Projected Hessian Updating Algorithms for Nonlinearly Constrained Optimization
We consider the problem of minimizing a smooth function of n variables subject to m smooth equality constraints. We begin by describing various approaches to Newton's method for this problem, with emphasis on the recent work of Goodman. This leads to the proposal of a Broyden-type method which...
Saved in:
| Published in: | SIAM journal on numerical analysis Vol. 22; no. 5; pp. 821 - 850 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.10.1985
|
| Subjects: | |
| ISSN: | 0036-1429, 1095-7170 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We consider the problem of minimizing a smooth function of n variables subject to m smooth equality constraints. We begin by describing various approaches to Newton's method for this problem, with emphasis on the recent work of Goodman. This leads to the proposal of a Broyden-type method which updates an n × (n - m) matrix approximating a "one-sided projected Hessian" of a Lagrangian function. This method is shown to converge Q-superlinearly. We also give a new short proof of the Boggs-Tolle-Wang necessary and sufficient condition for Q-superlinear convergence of a class of quasi-Newton methods for solving this problem. Finally, we describe an algorithm which updates an approximation to a "two-sided projected Hessian," a symmetric matrix of order n - m which is generally positive definite near a solution. We present several new variants of this algorithm and show that under certain conditions they all have a local two-step Q-superlinear convergence property, even though only one set of gradients is evaluated per iteration. Numerical results are presented, indicating that the methods may be very useful in practice. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/0722050 |