397xqtD6qfm6dPXiv5RCFVURIoXn384Ok4n81ARzOXo7bwr8B750x3Tf3do8Zwcruuc7qdUtccMwtcVYfvPwdrLhHNC2FFaBspvNHce78cz_wz8Y5kLwoY9rO8-6c3R1ONOMxFkvSXoUpwlnQ3Q0e3uyeBd-R5FJX3UvPI_LvrKBgod38meGs8da5nfQbfe5gWcWJnfRQNf30K09EUrY-hCUezf30csZ7uCDd_DBAT4Y4INhX_wLfHBjsIfPA_T59cn81ZvIldiIJHRwG9Exz3U-YRJYfEyFTAyXhMZajrmaTpXWlAmgMzqWQiVKG2D7OjeSUm4MEczQh2hYN7V-hHDOJ2kSg7tnjEwMY0xynaY0J3IqgAaRY0R8t2TS6c93ZVDK7O8GOUajcMzKqq9cuXfieztz_NHywgzAc8Vxj691lSfo5g7rT9GwXV_oZ-iGvGyLzfq5Q85PNjWRvQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+randomized+algorithm+for+the+approximation+of+matrices&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Woolfe%2C+Franco&rft.au=Liberty%2C+Edo&rft.au=Rokhlin%2C+Vladimir&rft.au=Tygert%2C+Mark&rft.date=2008-11-01&rft.issn=1063-5203&rft.volume=25&rft.issue=3&rft.spage=335&rft.epage=366&rft_id=info:doi/10.1016%2Fj.acha.2007.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2007_12_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon |