Scaling-up topology optimization with target stress states via gradient-based algorithms
•Witness specimens are an appropriate measure to qualify additively manufactured parts.•Gradient-based topology optimization was successfully used for target stress states.•Target stress states need an indirect formulation considering compliant mechanisms.•2D and 3D topology results feature a high p...
Uloženo v:
| Vydáno v: | Computers & structures Ročník 314; s. 107766 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.07.2025
|
| Témata: | |
| ISSN: | 0045-7949 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Witness specimens are an appropriate measure to qualify additively manufactured parts.•Gradient-based topology optimization was successfully used for target stress states.•Target stress states need an indirect formulation considering compliant mechanisms.•2D and 3D topology results feature a high precision up to 3.7%.
Benchmark artifacts serve as an appropriate mean to represent quality measures in additively manufactured components. Especially witness specimens, which represent structural properties as a subtype of benchmark artifacts, are supposed to reproduce target stress states as they are critical for component failure.
This study aims at proposing an approach to effectively scale the results of topology optimized witness specimens with failure-critical target stress states using gradient-based methods. Therefore, possible formulations with analytical sensitivities are derived and implemented in a Matlab framework in order to contextualize the actual formulation within classical approaches consistently.
It has been confirmed that gradient-based topology optimization with analytical sensitivities is not appropriate for a direct formulation of failure-critical target stress states. Thus, an indirect formulation based on compliant mechanisms is presented in this paper. It is shown that plausible, functional structures can be produced. Target stresses are achieved in scaled-up results in two and three dimensions with an accuracy up to a relative error of 3.7 %. |
|---|---|
| AbstractList | •Witness specimens are an appropriate measure to qualify additively manufactured parts.•Gradient-based topology optimization was successfully used for target stress states.•Target stress states need an indirect formulation considering compliant mechanisms.•2D and 3D topology results feature a high precision up to 3.7%.
Benchmark artifacts serve as an appropriate mean to represent quality measures in additively manufactured components. Especially witness specimens, which represent structural properties as a subtype of benchmark artifacts, are supposed to reproduce target stress states as they are critical for component failure.
This study aims at proposing an approach to effectively scale the results of topology optimized witness specimens with failure-critical target stress states using gradient-based methods. Therefore, possible formulations with analytical sensitivities are derived and implemented in a Matlab framework in order to contextualize the actual formulation within classical approaches consistently.
It has been confirmed that gradient-based topology optimization with analytical sensitivities is not appropriate for a direct formulation of failure-critical target stress states. Thus, an indirect formulation based on compliant mechanisms is presented in this paper. It is shown that plausible, functional structures can be produced. Target stresses are achieved in scaled-up results in two and three dimensions with an accuracy up to a relative error of 3.7 %. |
| ArticleNumber | 107766 |
| Author | Dexl, Florian Mauersberger, Michael Markmiller, Johannes F.C. |
| Author_xml | – sequence: 1 givenname: Michael orcidid: 0000-0001-6366-1998 surname: Mauersberger fullname: Mauersberger, Michael email: michael.mauersberger@tu-dresden.de – sequence: 2 givenname: Florian orcidid: 0000-0001-6182-7341 surname: Dexl fullname: Dexl, Florian – sequence: 3 givenname: Johannes F.C. orcidid: 0000-0003-1185-0046 surname: Markmiller fullname: Markmiller, Johannes F.C. email: johannes.markmiller@tu-dresden.de |
| BookMark | eNqNkMtOwzAQRb0oEi3wDfgHUmw3sZMFi6riJVViAUjsLMcZB1dJHNluUfl6XIpYsIHVSDM6V3fODE0GNwBCl5TMKaH8ajPXrh9D9Fs9Z4QVaSsE5xM0JSQvMlHl1SmahbAhhPCckCl6fdKqs0ObbUcc3eg61-6xG6Pt7YeK1g343cY3HJVvIeKUDCGkoSIEvLMKt141FoaY1SpAg1XXOp-APpyjE6O6ABff8wy93N48r-6z9ePdw2q5zvSC85ixGoxhYDQVTVFXlBDRpAulvAZqaKkoMWKRuvKmLArBGREMuKkrxUqW03Jxhq6Pudq7EDwYqW38ah69sp2kRB7UyI38USMPauRRTeLFL370tld-_w9yeSQhvbez4GXQSYWGxnrQUTbO_pnxCeL9ilc |
| CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2025_110500 |
| Cites_doi | 10.1007/s00170-017-0570-0 10.1007/s00158-013-0912-y 10.21608/bfemu.2020.103788 10.1007/s00366-023-01860-5 10.1007/s00158-012-0880-7 10.1017/9781108980647 10.1115/1.2336251 10.1016/j.precisioneng.2016.06.001 10.1016/j.cma.2019.06.038 10.1137/S1052623499362822 10.1007/s001580050176 10.1007/978-3-662-05086-6 10.1007/s11081-021-09675-3 10.3934/mbe.2020255 10.1007/s00366-022-01716-4 10.1016/j.mechmachtheory.2022.104743 10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2 10.1007/BF01195993 10.1007/BF01214002 10.1007/978-981-99-0428-0_25 10.1016/j.cirp.2016.05.004 10.1108/RPJ-06-2021-0130 10.1007/s00158-018-1994-3 10.1016/j.jcp.2018.06.025 10.1016/j.jmsy.2024.01.004 10.1108/HFF-01-2019-0034 10.1007/s00158-009-0440-y 10.1115/1.4025706 10.1007/s13272-024-00720-2 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.compstruc.2025.107766 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compstruc_2025_107766 S0045794925001245 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYOK AAYWO ABAOU ABBOA ABDPE ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADIYS ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSH SST SSV SSW SSZ T5K T9H TAE TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- 9DU AAYXX ACLOT CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c366t-2beff2efc17d5b91007dc36116be1f18a10f736406d855762072e6fb9a2824183 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001473313100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7949 |
| IngestDate | Sat Nov 29 07:00:02 EST 2025 Tue Nov 18 22:16:37 EST 2025 Sat Jul 05 17:12:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Topology optimization Matlab framework Additive manufacturing Witness specimens Benchmark artifacts Target stress states |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c366t-2beff2efc17d5b91007dc36116be1f18a10f736406d855762072e6fb9a2824183 |
| ORCID | 0000-0001-6182-7341 0000-0003-1185-0046 0000-0001-6366-1998 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.compstruc.2025.107766 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_compstruc_2025_107766 crossref_primary_10_1016_j_compstruc_2025_107766 elsevier_sciencedirect_doi_10_1016_j_compstruc_2025_107766 |
| PublicationCentury | 2000 |
| PublicationDate | July 2025 2025-07-00 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & structures |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | C.: An efficient 146-line 3D sensitivity analysis code of stress-based topology optimization written in MATLAB. In M. 38 (2022), No. Allaire, Dapogny, Estevez, Faure, Michaillidis (b0200) October 2017 igmund, O.: A 99 line topology optimization code written in Matlab. In Bendsøe (b0075) 1989 21 (2001), No. 6, p. 2457–2483. doi:10.1007/s00158-018-1994-3. – ISSN 1615–1488. A. L.; Sen, M.; Renaud, J. Beckers (b0170) 1999 4, p. 605–620. doi:10.1007/s00158-009-0440-y. Martins, Ning (b0045) 2021 12 (2002), No. Yago, Cante, Lloberas-Valls, Oliver (b0065) 2021 u YF. Recent advances and future trends in exploring pareto-optimal topologies and additive manufacturing oriented topology optimization. In: Mathematical Biosciences and Engineering 2020; 17, No. R. oppen, S.; Langelaar, M.; Keulen, F. van: A simple and versatile topology optimization formulation for flexure synthesis. In 128 (2006), No. M.; Niebur, G. P.: Topology optimization of continuum structures with local stress constraints. In J. iganto S, Martínez-Pellitero S, Cuesta E, Zapico P, Barreiro J. Proposal of design rules for improving the accuracy of selective laser melting (SLM) manufacturing using benchmarks parts. In: Rapid Prototyping Journal 28 (2022), No. 1, p. 68–75. doi:10.1007/bf01214002. – ISSN 1615–1488. 8, p. 1453–1478. doi:10.1002/(sici)1097-0207(19981230)43:8<1453::aid-nme480>3.0.co;2-2. E.: Topology Optimization Using a Hybrid Cellular Automaton Method With Local Control Rules. In vanberg K. A class of globally convergent optimization methods based on conservative convex separable approximations. In University of Colorado, 2004 http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html. 43 (1998), No. P.; Sigmund, O.: Topology Optimization: Theory, Methods B. 3, p. 437–472. doi:10.1007/s00158-013-0912-y. – ISSN 1615–1488. 1, p. 33–47. doi:10.1007/s00158-012-0880-7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. – ISBN 9783662050866. Hamza, Aly, Hegazi (b0185) 2014 Rümmler, Neumann, Groh, Hähnel, Grumbt, Tropschuh (b0175) 2024; 1 172 (2022), p. 104743. doi:10.1016/j.mechmachtheory.2022.104743. – ISSN 0094–114X. Sigmund (b0155) 1997 3, p. 1733–1757. doi:10.1007/s11081-021-09675-3. Chua, Liu, Williams, Chua, Sing (b0035) 2024; 73 2, p. 1265–1288. doi:10.1007/s00366-023-01860-5. – ISSN 1435–5663. D.: Comparison of Different Topology Optimization Algorithms to Optimize Messerschmitt-Bolkow-Blohm Beam. 2023. doi:10.1007/978-981-99-0428-0_25. In ienkiewicz, O. 2014. ovar, A.; Patel, N. S. Young, Querin, Steven (b0085) 1999; 18 iu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, et al. Current and future trends in topology optimization for additive manufacturing. In: Structural and multidisciplinary optimization 2018;57: No. hompson, M. O. J.: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. In D.: Stress-based topology optimization for continua. In adenhorst, H. A comparison of topology optimization and genetic algorithms for the optimization of thermal energy storage composites. In endsøe, M. K. 5, p. 4631–4656. doi:10.3934/mbe.2020255. elippa, C. anni, M.; Shabara, M.; Alkalla, M.: A Comparison between Different Topology Optimization Methods. (Dept M (Production)). In: Bulletin of the Faculty of Engineering. Mansoura University 38 (2020), No. 9, p. 3454–3471. doi:10.1108/hff-01-2019-0034. C. 5. ed. Oxford [u.a.]: Butterworth-Heinemann, 2000. – XIV, 459 p. http://www.zentralblatt-math.org/zmath/en/search/?an=0991.74003. – ISBN 0750650559. Springer Nature Singapore, 2023, p. 295–305. doi:10.1007/978-981-99-0428-0_25. Howell (b0150) 2001 I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; Martina, F.: Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. In: CIRP Annals 65 (2016), No. 29 (2019), No. 41 (2009), No. Rebaioli, Fassi (b0015) 2017 K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R. 2, p. 555–573. doi:10.1137/s1052623499362822. Townsend, Senin, Blunt, Leach, Taylor (b0025) 2016; 46 Liu, Tovar (b0105) 2014 T. C.; Taylor, R. olmberg, E.; Torstenfelt, B.; Klarbring, A.: Stress constrained topology optimization. In P. 6, p. 4829–4852. doi:10.1007/s00366-022-01716-4. Guirguis, Melek, Aly (b0190) 2018; 372 6, p. 1205–1216. doi:10.1115/1.2336251. 48 (2013), No. 16 (1998), No. Oliver, Yago, Cante, Lloberas-Valls (b0090) 2019; 355 L. vanberg, K. H. 6, p. 1129–1143. doi:10.1108/rpj-06-2021-0130. – ISSN 1355–2546. 2, p. 120–127. doi:10.1007/s001580050176. – ISSN 1615–1488. 23 (2021), No. auersberger M, Hauffe A, Hähnel F, Dexl F, Markmiller JFC. Topology optimization of a benchmark artifact with target stress states using evolutionary algorithms. In: Engineering with Computers 40 (2023), No. Gao, Luo, Xia, Gao (b0125) 2019 Taylor, Garibay, Wicker (b0030) 2021; 39 4, p. 13–24. doi:10.21608/bfemu.2020.103788. an Dijk NP, Maute K, Langelaar M, van Keulen F. Level-set methods for structural topology optimization: a review. In 2, p. 737–760. doi:10.1016/j.cirp.2016.05.004. – ISSN 00078506. https://www.smoptit.se. October iang X, Li A, Rollett AD, Zhang YJ. An isogeometric analysis-based topology optimization framework for 2D cross-flow heat exchangers with manufacturability constraints. In Hamza (10.1016/j.compstruc.2025.107766_b0185) 2014 Bendsøe (10.1016/j.compstruc.2025.107766_b0075) 1989 Young (10.1016/j.compstruc.2025.107766_b0085) 1999; 18 Beckers (10.1016/j.compstruc.2025.107766_b0170) 1999 Oliver (10.1016/j.compstruc.2025.107766_b0090) 2019; 355 Allaire (10.1016/j.compstruc.2025.107766_b0200) 2017 10.1016/j.compstruc.2025.107766_b0180 10.1016/j.compstruc.2025.107766_b0060 10.1016/j.compstruc.2025.107766_b0080 10.1016/j.compstruc.2025.107766_b0140 10.1016/j.compstruc.2025.107766_b0020 Rebaioli (10.1016/j.compstruc.2025.107766_b0015) 2017 Martins (10.1016/j.compstruc.2025.107766_b0045) 2021 10.1016/j.compstruc.2025.107766_b0160 10.1016/j.compstruc.2025.107766_b0040 Chua (10.1016/j.compstruc.2025.107766_b0035) 2024; 73 10.1016/j.compstruc.2025.107766_b0100 10.1016/j.compstruc.2025.107766_b0145 10.1016/j.compstruc.2025.107766_b0120 10.1016/j.compstruc.2025.107766_b0165 10.1016/j.compstruc.2025.107766_b0005 Rümmler (10.1016/j.compstruc.2025.107766_b0175) 2024; 1 Gao (10.1016/j.compstruc.2025.107766_b0125) 2019 10.1016/j.compstruc.2025.107766_b0205 Taylor (10.1016/j.compstruc.2025.107766_b0030) 2021; 39 Guirguis (10.1016/j.compstruc.2025.107766_b0190) 2018; 372 10.1016/j.compstruc.2025.107766_b0070 Howell (10.1016/j.compstruc.2025.107766_b0150) 2001 10.1016/j.compstruc.2025.107766_b0195 10.1016/j.compstruc.2025.107766_b0130 10.1016/j.compstruc.2025.107766_b0050 10.1016/j.compstruc.2025.107766_b0095 10.1016/j.compstruc.2025.107766_b0010 Liu (10.1016/j.compstruc.2025.107766_b0105) 2014 10.1016/j.compstruc.2025.107766_b0055 10.1016/j.compstruc.2025.107766_b0110 Sigmund (10.1016/j.compstruc.2025.107766_b0155) 1997 10.1016/j.compstruc.2025.107766_b0115 10.1016/j.compstruc.2025.107766_b0135 Townsend (10.1016/j.compstruc.2025.107766_b0025) 2016; 46 Yago (10.1016/j.compstruc.2025.107766_b0065) 2021 |
| References_xml | – reference: . Springer Nature Singapore, 2023, p. 295–305. doi:10.1007/978-981-99-0428-0_25. – reference: 38 (2022), No. – volume: 46 start-page: 34 year: 2016 end-page: 47 ident: b0025 article-title: Surface texture metrology for metal additive manufacturing: a review – reference: P.: Topology optimization of continuum structures with local stress constraints. In: – reference: , K. – reference: 43 (1998), No. – reference: igmund, O.: A 99 line topology optimization code written in Matlab. In: – start-page: 2571 year: 2017 end-page: 2598 ident: b0015 article-title: A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes publication-title: The International Journal of Advanced Manufacturing Technology 93(5–8) – volume: 372 start-page: 107 year: 2018 end-page: 125 ident: b0190 article-title: High-resolution non-gradient topology optimization – reference: 1, p. 33–47. doi:10.1007/s00158-012-0880-7. – reference: L.; Sen, M.; Renaud, J. – reference: 6, p. 4829–4852. doi:10.1007/s00366-022-01716-4. – reference: , T.; – reference: 2, p. 737–760. doi:10.1016/j.cirp.2016.05.004. – ISSN 00078506. – reference: . Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. – ISBN 9783662050866. – reference: 6, p. 1129–1143. doi:10.1108/rpj-06-2021-0130. – ISSN 1355–2546. – reference: vanberg K. A class of globally convergent optimization methods based on conservative convex separable approximations. In: – year: 2001 ident: b0150 – year: 2014 ident: b0185 article-title: A Kriging-interpolated Level-set Approach for Structural Topology Optimization – reference: 2014. – reference: 12 (2002), No. – volume: 39 year: 2021 ident: b0030 article-title: Toward a common laser powder bed fusion qualification test artifact – reference: 4, p. 13–24. doi:10.21608/bfemu.2020.103788. – volume: 1 start-page: 481 year: 2024 end-page: 495 ident: b0175 article-title: Study of the influence of additive manufacturing applicable surface treatment methods on mechanical part properties for use in aerospace applications – reference: 2, p. 120–127. doi:10.1007/s001580050176. – ISSN 1615–1488. – reference: iang X, Li A, Rollett AD, Zhang YJ. An isogeometric analysis-based topology optimization framework for 2D cross-flow heat exchangers with manufacturability constraints. In: – start-page: 493 year: 1997 end-page: 524 ident: b0155 article-title: On the Design of Compliant Mechanisms Using Topology Optimization publication-title: In: Mechanics of Structures and Machines 25(4) – reference: 3, p. 437–472. doi:10.1007/s00158-013-0912-y. – ISSN 1615–1488. – reference: 4, p. 605–620. doi:10.1007/s00158-009-0440-y. – reference: vanberg, K.: – reference: , O.; – volume: 355 start-page: 779 year: 2019 end-page: 819 ident: b0090 article-title: Variational approach to relaxed topological optimization: Closed form solutions for structural problems in a sequential pseudo-time framework – reference: 48 (2013), No. – reference: ienkiewicz, O. – reference: iganto S, Martínez-Pellitero S, Cuesta E, Zapico P, Barreiro J. Proposal of design rules for improving the accuracy of selective laser melting (SLM) manufacturing using benchmarks parts. In: Rapid Prototyping Journal 28 (2022), No. – start-page: 14 year: 1999 end-page: 24 ident: b0170 article-title: Topology optimization using a dual method with discrete variables publication-title: In: Structural Optimization 17(1) – reference: 9, p. 3454–3471. doi:10.1108/hff-01-2019-0034. – reference: endsøe, M. – reference: C.; Taylor, R. – reference: elippa, C. – reference: A.: – reference: , B. – reference: oppen, S.; Langelaar, M.; Keulen, F. van: A simple and versatile topology optimization formulation for flexure synthesis. In: – reference: hompson, M. – volume: 18 start-page: 183 year: 1999 end-page: 192 ident: b0085 article-title: 3D and multiple load case bi-directional evolutionary structural optimization (BESO) – reference: 128 (2006), No. – reference: anni, M.; Shabara, M.; Alkalla, M.: A Comparison between Different Topology Optimization Methods. (Dept M (Production)). In: Bulletin of the Faculty of Engineering. Mansoura University 38 (2020), No. – reference: 6, p. 2457–2483. doi:10.1007/s00158-018-1994-3. – ISSN 1615–1488. – reference: 2, p. 555–573. doi:10.1137/s1052623499362822. – reference: 1, p. 68–75. doi:10.1007/bf01214002. – ISSN 1615–1488. – reference: , H.; – start-page: 204 year: October 2017 end-page: 205 ident: b0200 article-title: Shape optimization of a layer by layer mechanical constraint for additive manufacturing. München publication-title: Deutschland – reference: ovar, A.; Patel, N. – reference: , A. – reference: M.; Niebur, G. – reference: I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; Martina, F.: Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. In: CIRP Annals 65 (2016), No. – reference: 5, p. 4631–4656. doi:10.3934/mbe.2020255. – reference: an Dijk NP, Maute K, Langelaar M, van Keulen F. Level-set methods for structural topology optimization: a review. In: – reference: . https://www.smoptit.se. October – reference: 21 (2001), No. – reference: , J.: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. In: – reference: 41 (2009), No. – reference: 172 (2022), p. 104743. doi:10.1016/j.mechmachtheory.2022.104743. – ISSN 0094–114X. – year: 2021 ident: b0045 publication-title: Cambridge University Press – reference: adenhorst, H. A comparison of topology optimization and genetic algorithms for the optimization of thermal energy storage composites. In: – reference: , J.; – volume: 73 start-page: 75 year: 2024 end-page: 105 ident: b0035 article-title: In-process and post-process strategies for part quality assessment in metal powder bed fusion: A review – reference: 16 (1998), No. – reference: , M. – start-page: 2621 year: 2019 end-page: 2651 ident: b0125 article-title: Concurrent topology optimization of multiscale composite structures in Matlab publication-title: Structural and Multidisciplinary Optimization 60(6) – reference: , C.; – reference: u YF. Recent advances and future trends in exploring pareto-optimal topologies and additive manufacturing oriented topology optimization. In: Mathematical Biosciences and Engineering 2020; 17, No. – reference: , P.; – reference: 6, p. 1205–1216. doi:10.1115/1.2336251. – reference: , P. – reference: iu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, et al. Current and future trends in topology optimization for additive manufacturing. In: Structural and multidisciplinary optimization 2018;57: No. – start-page: 1525 year: 2021 end-page: 1567 ident: b0065 article-title: Topology optimization methods for 3d structural problems: a comparative study publication-title: In: Archives of Computational Methods in Engineering 29(3) – reference: , D.: Stress-based topology optimization for continua. In: – reference: K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R. – reference: , R.; – reference: C.: An efficient 146-line 3D sensitivity analysis code of stress-based topology optimization written in MATLAB. In: – reference: olmberg, E.; Torstenfelt, B.; Klarbring, A.: Stress constrained topology optimization. In: – reference: . University of Colorado, 2004 http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html. – reference: auersberger M, Hauffe A, Hähnel F, Dexl F, Markmiller JFC. Topology optimization of a benchmark artifact with target stress states using evolutionary algorithms. In: Engineering with Computers 40 (2023), No. – reference: 2, p. 1265–1288. doi:10.1007/s00366-023-01860-5. – ISSN 1435–5663. – reference: 8, p. 1453–1478. doi:10.1002/(sici)1097-0207(19981230)43:8<1453::aid-nme480>3.0.co;2-2. – reference: 29 (2019), No. – reference: 3, p. 1733–1757. doi:10.1007/s11081-021-09675-3. – reference: P.; Sigmund, O.: Topology Optimization: Theory, Methods, – reference: D.: Comparison of Different Topology Optimization Algorithms to Optimize Messerschmitt-Bolkow-Blohm Beam. 2023. doi:10.1007/978-981-99-0428-0_25. In: – reference: L.: – start-page: 1175 year: 2014 end-page: 1196 ident: b0105 article-title: An efficient 3D topology optimization code written in Matlab publication-title: Structural and Multidisciplinary Optimization 50(6) – reference: . 5. ed. Oxford [u.a.]: Butterworth-Heinemann, 2000. – XIV, 459 p. http://www.zentralblatt-math.org/zmath/en/search/?an=0991.74003. – ISBN 0750650559. – reference: E.: Topology Optimization Using a Hybrid Cellular Automaton Method With Local Control Rules. In: – reference: S.; – start-page: 193 year: 1989 end-page: 202 ident: b0075 article-title: Optimal shape design as a material distribution problem publication-title: In: Structural Optimization 1(4) – reference: 23 (2021), No. – start-page: 2571 year: 2017 ident: 10.1016/j.compstruc.2025.107766_b0015 article-title: A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes publication-title: The International Journal of Advanced Manufacturing Technology 93(5–8) doi: 10.1007/s00170-017-0570-0 – ident: 10.1016/j.compstruc.2025.107766_b0080 doi: 10.1007/s00158-013-0912-y – ident: 10.1016/j.compstruc.2025.107766_b0050 doi: 10.21608/bfemu.2020.103788 – ident: 10.1016/j.compstruc.2025.107766_b0040 doi: 10.1007/s00366-023-01860-5 – ident: 10.1016/j.compstruc.2025.107766_b0180 doi: 10.1007/s00158-012-0880-7 – year: 2021 ident: 10.1016/j.compstruc.2025.107766_b0045 publication-title: Engineering Design Optimization Cambridge University Press doi: 10.1017/9781108980647 – ident: 10.1016/j.compstruc.2025.107766_b0060 doi: 10.1115/1.2336251 – start-page: 193 year: 1989 ident: 10.1016/j.compstruc.2025.107766_b0075 article-title: Optimal shape design as a material distribution problem publication-title: In: Structural Optimization 1(4) – start-page: 493 year: 1997 ident: 10.1016/j.compstruc.2025.107766_b0155 article-title: On the Design of Compliant Mechanisms Using Topology Optimization publication-title: In: Mechanics of Structures and Machines 25(4) – volume: 46 start-page: 34 year: 2016 ident: 10.1016/j.compstruc.2025.107766_b0025 article-title: Surface texture metrology for metal additive manufacturing: a review publication-title: Precis Eng doi: 10.1016/j.precisioneng.2016.06.001 – start-page: 1525 year: 2021 ident: 10.1016/j.compstruc.2025.107766_b0065 article-title: Topology optimization methods for 3d structural problems: a comparative study – volume: 355 start-page: 779 year: 2019 ident: 10.1016/j.compstruc.2025.107766_b0090 article-title: Variational approach to relaxed topological optimization: Closed form solutions for structural problems in a sequential pseudo-time framework publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2019.06.038 – ident: 10.1016/j.compstruc.2025.107766_b0160 – ident: 10.1016/j.compstruc.2025.107766_b0115 doi: 10.1137/S1052623499362822 – ident: 10.1016/j.compstruc.2025.107766_b0055 doi: 10.1007/s001580050176 – ident: 10.1016/j.compstruc.2025.107766_b0070 doi: 10.1007/978-3-662-05086-6 – ident: 10.1016/j.compstruc.2025.107766_b0110 doi: 10.1007/s11081-021-09675-3 – ident: 10.1016/j.compstruc.2025.107766_b0010 doi: 10.3934/mbe.2020255 – ident: 10.1016/j.compstruc.2025.107766_b0205 doi: 10.1007/s00366-022-01716-4 – ident: 10.1016/j.compstruc.2025.107766_b0120 doi: 10.1016/j.mechmachtheory.2022.104743 – ident: 10.1016/j.compstruc.2025.107766_b0145 doi: 10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2 – start-page: 14 year: 1999 ident: 10.1016/j.compstruc.2025.107766_b0170 article-title: Topology optimization using a dual method with discrete variables publication-title: In: Structural Optimization 17(1) – volume: 39 year: 2021 ident: 10.1016/j.compstruc.2025.107766_b0030 article-title: Toward a common laser powder bed fusion qualification test artifact publication-title: Addit Manuf – volume: 18 start-page: 183 year: 1999 ident: 10.1016/j.compstruc.2025.107766_b0085 article-title: 3D and multiple load case bi-directional evolutionary structural optimization (BESO) publication-title: Structural Optimization doi: 10.1007/BF01195993 – year: 2001 ident: 10.1016/j.compstruc.2025.107766_b0150 – ident: 10.1016/j.compstruc.2025.107766_b0130 – ident: 10.1016/j.compstruc.2025.107766_b0135 doi: 10.1007/BF01214002 – ident: 10.1016/j.compstruc.2025.107766_b0095 doi: 10.1007/978-981-99-0428-0_25 – start-page: 2621 year: 2019 ident: 10.1016/j.compstruc.2025.107766_b0125 article-title: Concurrent topology optimization of multiscale composite structures in Matlab – ident: 10.1016/j.compstruc.2025.107766_b0195 doi: 10.1016/j.cirp.2016.05.004 – start-page: 204 year: 2017 ident: 10.1016/j.compstruc.2025.107766_b0200 article-title: Shape optimization of a layer by layer mechanical constraint for additive manufacturing. München publication-title: Deutschland – ident: 10.1016/j.compstruc.2025.107766_b0020 doi: 10.1108/RPJ-06-2021-0130 – ident: 10.1016/j.compstruc.2025.107766_b0005 doi: 10.1007/s00158-018-1994-3 – volume: 372 start-page: 107 year: 2018 ident: 10.1016/j.compstruc.2025.107766_b0190 article-title: High-resolution non-gradient topology optimization publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.06.025 – volume: 73 start-page: 75 year: 2024 ident: 10.1016/j.compstruc.2025.107766_b0035 article-title: In-process and post-process strategies for part quality assessment in metal powder bed fusion: A review publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2024.01.004 – ident: 10.1016/j.compstruc.2025.107766_b0100 doi: 10.1108/HFF-01-2019-0034 – ident: 10.1016/j.compstruc.2025.107766_b0140 doi: 10.1007/s00158-009-0440-y – year: 2014 ident: 10.1016/j.compstruc.2025.107766_b0185 article-title: A Kriging-interpolated Level-set Approach for Structural Topology Optimization publication-title: J Mech Des doi: 10.1115/1.4025706 – start-page: 1175 year: 2014 ident: 10.1016/j.compstruc.2025.107766_b0105 article-title: An efficient 3D topology optimization code written in Matlab – volume: 1 start-page: 481 year: 2024 ident: 10.1016/j.compstruc.2025.107766_b0175 article-title: Study of the influence of additive manufacturing applicable surface treatment methods on mechanical part properties for use in aerospace applications publication-title: CEAS Aeronaut J doi: 10.1007/s13272-024-00720-2 – ident: 10.1016/j.compstruc.2025.107766_b0165 |
| SSID | ssj0006400 |
| Score | 2.4575126 |
| Snippet | •Witness specimens are an appropriate measure to qualify additively manufactured parts.•Gradient-based topology optimization was successfully used for target... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107766 |
| SubjectTerms | Additive manufacturing Benchmark artifacts Matlab framework Target stress states Topology optimization Witness specimens |
| Title | Scaling-up topology optimization with target stress states via gradient-based algorithms |
| URI | https://dx.doi.org/10.1016/j.compstruc.2025.107766 |
| Volume | 314 |
| WOSCitedRecordID | wos001473313100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0045-7949 databaseCode: AIEXJ dateStart: 19950103 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006400 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5ap4f2UPqkSZuyh96MjPelXfUWQkwa2lBIWnwTq1eakMhCsoN_fmZfkpMG0lJ6EWLFruSZj5nZ8cy3CH3KKSkKloioYJRFnGkRqcz85yo5fHfGGLFk1T-_yuNjNZ8n330LQWePE5B1rdbrpPmvqoYxULZpnf0LdfeLwgDcg9LhCmqH6x8p_gSkDv4oWjUQVzaOYmkBhuHKd1z61KutAA-tIratqBtfn-vxWWuLwJaR8W_FWF-eLVqY4EnNA6eBPwuis8hxHLSrdihH_KZXhrTTdHa2d4vzTdRcrm3meWbK_wZ4mr6hq7438WjxS4MT6Mazyf5kMzlBRV_I6jNmoWtmKFGyVpgbmkxHVRqsMHO9pL9ZdJdcuDAKaezPmZj3wLiU8R0ObeuVT8zqZnGI7cD5cvEYbVEpEjVCW3tfDuZHvZ-OeWhQcl9zq_rv3tfdH7tsxCOnL9Bzv5HAew4AL9Gjsn6Fnm3QS75G8wEKOEABb0IBGyhgBwXsoIAdFDBAAd-GAh6g8Ab9mB2c7h9G_iSNKGdxvIxoVlYVLaucyEJkiamMKeAJIXFWkoooTaaVZCCQuFACdqB0KmkZV1miYUfOweq_RaN6UZfvEI5pnhVEKLD7nIODUIpzoeEWoh5NSrWN4iCjNPc08-a0k8s01BNepL1wUyPc1Al3G037iY1jWnl4yueghNQHjC4QTAE9D03e-ZfJ79HTAe4f0Aiel7voSX69PO_ajx5pN3-5mKA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling-up+topology+optimization+with+target+stress+states+via+gradient-based+algorithms&rft.jtitle=Computers+%26+structures&rft.au=Mauersberger%2C+Michael&rft.au=Dexl%2C+Florian&rft.au=Markmiller%2C+Johannes+F.C.&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7949&rft.volume=314&rft_id=info:doi/10.1016%2Fj.compstruc.2025.107766&rft.externalDocID=S0045794925001245 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon |