A fast randomized algorithm for the approximation of matrices

We introduce a randomized procedure that, given an m × n matrix A and a positive integer k, approximates A with a matrix Z of rank k. The algorithm relies on applying a structured l × m random matrix R to each column of A, where l is an integer near to, but greater than, k. The structure of R allows...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and computational harmonic analysis Jg. 25; H. 3; S. 335 - 366
Hauptverfasser: Woolfe, Franco, Liberty, Edo, Rokhlin, Vladimir, Tygert, Mark
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.11.2008
Schlagworte:
ISSN:1063-5203, 1096-603X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We introduce a randomized procedure that, given an m × n matrix A and a positive integer k, approximates A with a matrix Z of rank k. The algorithm relies on applying a structured l × m random matrix R to each column of A, where l is an integer near to, but greater than, k. The structure of R allows us to apply it to an arbitrary m × 1 vector at a cost proportional to m log ( l ) ; the resulting procedure can construct a rank- k approximation Z from the entries of A at a cost proportional to m n log ( k ) + l 2 ( m + n ) . We prove several bounds on the accuracy of the algorithm; one such bound guarantees that the spectral norm ‖ A − Z ‖ of the discrepancy between A and Z is of the same order as max { m , n } times the ( k + 1 ) st greatest singular value σ k + 1 of A, with small probability of large deviations. In contrast, the classical pivoted “ QR” decomposition algorithms (such as Gram–Schmidt or Householder) require at least kmn floating-point operations in order to compute a similarly accurate rank- k approximation. In practice, the algorithm of this paper runs faster than the classical algorithms, even when k is quite small or large. Furthermore, the algorithm operates reliably independently of the structure of the matrix A, can access each column of A independently and at most twice, and parallelizes naturally. Thus, the algorithm provides an efficient, reliable means for computing several of the greatest singular values and corresponding singular vectors of A. The results are illustrated via several numerical examples.
AbstractList We introduce a randomized procedure that, given an m × n matrix A and a positive integer k, approximates A with a matrix Z of rank k. The algorithm relies on applying a structured l × m random matrix R to each column of A, where l is an integer near to, but greater than, k. The structure of R allows us to apply it to an arbitrary m × 1 vector at a cost proportional to m log ( l ) ; the resulting procedure can construct a rank- k approximation Z from the entries of A at a cost proportional to m n log ( k ) + l 2 ( m + n ) . We prove several bounds on the accuracy of the algorithm; one such bound guarantees that the spectral norm ‖ A − Z ‖ of the discrepancy between A and Z is of the same order as max { m , n } times the ( k + 1 ) st greatest singular value σ k + 1 of A, with small probability of large deviations. In contrast, the classical pivoted “ QR” decomposition algorithms (such as Gram–Schmidt or Householder) require at least kmn floating-point operations in order to compute a similarly accurate rank- k approximation. In practice, the algorithm of this paper runs faster than the classical algorithms, even when k is quite small or large. Furthermore, the algorithm operates reliably independently of the structure of the matrix A, can access each column of A independently and at most twice, and parallelizes naturally. Thus, the algorithm provides an efficient, reliable means for computing several of the greatest singular values and corresponding singular vectors of A. The results are illustrated via several numerical examples.
Author Tygert, Mark
Liberty, Edo
Woolfe, Franco
Rokhlin, Vladimir
Author_xml – sequence: 1
  givenname: Franco
  surname: Woolfe
  fullname: Woolfe, Franco
  email: francis.woolfe@yale.edu
– sequence: 2
  givenname: Edo
  surname: Liberty
  fullname: Liberty, Edo
  email: edo.liberty@yale.edu
– sequence: 3
  givenname: Vladimir
  surname: Rokhlin
  fullname: Rokhlin, Vladimir
– sequence: 4
  givenname: Mark
  surname: Tygert
  fullname: Tygert, Mark
  email: mark.tygert@yale.edu
BookMark eNp9kE1LAzEQhoNUsFb_gKf8gV3z0U03oIdS_IKCFwVvIZ1MbEq7KUkQ9de7az156GleGJ5h3uecjLrYISFXnNWccXW9qS2sbS0Ym9Vc1IyJEzLmTKtKMfk2GrKSVSOYPCPnOW8Y43za6DG5nVNvc6HJdi7uwjc6arfvMYWy3lEfEy1rpHa_T_Ez7GwJsaPR0z6lAJgvyKm324yXf3NCXu_vXhaP1fL54WkxX1YglSqVZHqFq2kLUighLTReA5cCgWmnlEOUrVWzFgVY1zj0ut-tPEipvee29XJCxOEupJhzQm_2qX8nfRnOzCDAbMwgwAwCDBemF9BD7T8IQvmtUJIN2-PozQHFvtRHwGQyBOwAXUgIxbgYjuE_Fkx54A
CitedBy_id crossref_primary_10_1016_j_acha_2014_04_002
crossref_primary_10_1016_j_acha_2016_04_006
crossref_primary_10_1088_0957_4484_27_41_414003
crossref_primary_10_1137_12086354X
crossref_primary_10_1137_23M1565413
crossref_primary_10_1137_23M1595904
crossref_primary_10_1002_2017WR021870
crossref_primary_10_1137_080738970
crossref_primary_10_1016_j_acha_2017_04_002
crossref_primary_10_1002_wcms_1706
crossref_primary_10_1016_j_cam_2023_115331
crossref_primary_10_1016_j_laa_2020_03_041
crossref_primary_10_1137_23M1584733
crossref_primary_10_1016_j_jcp_2015_10_012
crossref_primary_10_1145_3699714
crossref_primary_10_1016_j_jcp_2020_109704
crossref_primary_10_1007_s10915_013_9714_z
crossref_primary_10_1137_22M1538648
crossref_primary_10_1007_s10444_014_9342_7
crossref_primary_10_1109_TIT_2021_3112821
crossref_primary_10_1109_TIT_2012_2189196
crossref_primary_10_1007_s10444_025_10232_0
crossref_primary_10_1016_j_apnum_2012_06_032
crossref_primary_10_1016_j_matcom_2011_08_002
crossref_primary_10_1109_TAP_2018_2794059
crossref_primary_10_1109_TPAMI_2015_2448083
crossref_primary_10_1007_s42967_020_00061_x
crossref_primary_10_1016_j_cma_2023_115971
crossref_primary_10_1002_mma_3116
crossref_primary_10_1016_j_cam_2020_113380
crossref_primary_10_1080_03610926_2022_2037644
crossref_primary_10_1137_20M1335571
crossref_primary_10_1017_S0962492920000021
crossref_primary_10_1137_18M118966X
crossref_primary_10_1016_j_ecosta_2021_02_007
crossref_primary_10_1002_nla_2334
crossref_primary_10_1002_nla_70003
crossref_primary_10_1002_nla_2179
crossref_primary_10_1109_TVT_2023_3243244
crossref_primary_10_1109_LSP_2017_2698071
crossref_primary_10_1145_1646353_1646379
crossref_primary_10_1137_17M1150013
crossref_primary_10_1109_TIT_2024_3450412
crossref_primary_10_1137_22M150071X
crossref_primary_10_1007_s11227_017_2164_x
crossref_primary_10_1137_21M1467845
crossref_primary_10_1016_j_acha_2015_09_007
crossref_primary_10_1137_15M1030200
crossref_primary_10_1109_ACCESS_2021_3058103
crossref_primary_10_1007_s10444_022_09963_1
crossref_primary_10_1016_j_jcp_2011_12_032
crossref_primary_10_1137_120866683
crossref_primary_10_1007_s11075_025_02101_0
crossref_primary_10_1007_s40324_023_00340_6
crossref_primary_10_1137_130921544
crossref_primary_10_1016_j_jcp_2011_02_033
crossref_primary_10_1109_TIP_2014_2305840
crossref_primary_10_1007_s10444_018_09655_9
crossref_primary_10_1137_18M1205844
crossref_primary_10_1137_110852310
crossref_primary_10_1109_LSP_2019_2920054
crossref_primary_10_1109_TPAMI_2017_2677440
crossref_primary_10_1007_s13370_025_01290_0
crossref_primary_10_1016_j_jcp_2018_05_041
crossref_primary_10_1007_s10444_016_9494_8
crossref_primary_10_1016_j_enganabound_2016_07_012
crossref_primary_10_1088_2632_2153_abad87
crossref_primary_10_1016_j_ifacol_2015_10_308
crossref_primary_10_1109_TBDATA_2020_2972887
crossref_primary_10_1137_23M1588007
crossref_primary_10_32604_cmes_2023_031150
crossref_primary_10_1007_s11554_016_0655_2
crossref_primary_10_1137_17M1140480
crossref_primary_10_1007_s00453_014_9891_7
crossref_primary_10_1007_s10898_022_01182_8
crossref_primary_10_1137_11082436X
crossref_primary_10_1016_j_patcog_2015_01_025
crossref_primary_10_1137_080736417
crossref_primary_10_1016_j_jcp_2014_10_009
crossref_primary_10_1142_S0217595916500238
crossref_primary_10_1137_21M1422963
crossref_primary_10_1137_090771806
crossref_primary_10_1137_130938700
crossref_primary_10_1016_j_jcp_2015_09_050
crossref_primary_10_1137_15M1042802
crossref_primary_10_1016_j_enganabound_2012_02_003
crossref_primary_10_3389_frspt_2023_1220011
crossref_primary_10_1007_s00034_013_9616_1
crossref_primary_10_1016_j_eswa_2024_123462
crossref_primary_10_1007_s00466_017_1407_2
crossref_primary_10_1016_j_laa_2012_12_022
crossref_primary_10_1109_JMMCT_2018_2870599
crossref_primary_10_1109_TIT_2017_2723898
crossref_primary_10_1016_j_enganabound_2019_06_020
crossref_primary_10_1137_15M1023774
crossref_primary_10_1016_j_inffus_2015_01_001
crossref_primary_10_1137_18M1201068
crossref_primary_10_1109_TAP_2019_2952014
crossref_primary_10_1137_19M1294873
crossref_primary_10_1109_ACCESS_2021_3098301
crossref_primary_10_1137_19M1272561
crossref_primary_10_1007_s10915_021_01545_5
crossref_primary_10_1145_3568682
crossref_primary_10_1016_j_acha_2019_05_001
crossref_primary_10_1016_j_ymssp_2024_112264
crossref_primary_10_1109_TSP_2016_2621728
crossref_primary_10_1137_17M1111590
crossref_primary_10_1016_j_advengsoft_2017_12_007
crossref_primary_10_1137_100804139
crossref_primary_10_1137_16M1077325
crossref_primary_10_1007_s10596_013_9364_0
crossref_primary_10_1109_TBDATA_2016_2617883
crossref_primary_10_1088_0266_5611_29_8_085008
crossref_primary_10_1155_2015_246019
crossref_primary_10_1016_j_engappai_2020_103722
crossref_primary_10_1109_TPAMI_2018_2839198
crossref_primary_10_1145_2483699_2483701
crossref_primary_10_1007_s10444_024_10194_9
crossref_primary_10_1007_s10915_022_01956_y
crossref_primary_10_1007_s10915_024_02599_x
crossref_primary_10_1103_PhysRevE_104_015206
crossref_primary_10_1137_15M1007173
crossref_primary_10_1007_s00211_016_0837_7
crossref_primary_10_1137_140986815
crossref_primary_10_1146_annurev_economics_022720_114138
crossref_primary_10_1007_s11704_016_5552_0
crossref_primary_10_1137_23M1594066
crossref_primary_10_1145_3130800_3130801
crossref_primary_10_1109_TIT_2010_2054251
crossref_primary_10_1109_LSP_2017_2723472
crossref_primary_10_1137_21M1418319
crossref_primary_10_1016_j_aml_2025_109531
crossref_primary_10_1002_nme_6009
crossref_primary_10_1088_2632_2153_ab8240
crossref_primary_10_1137_22M1518062
crossref_primary_10_1007_s11045_013_0247_2
crossref_primary_10_1007_s11075_024_01972_z
crossref_primary_10_1016_j_acha_2011_01_008
crossref_primary_10_1515_mcma_2010_020
crossref_primary_10_1109_TAP_2022_3233426
crossref_primary_10_1007_s40314_024_02772_w
crossref_primary_10_1007_s10915_025_03020_x
crossref_primary_10_1016_j_neucom_2020_07_022
crossref_primary_10_1137_17M1151158
crossref_primary_10_1137_24M1679306
crossref_primary_10_1109_ACCESS_2021_3125069
crossref_primary_10_1137_130914966
crossref_primary_10_1137_120874540
crossref_primary_10_1007_s10915_016_0347_x
crossref_primary_10_1007_s10444_023_10061_z
crossref_primary_10_1137_22M1540363
crossref_primary_10_1137_23M1619472
crossref_primary_10_1016_j_jcp_2011_09_008
crossref_primary_10_1137_18M1207430
crossref_primary_10_1137_25M1749657
crossref_primary_10_1016_j_acha_2011_03_006
crossref_primary_10_1016_j_cam_2020_112797
crossref_primary_10_1002_nla_2596
crossref_primary_10_1016_j_jcp_2011_03_048
crossref_primary_10_1137_120902677
crossref_primary_10_1137_24M1683998
crossref_primary_10_1080_03081087_2016_1267104
crossref_primary_10_1515_MCMA_2009_015
crossref_primary_10_1109_TCPMT_2016_2636296
crossref_primary_10_1137_17M1138480
crossref_primary_10_1016_j_jcp_2015_09_014
crossref_primary_10_1007_s10444_020_09816_9
crossref_primary_10_1371_journal_pone_0225265
crossref_primary_10_1137_23M1610811
crossref_primary_10_1007_s40687_021_00285_0
crossref_primary_10_1016_j_cviu_2016_02_005
crossref_primary_10_1016_j_camwa_2016_09_014
crossref_primary_10_1137_15M1040827
Cites_doi 10.1109/78.205723
10.1109/FOCS.2006.37
10.1007/s006070070031
10.2140/camcos.2006.1.133
10.21236/ADA471857
10.1137/0613066
10.1137/0720053
10.21236/ADA458927
10.1145/1132516.1132597
10.1145/167088.167288
10.2307/2695466
10.1137/0913043
10.1137/0917055
10.1137/030602678
ContentType Journal Article
Copyright 2007 Elsevier Inc.
Copyright_xml – notice: 2007 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.acha.2007.12.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1096-603X
EndPage 366
ExternalDocumentID 10_1016_j_acha_2007_12_002
S1063520307001364
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c366t-309beb48c32623ac5f9c132ec09d66dee38a678e2cad5def932ebfc339ff1a8f3
ISICitedReferencesCount 243
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260593900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-5203
IngestDate Tue Nov 18 22:43:19 EST 2025
Sat Nov 29 05:58:34 EST 2025
Fri Feb 23 02:28:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords SVD
QR
Randomized
Matrix
Lanczos
Fast
Algorithm
Low rank
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-309beb48c32623ac5f9c132ec09d66dee38a678e2cad5def932ebfc339ff1a8f3
OpenAccessLink https://dx.doi.org/10.1016/j.acha.2007.12.002
PageCount 32
ParticipantIDs crossref_primary_10_1016_j_acha_2007_12_002
crossref_citationtrail_10_1016_j_acha_2007_12_002
elsevier_sciencedirect_doi_10_1016_j_acha_2007_12_002
PublicationCentury 2000
PublicationDate 2008-11-01
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-01
  day: 01
PublicationDecade 2000
PublicationTitle Applied and computational harmonic analysis
PublicationYear 2008
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References N. Ailon, E. Liberty, Fast dimension reduction using Rademacher series on dual BCH codes, Tech. rep. 1385, Yale University, Department of Computer Science, July 2007
T. Sarlós, Improved approximation algorithms for large matrices via random projections, revised, extended long form, Manuscript in preparation, 2006, currently available at
F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast randomized algorithm for the approximation of matrices—Preliminary report, Tech. rep. 1380, Yale University, Department of Computer Science, April 2007
S. Ar, M. Blum, B. Codenotti, P. Gemmell, Checking approximate computations over the reals, in: Proc. 25th Annual ACM Symposium on the Theory of Computing, 1993, pp. 786–795
Sorensen, Burrus (bib018) 1993; 41
Golub, Van Loan (bib008) 1996
Martinsson, Rokhlin, Tygert (bib013) 2006; 1
Goreinov, Tyrtyshnikov (bib009) 2001; vol. 280
Press, Teukolsky, Vetterling, Flannery (bib015) 1992
Lee, Strang (bib012) 2000; 107
T. Sarlós, Improved approximation algorithms for large matrices via random projections, in: Proc. FOCS 2006, 47th Annual IEEE Symposium on Foundations of Computer Science, October 2006, pp. 143–152
N. Ailon, B. Chazelle, Approximate nearest neighbors and the fast Johnson–Lindenstrauss transform, SIAM J. Comput. (2007), in press
Gu, Eisenstat (bib010) 1996; 17
F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast randomized algorithm for the approximation of matrices, Tech. rep. 1386, Yale University, Department of Computer Science, July 2007
Dixon (bib006) 1983; 20
P.-G. Martinsson, V. Rokhlin, M. Tygert, A randomized algorithm for the approximation of matrices, Tech. rep. 1361, Yale University, Department of Computer Science, June 2006
Cheng, Gimbutas, Martinsson, Rokhlin (bib005) 2005; 26
P. Drineas, M. Mahoney, S. Muthukrishnan, Polynomial time algorithm for column-row-based relative-error low-rank matrix approximation, Tech. rep. 2006-04, DIMACS, March 2006
Tyrtyshnikov (bib019) 2000; 64
Chan, Hansen (bib004) 1992; 13
Kuczyński, Woźniakowski (bib011) 1992; 13
Golub (10.1016/j.acha.2007.12.002_bib008) 1996
Sorensen (10.1016/j.acha.2007.12.002_bib018) 1993; 41
Press (10.1016/j.acha.2007.12.002_bib015) 1992
10.1016/j.acha.2007.12.002_bib020
10.1016/j.acha.2007.12.002_bib003
10.1016/j.acha.2007.12.002_bib014
Kuczyński (10.1016/j.acha.2007.12.002_bib011) 1992; 13
10.1016/j.acha.2007.12.002_bib016
Cheng (10.1016/j.acha.2007.12.002_bib005) 2005; 26
10.1016/j.acha.2007.12.002_bib017
10.1016/j.acha.2007.12.002_bib021
10.1016/j.acha.2007.12.002_bib001
10.1016/j.acha.2007.12.002_bib002
Dixon (10.1016/j.acha.2007.12.002_bib006) 1983; 20
Goreinov (10.1016/j.acha.2007.12.002_bib009) 2001; vol. 280
10.1016/j.acha.2007.12.002_bib007
Lee (10.1016/j.acha.2007.12.002_bib012) 2000; 107
Chan (10.1016/j.acha.2007.12.002_bib004) 1992; 13
Martinsson (10.1016/j.acha.2007.12.002_bib013) 2006; 1
Gu (10.1016/j.acha.2007.12.002_bib010) 1996; 17
Tyrtyshnikov (10.1016/j.acha.2007.12.002_bib019) 2000; 64
References_xml – reference: N. Ailon, B. Chazelle, Approximate nearest neighbors and the fast Johnson–Lindenstrauss transform, SIAM J. Comput. (2007), in press
– volume: 26
  start-page: 1389
  year: 2005
  end-page: 1404
  ident: bib005
  article-title: On the compression of low rank matrices
  publication-title: SIAM J. Sci. Comput.
– volume: 107
  start-page: 681
  year: 2000
  end-page: 688
  ident: bib012
  article-title: Row reduction of a matrix and
  publication-title: Amer. Math. Monthly
– volume: 64
  start-page: 367
  year: 2000
  end-page: 380
  ident: bib019
  article-title: Incomplete cross approximation in the mosaic-skeleton method
  publication-title: Computing
– reference: P. Drineas, M. Mahoney, S. Muthukrishnan, Polynomial time algorithm for column-row-based relative-error low-rank matrix approximation, Tech. rep. 2006-04, DIMACS, March 2006
– reference: P.-G. Martinsson, V. Rokhlin, M. Tygert, A randomized algorithm for the approximation of matrices, Tech. rep. 1361, Yale University, Department of Computer Science, June 2006
– year: 1992
  ident: bib015
  article-title: Numerical Recipes
– volume: vol. 280
  year: 2001
  ident: bib009
  article-title: The maximal-volume concept in approximation by low-rank matrices
  publication-title: Structured Matrices in Mathematics, Computer Science, and Engineering I, Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference, University of Colorado, Boulder, June 27–July 1, 1999
– reference: T. Sarlós, Improved approximation algorithms for large matrices via random projections, in: Proc. FOCS 2006, 47th Annual IEEE Symposium on Foundations of Computer Science, October 2006, pp. 143–152
– volume: 20
  start-page: 812
  year: 1983
  end-page: 814
  ident: bib006
  article-title: Estimating extremal eigenvalues and condition numbers of matrices
  publication-title: SIAM J. Numer. Anal.
– volume: 1
  start-page: 133
  year: 2006
  end-page: 142
  ident: bib013
  article-title: On interpolation and integration in finite-dimensional spaces of bounded functions
  publication-title: Comm. Appl. Math. Comput. Sci.
– reference: S. Ar, M. Blum, B. Codenotti, P. Gemmell, Checking approximate computations over the reals, in: Proc. 25th Annual ACM Symposium on the Theory of Computing, 1993, pp. 786–795
– year: 1996
  ident: bib008
  article-title: Matrix Computations
– volume: 13
  start-page: 727
  year: 1992
  end-page: 741
  ident: bib004
  article-title: Some applications of the rank-revealing QR factorization
  publication-title: SIAM J. Sci. Statist. Comput.
– reference: F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast randomized algorithm for the approximation of matrices—Preliminary report, Tech. rep. 1380, Yale University, Department of Computer Science, April 2007
– reference: N. Ailon, E. Liberty, Fast dimension reduction using Rademacher series on dual BCH codes, Tech. rep. 1385, Yale University, Department of Computer Science, July 2007
– volume: 17
  start-page: 848
  year: 1996
  end-page: 869
  ident: bib010
  article-title: Efficient algorithms for computing a strong rank-revealing QR factorization
  publication-title: SIAM J. Sci. Comput.
– reference: T. Sarlós, Improved approximation algorithms for large matrices via random projections, revised, extended long form, Manuscript in preparation, 2006, currently available at:
– reference: F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast randomized algorithm for the approximation of matrices, Tech. rep. 1386, Yale University, Department of Computer Science, July 2007
– volume: 13
  start-page: 1094
  year: 1992
  end-page: 1122
  ident: bib011
  article-title: Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 41
  start-page: 1184
  year: 1993
  end-page: 1200
  ident: bib018
  article-title: Efficient computation of the DFT with only a subset of input or output points
  publication-title: IEEE Trans. Signal Process.
– volume: 41
  start-page: 1184
  year: 1993
  ident: 10.1016/j.acha.2007.12.002_bib018
  article-title: Efficient computation of the DFT with only a subset of input or output points
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.205723
– ident: 10.1016/j.acha.2007.12.002_bib016
  doi: 10.1109/FOCS.2006.37
– volume: 64
  start-page: 367
  year: 2000
  ident: 10.1016/j.acha.2007.12.002_bib019
  article-title: Incomplete cross approximation in the mosaic-skeleton method
  publication-title: Computing
  doi: 10.1007/s006070070031
– volume: 1
  start-page: 133
  year: 2006
  ident: 10.1016/j.acha.2007.12.002_bib013
  article-title: On interpolation and integration in finite-dimensional spaces of bounded functions
  publication-title: Comm. Appl. Math. Comput. Sci.
  doi: 10.2140/camcos.2006.1.133
– ident: 10.1016/j.acha.2007.12.002_bib021
– ident: 10.1016/j.acha.2007.12.002_bib020
– ident: 10.1016/j.acha.2007.12.002_bib002
  doi: 10.21236/ADA471857
– volume: 13
  start-page: 1094
  year: 1992
  ident: 10.1016/j.acha.2007.12.002_bib011
  article-title: Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0613066
– ident: 10.1016/j.acha.2007.12.002_bib017
  doi: 10.1109/FOCS.2006.37
– volume: 20
  start-page: 812
  year: 1983
  ident: 10.1016/j.acha.2007.12.002_bib006
  article-title: Estimating extremal eigenvalues and condition numbers of matrices
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0720053
– ident: 10.1016/j.acha.2007.12.002_bib014
  doi: 10.21236/ADA458927
– ident: 10.1016/j.acha.2007.12.002_bib007
– year: 1996
  ident: 10.1016/j.acha.2007.12.002_bib008
– ident: 10.1016/j.acha.2007.12.002_bib001
  doi: 10.1145/1132516.1132597
– ident: 10.1016/j.acha.2007.12.002_bib003
  doi: 10.1145/167088.167288
– volume: 107
  start-page: 681
  year: 2000
  ident: 10.1016/j.acha.2007.12.002_bib012
  article-title: Row reduction of a matrix and A=CaB
  publication-title: Amer. Math. Monthly
  doi: 10.2307/2695466
– volume: 13
  start-page: 727
  year: 1992
  ident: 10.1016/j.acha.2007.12.002_bib004
  article-title: Some applications of the rank-revealing QR factorization
  publication-title: SIAM J. Sci. Statist. Comput.
  doi: 10.1137/0913043
– volume: 17
  start-page: 848
  year: 1996
  ident: 10.1016/j.acha.2007.12.002_bib010
  article-title: Efficient algorithms for computing a strong rank-revealing QR factorization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0917055
– volume: vol. 280
  year: 2001
  ident: 10.1016/j.acha.2007.12.002_bib009
  article-title: The maximal-volume concept in approximation by low-rank matrices
– volume: 26
  start-page: 1389
  year: 2005
  ident: 10.1016/j.acha.2007.12.002_bib005
  article-title: On the compression of low rank matrices
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/030602678
– year: 1992
  ident: 10.1016/j.acha.2007.12.002_bib015
SSID ssj0011459
Score 2.4037437
Snippet We introduce a randomized procedure that, given an m × n matrix A and a positive integer k, approximates A with a matrix Z of rank k. The algorithm relies on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 335
SubjectTerms Algorithm
Fast
Lanczos
Low rank
Matrix
Randomized
SVD
Title A fast randomized algorithm for the approximation of matrices
URI https://dx.doi.org/10.1016/j.acha.2007.12.002
Volume 25
WOSCitedRecordID wos000260593900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-603X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011459
  issn: 1063-5203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLaqDgc4IFYxbPKBWxWpjpvGPnCo0CBAMEKooN4ix8s0Q5aqzYwKd_43L_HSUmDEHLhEiZXV78vzF-e97yH0ghPdOX54v-M8jwAUJGJqqiIN7JoqylIuep3Z9-npKVss-MfB4IfPhbks07pm2y1f_VdTQxsYu0udvYa5w0mhAdbB6LAEs8Pynww_GxmxaUcwBqmmKr4DoRTlWbMu2mUVYgp7JfFtUQW-WPVK_S6e0IvSOoLqMt9WF62fOOzkrvvKOcJJmgTX3jSl0Z4QyyaE-1gN397xqtD6qfm6dPXiv5RCFVURIoXn384Ok4n81ARzOXo7bwr8B750x3Tf3do8Zwcruuc7qdUtccMwtcVYfvPwdrLhHNC2FFaBspvNHce78cz_wz8Y5kLwoY9rO8-6c3R1ONOMxFkvSXoUpwlnQ3Q0e3uyeBd-R5FJX3UvPI_LvrKBgod38meGs8da5nfQbfe5gWcWJnfRQNf30K09EUrY-hCUezf30csZ7uCDd_DBAT4Y4INhX_wLfHBjsIfPA_T59cn81ZvIldiIJHRwG9Exz3U-YRJYfEyFTAyXhMZajrmaTpXWlAmgMzqWQiVKG2D7OjeSUm4MEczQh2hYN7V-hHDOJ2kSg7tnjEwMY0xynaY0J3IqgAaRY0R8t2TS6c93ZVDK7O8GOUajcMzKqq9cuXfieztz_NHywgzAc8Vxj691lSfo5g7rT9GwXV_oZ-iGvGyLzfq5Q85PNjWRvQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+randomized+algorithm+for+the+approximation+of+matrices&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Woolfe%2C+Franco&rft.au=Liberty%2C+Edo&rft.au=Rokhlin%2C+Vladimir&rft.au=Tygert%2C+Mark&rft.date=2008-11-01&rft.issn=1063-5203&rft.volume=25&rft.issue=3&rft.spage=335&rft.epage=366&rft_id=info:doi/10.1016%2Fj.acha.2007.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2007_12_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon