Scaling-up topology optimization with target stress states via gradient-based algorithms

•Witness specimens are an appropriate measure to qualify additively manufactured parts.•Gradient-based topology optimization was successfully used for target stress states.•Target stress states need an indirect formulation considering compliant mechanisms.•2D and 3D topology results feature a high p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & structures Ročník 314; s. 107766
Hlavní autoři: Mauersberger, Michael, Dexl, Florian, Markmiller, Johannes F.C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2025
Témata:
ISSN:0045-7949
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Witness specimens are an appropriate measure to qualify additively manufactured parts.•Gradient-based topology optimization was successfully used for target stress states.•Target stress states need an indirect formulation considering compliant mechanisms.•2D and 3D topology results feature a high precision up to 3.7%. Benchmark artifacts serve as an appropriate mean to represent quality measures in additively manufactured components. Especially witness specimens, which represent structural properties as a subtype of benchmark artifacts, are supposed to reproduce target stress states as they are critical for component failure. This study aims at proposing an approach to effectively scale the results of topology optimized witness specimens with failure-critical target stress states using gradient-based methods. Therefore, possible formulations with analytical sensitivities are derived and implemented in a Matlab framework in order to contextualize the actual formulation within classical approaches consistently. It has been confirmed that gradient-based topology optimization with analytical sensitivities is not appropriate for a direct formulation of failure-critical target stress states. Thus, an indirect formulation based on compliant mechanisms is presented in this paper. It is shown that plausible, functional structures can be produced. Target stresses are achieved in scaled-up results in two and three dimensions with an accuracy up to a relative error of 3.7 %.
AbstractList •Witness specimens are an appropriate measure to qualify additively manufactured parts.•Gradient-based topology optimization was successfully used for target stress states.•Target stress states need an indirect formulation considering compliant mechanisms.•2D and 3D topology results feature a high precision up to 3.7%. Benchmark artifacts serve as an appropriate mean to represent quality measures in additively manufactured components. Especially witness specimens, which represent structural properties as a subtype of benchmark artifacts, are supposed to reproduce target stress states as they are critical for component failure. This study aims at proposing an approach to effectively scale the results of topology optimized witness specimens with failure-critical target stress states using gradient-based methods. Therefore, possible formulations with analytical sensitivities are derived and implemented in a Matlab framework in order to contextualize the actual formulation within classical approaches consistently. It has been confirmed that gradient-based topology optimization with analytical sensitivities is not appropriate for a direct formulation of failure-critical target stress states. Thus, an indirect formulation based on compliant mechanisms is presented in this paper. It is shown that plausible, functional structures can be produced. Target stresses are achieved in scaled-up results in two and three dimensions with an accuracy up to a relative error of 3.7 %.
ArticleNumber 107766
Author Dexl, Florian
Mauersberger, Michael
Markmiller, Johannes F.C.
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0001-6366-1998
  surname: Mauersberger
  fullname: Mauersberger, Michael
  email: michael.mauersberger@tu-dresden.de
– sequence: 2
  givenname: Florian
  orcidid: 0000-0001-6182-7341
  surname: Dexl
  fullname: Dexl, Florian
– sequence: 3
  givenname: Johannes F.C.
  orcidid: 0000-0003-1185-0046
  surname: Markmiller
  fullname: Markmiller, Johannes F.C.
  email: johannes.markmiller@tu-dresden.de
BookMark eNqNkMtOwzAQRb0oEi3wDfgHUmw3sZMFi6riJVViAUjsLMcZB1dJHNluUfl6XIpYsIHVSDM6V3fODE0GNwBCl5TMKaH8ajPXrh9D9Fs9Z4QVaSsE5xM0JSQvMlHl1SmahbAhhPCckCl6fdKqs0ObbUcc3eg61-6xG6Pt7YeK1g343cY3HJVvIeKUDCGkoSIEvLMKt141FoaY1SpAg1XXOp-APpyjE6O6ABff8wy93N48r-6z9ePdw2q5zvSC85ixGoxhYDQVTVFXlBDRpAulvAZqaKkoMWKRuvKmLArBGREMuKkrxUqW03Jxhq6Pudq7EDwYqW38ah69sp2kRB7UyI38USMPauRRTeLFL370tld-_w9yeSQhvbez4GXQSYWGxnrQUTbO_pnxCeL9ilc
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2025_110500
Cites_doi 10.1007/s00170-017-0570-0
10.1007/s00158-013-0912-y
10.21608/bfemu.2020.103788
10.1007/s00366-023-01860-5
10.1007/s00158-012-0880-7
10.1017/9781108980647
10.1115/1.2336251
10.1016/j.precisioneng.2016.06.001
10.1016/j.cma.2019.06.038
10.1137/S1052623499362822
10.1007/s001580050176
10.1007/978-3-662-05086-6
10.1007/s11081-021-09675-3
10.3934/mbe.2020255
10.1007/s00366-022-01716-4
10.1016/j.mechmachtheory.2022.104743
10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
10.1007/BF01195993
10.1007/BF01214002
10.1007/978-981-99-0428-0_25
10.1016/j.cirp.2016.05.004
10.1108/RPJ-06-2021-0130
10.1007/s00158-018-1994-3
10.1016/j.jcp.2018.06.025
10.1016/j.jmsy.2024.01.004
10.1108/HFF-01-2019-0034
10.1007/s00158-009-0440-y
10.1115/1.4025706
10.1007/s13272-024-00720-2
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.compstruc.2025.107766
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compstruc_2025_107766
S0045794925001245
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYOK
AAYWO
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSH
SST
SSV
SSW
SSZ
T5K
T9H
TAE
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c366t-2beff2efc17d5b91007dc36116be1f18a10f736406d855762072e6fb9a2824183
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001473313100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7949
IngestDate Sat Nov 29 07:00:02 EST 2025
Tue Nov 18 22:16:37 EST 2025
Sat Jul 05 17:12:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Topology optimization
Matlab framework
Additive manufacturing
Witness specimens
Benchmark artifacts
Target stress states
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-2beff2efc17d5b91007dc36116be1f18a10f736406d855762072e6fb9a2824183
ORCID 0000-0001-6182-7341
0000-0003-1185-0046
0000-0001-6366-1998
OpenAccessLink https://dx.doi.org/10.1016/j.compstruc.2025.107766
ParticipantIDs crossref_citationtrail_10_1016_j_compstruc_2025_107766
crossref_primary_10_1016_j_compstruc_2025_107766
elsevier_sciencedirect_doi_10_1016_j_compstruc_2025_107766
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Computers & structures
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References C.: An efficient 146-line 3D sensitivity analysis code of stress-based topology optimization written in MATLAB. In
M.
38 (2022), No.
Allaire, Dapogny, Estevez, Faure, Michaillidis (b0200) October 2017
igmund, O.: A 99 line topology optimization code written in Matlab. In
Bendsøe (b0075) 1989
21 (2001), No.
6, p. 2457–2483. doi:10.1007/s00158-018-1994-3. – ISSN 1615–1488.
A.
L.; Sen, M.; Renaud, J.
Beckers (b0170) 1999
4, p. 605–620. doi:10.1007/s00158-009-0440-y.
Martins, Ning (b0045) 2021
12 (2002), No.
Yago, Cante, Lloberas-Valls, Oliver (b0065) 2021
u YF. Recent advances and future trends in exploring pareto-optimal topologies and additive manufacturing oriented topology optimization. In: Mathematical Biosciences and Engineering 2020; 17, No.
R.
oppen, S.; Langelaar, M.; Keulen, F. van: A simple and versatile topology optimization formulation for flexure synthesis. In
128 (2006), No.
M.; Niebur, G.
P.: Topology optimization of continuum structures with local stress constraints. In
J.
iganto S, Martínez-Pellitero S, Cuesta E, Zapico P, Barreiro J. Proposal of design rules for improving the accuracy of selective laser melting (SLM) manufacturing using benchmarks parts. In: Rapid Prototyping Journal 28 (2022), No.
1, p. 68–75. doi:10.1007/bf01214002. – ISSN 1615–1488.
8, p. 1453–1478. doi:10.1002/(sici)1097-0207(19981230)43:8<1453::aid-nme480>3.0.co;2-2.
E.: Topology Optimization Using a Hybrid Cellular Automaton Method With Local Control Rules. In
vanberg K. A class of globally convergent optimization methods based on conservative convex separable approximations. In
University of Colorado, 2004 http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html.
43 (1998), No.
P.; Sigmund, O.: Topology Optimization: Theory, Methods
B.
3, p. 437–472. doi:10.1007/s00158-013-0912-y. – ISSN 1615–1488.
1, p. 33–47. doi:10.1007/s00158-012-0880-7.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. – ISBN 9783662050866.
Hamza, Aly, Hegazi (b0185) 2014
Rümmler, Neumann, Groh, Hähnel, Grumbt, Tropschuh (b0175) 2024; 1
172 (2022), p. 104743. doi:10.1016/j.mechmachtheory.2022.104743. – ISSN 0094–114X.
Sigmund (b0155) 1997
3, p. 1733–1757. doi:10.1007/s11081-021-09675-3.
Chua, Liu, Williams, Chua, Sing (b0035) 2024; 73
2, p. 1265–1288. doi:10.1007/s00366-023-01860-5. – ISSN 1435–5663.
D.: Comparison of Different Topology Optimization Algorithms to Optimize Messerschmitt-Bolkow-Blohm Beam. 2023. doi:10.1007/978-981-99-0428-0_25. In
ienkiewicz, O.
2014.
ovar, A.; Patel, N.
S.
Young, Querin, Steven (b0085) 1999; 18
iu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, et al. Current and future trends in topology optimization for additive manufacturing. In: Structural and multidisciplinary optimization 2018;57: No.
hompson, M.
O.
J.: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. In
D.: Stress-based topology optimization for continua. In
adenhorst, H. A comparison of topology optimization and genetic algorithms for the optimization of thermal energy storage composites. In
endsøe, M.
K.
5, p. 4631–4656. doi:10.3934/mbe.2020255.
elippa, C.
anni, M.; Shabara, M.; Alkalla, M.: A Comparison between Different Topology Optimization Methods. (Dept M (Production)). In: Bulletin of the Faculty of Engineering. Mansoura University 38 (2020), No.
9, p. 3454–3471. doi:10.1108/hff-01-2019-0034.
C.
5. ed. Oxford [u.a.]: Butterworth-Heinemann, 2000. – XIV, 459 p. http://www.zentralblatt-math.org/zmath/en/search/?an=0991.74003. – ISBN 0750650559.
Springer Nature Singapore, 2023, p. 295–305. doi:10.1007/978-981-99-0428-0_25.
Howell (b0150) 2001
I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; Martina, F.: Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. In: CIRP Annals 65 (2016), No.
29 (2019), No.
41 (2009), No.
Rebaioli, Fassi (b0015) 2017
K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.
2, p. 555–573. doi:10.1137/s1052623499362822.
Townsend, Senin, Blunt, Leach, Taylor (b0025) 2016; 46
Liu, Tovar (b0105) 2014
T.
C.; Taylor, R.
olmberg, E.; Torstenfelt, B.; Klarbring, A.: Stress constrained topology optimization. In
P.
6, p. 4829–4852. doi:10.1007/s00366-022-01716-4.
Guirguis, Melek, Aly (b0190) 2018; 372
6, p. 1205–1216. doi:10.1115/1.2336251.
48 (2013), No.
16 (1998), No.
Oliver, Yago, Cante, Lloberas-Valls (b0090) 2019; 355
L.
vanberg, K.
H.
6, p. 1129–1143. doi:10.1108/rpj-06-2021-0130. – ISSN 1355–2546.
2, p. 120–127. doi:10.1007/s001580050176. – ISSN 1615–1488.
23 (2021), No.
auersberger M, Hauffe A, Hähnel F, Dexl F, Markmiller JFC. Topology optimization of a benchmark artifact with target stress states using evolutionary algorithms. In: Engineering with Computers 40 (2023), No.
Gao, Luo, Xia, Gao (b0125) 2019
Taylor, Garibay, Wicker (b0030) 2021; 39
4, p. 13–24. doi:10.21608/bfemu.2020.103788.
an Dijk NP, Maute K, Langelaar M, van Keulen F. Level-set methods for structural topology optimization: a review. In
2, p. 737–760. doi:10.1016/j.cirp.2016.05.004. – ISSN 00078506.
https://www.smoptit.se. October
iang X, Li A, Rollett AD, Zhang YJ. An isogeometric analysis-based topology optimization framework for 2D cross-flow heat exchangers with manufacturability constraints. In
Hamza (10.1016/j.compstruc.2025.107766_b0185) 2014
Bendsøe (10.1016/j.compstruc.2025.107766_b0075) 1989
Young (10.1016/j.compstruc.2025.107766_b0085) 1999; 18
Beckers (10.1016/j.compstruc.2025.107766_b0170) 1999
Oliver (10.1016/j.compstruc.2025.107766_b0090) 2019; 355
Allaire (10.1016/j.compstruc.2025.107766_b0200) 2017
10.1016/j.compstruc.2025.107766_b0180
10.1016/j.compstruc.2025.107766_b0060
10.1016/j.compstruc.2025.107766_b0080
10.1016/j.compstruc.2025.107766_b0140
10.1016/j.compstruc.2025.107766_b0020
Rebaioli (10.1016/j.compstruc.2025.107766_b0015) 2017
Martins (10.1016/j.compstruc.2025.107766_b0045) 2021
10.1016/j.compstruc.2025.107766_b0160
10.1016/j.compstruc.2025.107766_b0040
Chua (10.1016/j.compstruc.2025.107766_b0035) 2024; 73
10.1016/j.compstruc.2025.107766_b0100
10.1016/j.compstruc.2025.107766_b0145
10.1016/j.compstruc.2025.107766_b0120
10.1016/j.compstruc.2025.107766_b0165
10.1016/j.compstruc.2025.107766_b0005
Rümmler (10.1016/j.compstruc.2025.107766_b0175) 2024; 1
Gao (10.1016/j.compstruc.2025.107766_b0125) 2019
10.1016/j.compstruc.2025.107766_b0205
Taylor (10.1016/j.compstruc.2025.107766_b0030) 2021; 39
Guirguis (10.1016/j.compstruc.2025.107766_b0190) 2018; 372
10.1016/j.compstruc.2025.107766_b0070
Howell (10.1016/j.compstruc.2025.107766_b0150) 2001
10.1016/j.compstruc.2025.107766_b0195
10.1016/j.compstruc.2025.107766_b0130
10.1016/j.compstruc.2025.107766_b0050
10.1016/j.compstruc.2025.107766_b0095
10.1016/j.compstruc.2025.107766_b0010
Liu (10.1016/j.compstruc.2025.107766_b0105) 2014
10.1016/j.compstruc.2025.107766_b0055
10.1016/j.compstruc.2025.107766_b0110
Sigmund (10.1016/j.compstruc.2025.107766_b0155) 1997
10.1016/j.compstruc.2025.107766_b0115
10.1016/j.compstruc.2025.107766_b0135
Townsend (10.1016/j.compstruc.2025.107766_b0025) 2016; 46
Yago (10.1016/j.compstruc.2025.107766_b0065) 2021
References_xml – reference: . Springer Nature Singapore, 2023, p. 295–305. doi:10.1007/978-981-99-0428-0_25.
– reference: 38 (2022), No.
– volume: 46
  start-page: 34
  year: 2016
  end-page: 47
  ident: b0025
  article-title: Surface texture metrology for metal additive manufacturing: a review
– reference: P.: Topology optimization of continuum structures with local stress constraints. In:
– reference: , K.
– reference: 43 (1998), No.
– reference: igmund, O.: A 99 line topology optimization code written in Matlab. In:
– start-page: 2571
  year: 2017
  end-page: 2598
  ident: b0015
  article-title: A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes
  publication-title: The International Journal of Advanced Manufacturing Technology 93(5–8)
– volume: 372
  start-page: 107
  year: 2018
  end-page: 125
  ident: b0190
  article-title: High-resolution non-gradient topology optimization
– reference: 1, p. 33–47. doi:10.1007/s00158-012-0880-7.
– reference: L.; Sen, M.; Renaud, J.
– reference: 6, p. 4829–4852. doi:10.1007/s00366-022-01716-4.
– reference: , T.;
– reference: 2, p. 737–760. doi:10.1016/j.cirp.2016.05.004. – ISSN 00078506.
– reference: . Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. – ISBN 9783662050866.
– reference: 6, p. 1129–1143. doi:10.1108/rpj-06-2021-0130. – ISSN 1355–2546.
– reference: vanberg K. A class of globally convergent optimization methods based on conservative convex separable approximations. In:
– year: 2001
  ident: b0150
– year: 2014
  ident: b0185
  article-title: A Kriging-interpolated Level-set Approach for Structural Topology Optimization
– reference: 2014.
– reference: 12 (2002), No.
– volume: 39
  year: 2021
  ident: b0030
  article-title: Toward a common laser powder bed fusion qualification test artifact
– reference: 4, p. 13–24. doi:10.21608/bfemu.2020.103788.
– volume: 1
  start-page: 481
  year: 2024
  end-page: 495
  ident: b0175
  article-title: Study of the influence of additive manufacturing applicable surface treatment methods on mechanical part properties for use in aerospace applications
– reference: 2, p. 120–127. doi:10.1007/s001580050176. – ISSN 1615–1488.
– reference: iang X, Li A, Rollett AD, Zhang YJ. An isogeometric analysis-based topology optimization framework for 2D cross-flow heat exchangers with manufacturability constraints. In:
– start-page: 493
  year: 1997
  end-page: 524
  ident: b0155
  article-title: On the Design of Compliant Mechanisms Using Topology Optimization
  publication-title: In: Mechanics of Structures and Machines 25(4)
– reference: 3, p. 437–472. doi:10.1007/s00158-013-0912-y. – ISSN 1615–1488.
– reference: 4, p. 605–620. doi:10.1007/s00158-009-0440-y.
– reference: vanberg, K.:
– reference: , O.;
– volume: 355
  start-page: 779
  year: 2019
  end-page: 819
  ident: b0090
  article-title: Variational approach to relaxed topological optimization: Closed form solutions for structural problems in a sequential pseudo-time framework
– reference: 48 (2013), No.
– reference: ienkiewicz, O.
– reference: iganto S, Martínez-Pellitero S, Cuesta E, Zapico P, Barreiro J. Proposal of design rules for improving the accuracy of selective laser melting (SLM) manufacturing using benchmarks parts. In: Rapid Prototyping Journal 28 (2022), No.
– start-page: 14
  year: 1999
  end-page: 24
  ident: b0170
  article-title: Topology optimization using a dual method with discrete variables
  publication-title: In: Structural Optimization 17(1)
– reference: 9, p. 3454–3471. doi:10.1108/hff-01-2019-0034.
– reference: endsøe, M.
– reference: C.; Taylor, R.
– reference: elippa, C.
– reference: A.:
– reference: , B.
– reference: oppen, S.; Langelaar, M.; Keulen, F. van: A simple and versatile topology optimization formulation for flexure synthesis. In:
– reference: hompson, M.
– volume: 18
  start-page: 183
  year: 1999
  end-page: 192
  ident: b0085
  article-title: 3D and multiple load case bi-directional evolutionary structural optimization (BESO)
– reference: 128 (2006), No.
– reference: anni, M.; Shabara, M.; Alkalla, M.: A Comparison between Different Topology Optimization Methods. (Dept M (Production)). In: Bulletin of the Faculty of Engineering. Mansoura University 38 (2020), No.
– reference: 6, p. 2457–2483. doi:10.1007/s00158-018-1994-3. – ISSN 1615–1488.
– reference: 2, p. 555–573. doi:10.1137/s1052623499362822.
– reference: 1, p. 68–75. doi:10.1007/bf01214002. – ISSN 1615–1488.
– reference: , H.;
– start-page: 204
  year: October 2017
  end-page: 205
  ident: b0200
  article-title: Shape optimization of a layer by layer mechanical constraint for additive manufacturing. München
  publication-title: Deutschland
– reference: ovar, A.; Patel, N.
– reference: , A.
– reference: M.; Niebur, G.
– reference: I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; Martina, F.: Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. In: CIRP Annals 65 (2016), No.
– reference: 5, p. 4631–4656. doi:10.3934/mbe.2020255.
– reference: an Dijk NP, Maute K, Langelaar M, van Keulen F. Level-set methods for structural topology optimization: a review. In:
– reference: . https://www.smoptit.se. October
– reference: 21 (2001), No.
– reference: , J.: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. In:
– reference: 41 (2009), No.
– reference: 172 (2022), p. 104743. doi:10.1016/j.mechmachtheory.2022.104743. – ISSN 0094–114X.
– year: 2021
  ident: b0045
  publication-title: Cambridge University Press
– reference: adenhorst, H. A comparison of topology optimization and genetic algorithms for the optimization of thermal energy storage composites. In:
– reference: , J.;
– volume: 73
  start-page: 75
  year: 2024
  end-page: 105
  ident: b0035
  article-title: In-process and post-process strategies for part quality assessment in metal powder bed fusion: A review
– reference: 16 (1998), No.
– reference: , M.
– start-page: 2621
  year: 2019
  end-page: 2651
  ident: b0125
  article-title: Concurrent topology optimization of multiscale composite structures in Matlab
  publication-title: Structural and Multidisciplinary Optimization 60(6)
– reference: , C.;
– reference: u YF. Recent advances and future trends in exploring pareto-optimal topologies and additive manufacturing oriented topology optimization. In: Mathematical Biosciences and Engineering 2020; 17, No.
– reference: , P.;
– reference: 6, p. 1205–1216. doi:10.1115/1.2336251.
– reference: , P.
– reference: iu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, et al. Current and future trends in topology optimization for additive manufacturing. In: Structural and multidisciplinary optimization 2018;57: No.
– start-page: 1525
  year: 2021
  end-page: 1567
  ident: b0065
  article-title: Topology optimization methods for 3d structural problems: a comparative study
  publication-title: In: Archives of Computational Methods in Engineering 29(3)
– reference: , D.: Stress-based topology optimization for continua. In:
– reference: K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.
– reference: , R.;
– reference: C.: An efficient 146-line 3D sensitivity analysis code of stress-based topology optimization written in MATLAB. In:
– reference: olmberg, E.; Torstenfelt, B.; Klarbring, A.: Stress constrained topology optimization. In:
– reference: . University of Colorado, 2004 http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html.
– reference: auersberger M, Hauffe A, Hähnel F, Dexl F, Markmiller JFC. Topology optimization of a benchmark artifact with target stress states using evolutionary algorithms. In: Engineering with Computers 40 (2023), No.
– reference: 2, p. 1265–1288. doi:10.1007/s00366-023-01860-5. – ISSN 1435–5663.
– reference: 8, p. 1453–1478. doi:10.1002/(sici)1097-0207(19981230)43:8<1453::aid-nme480>3.0.co;2-2.
– reference: 29 (2019), No.
– reference: 3, p. 1733–1757. doi:10.1007/s11081-021-09675-3.
– reference: P.; Sigmund, O.: Topology Optimization: Theory, Methods,
– reference: D.: Comparison of Different Topology Optimization Algorithms to Optimize Messerschmitt-Bolkow-Blohm Beam. 2023. doi:10.1007/978-981-99-0428-0_25. In:
– reference: L.:
– start-page: 1175
  year: 2014
  end-page: 1196
  ident: b0105
  article-title: An efficient 3D topology optimization code written in Matlab
  publication-title: Structural and Multidisciplinary Optimization 50(6)
– reference: . 5. ed. Oxford [u.a.]: Butterworth-Heinemann, 2000. – XIV, 459 p. http://www.zentralblatt-math.org/zmath/en/search/?an=0991.74003. – ISBN 0750650559.
– reference: E.: Topology Optimization Using a Hybrid Cellular Automaton Method With Local Control Rules. In:
– reference: S.;
– start-page: 193
  year: 1989
  end-page: 202
  ident: b0075
  article-title: Optimal shape design as a material distribution problem
  publication-title: In: Structural Optimization 1(4)
– reference: 23 (2021), No.
– start-page: 2571
  year: 2017
  ident: 10.1016/j.compstruc.2025.107766_b0015
  article-title: A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes
  publication-title: The International Journal of Advanced Manufacturing Technology 93(5–8)
  doi: 10.1007/s00170-017-0570-0
– ident: 10.1016/j.compstruc.2025.107766_b0080
  doi: 10.1007/s00158-013-0912-y
– ident: 10.1016/j.compstruc.2025.107766_b0050
  doi: 10.21608/bfemu.2020.103788
– ident: 10.1016/j.compstruc.2025.107766_b0040
  doi: 10.1007/s00366-023-01860-5
– ident: 10.1016/j.compstruc.2025.107766_b0180
  doi: 10.1007/s00158-012-0880-7
– year: 2021
  ident: 10.1016/j.compstruc.2025.107766_b0045
  publication-title: Engineering Design Optimization Cambridge University Press
  doi: 10.1017/9781108980647
– ident: 10.1016/j.compstruc.2025.107766_b0060
  doi: 10.1115/1.2336251
– start-page: 193
  year: 1989
  ident: 10.1016/j.compstruc.2025.107766_b0075
  article-title: Optimal shape design as a material distribution problem
  publication-title: In: Structural Optimization 1(4)
– start-page: 493
  year: 1997
  ident: 10.1016/j.compstruc.2025.107766_b0155
  article-title: On the Design of Compliant Mechanisms Using Topology Optimization
  publication-title: In: Mechanics of Structures and Machines 25(4)
– volume: 46
  start-page: 34
  year: 2016
  ident: 10.1016/j.compstruc.2025.107766_b0025
  article-title: Surface texture metrology for metal additive manufacturing: a review
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2016.06.001
– start-page: 1525
  year: 2021
  ident: 10.1016/j.compstruc.2025.107766_b0065
  article-title: Topology optimization methods for 3d structural problems: a comparative study
– volume: 355
  start-page: 779
  year: 2019
  ident: 10.1016/j.compstruc.2025.107766_b0090
  article-title: Variational approach to relaxed topological optimization: Closed form solutions for structural problems in a sequential pseudo-time framework
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.06.038
– ident: 10.1016/j.compstruc.2025.107766_b0160
– ident: 10.1016/j.compstruc.2025.107766_b0115
  doi: 10.1137/S1052623499362822
– ident: 10.1016/j.compstruc.2025.107766_b0055
  doi: 10.1007/s001580050176
– ident: 10.1016/j.compstruc.2025.107766_b0070
  doi: 10.1007/978-3-662-05086-6
– ident: 10.1016/j.compstruc.2025.107766_b0110
  doi: 10.1007/s11081-021-09675-3
– ident: 10.1016/j.compstruc.2025.107766_b0010
  doi: 10.3934/mbe.2020255
– ident: 10.1016/j.compstruc.2025.107766_b0205
  doi: 10.1007/s00366-022-01716-4
– ident: 10.1016/j.compstruc.2025.107766_b0120
  doi: 10.1016/j.mechmachtheory.2022.104743
– ident: 10.1016/j.compstruc.2025.107766_b0145
  doi: 10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
– start-page: 14
  year: 1999
  ident: 10.1016/j.compstruc.2025.107766_b0170
  article-title: Topology optimization using a dual method with discrete variables
  publication-title: In: Structural Optimization 17(1)
– volume: 39
  year: 2021
  ident: 10.1016/j.compstruc.2025.107766_b0030
  article-title: Toward a common laser powder bed fusion qualification test artifact
  publication-title: Addit Manuf
– volume: 18
  start-page: 183
  year: 1999
  ident: 10.1016/j.compstruc.2025.107766_b0085
  article-title: 3D and multiple load case bi-directional evolutionary structural optimization (BESO)
  publication-title: Structural Optimization
  doi: 10.1007/BF01195993
– year: 2001
  ident: 10.1016/j.compstruc.2025.107766_b0150
– ident: 10.1016/j.compstruc.2025.107766_b0130
– ident: 10.1016/j.compstruc.2025.107766_b0135
  doi: 10.1007/BF01214002
– ident: 10.1016/j.compstruc.2025.107766_b0095
  doi: 10.1007/978-981-99-0428-0_25
– start-page: 2621
  year: 2019
  ident: 10.1016/j.compstruc.2025.107766_b0125
  article-title: Concurrent topology optimization of multiscale composite structures in Matlab
– ident: 10.1016/j.compstruc.2025.107766_b0195
  doi: 10.1016/j.cirp.2016.05.004
– start-page: 204
  year: 2017
  ident: 10.1016/j.compstruc.2025.107766_b0200
  article-title: Shape optimization of a layer by layer mechanical constraint for additive manufacturing. München
  publication-title: Deutschland
– ident: 10.1016/j.compstruc.2025.107766_b0020
  doi: 10.1108/RPJ-06-2021-0130
– ident: 10.1016/j.compstruc.2025.107766_b0005
  doi: 10.1007/s00158-018-1994-3
– volume: 372
  start-page: 107
  year: 2018
  ident: 10.1016/j.compstruc.2025.107766_b0190
  article-title: High-resolution non-gradient topology optimization
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.06.025
– volume: 73
  start-page: 75
  year: 2024
  ident: 10.1016/j.compstruc.2025.107766_b0035
  article-title: In-process and post-process strategies for part quality assessment in metal powder bed fusion: A review
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2024.01.004
– ident: 10.1016/j.compstruc.2025.107766_b0100
  doi: 10.1108/HFF-01-2019-0034
– ident: 10.1016/j.compstruc.2025.107766_b0140
  doi: 10.1007/s00158-009-0440-y
– year: 2014
  ident: 10.1016/j.compstruc.2025.107766_b0185
  article-title: A Kriging-interpolated Level-set Approach for Structural Topology Optimization
  publication-title: J Mech Des
  doi: 10.1115/1.4025706
– start-page: 1175
  year: 2014
  ident: 10.1016/j.compstruc.2025.107766_b0105
  article-title: An efficient 3D topology optimization code written in Matlab
– volume: 1
  start-page: 481
  year: 2024
  ident: 10.1016/j.compstruc.2025.107766_b0175
  article-title: Study of the influence of additive manufacturing applicable surface treatment methods on mechanical part properties for use in aerospace applications
  publication-title: CEAS Aeronaut J
  doi: 10.1007/s13272-024-00720-2
– ident: 10.1016/j.compstruc.2025.107766_b0165
SSID ssj0006400
Score 2.4575126
Snippet •Witness specimens are an appropriate measure to qualify additively manufactured parts.•Gradient-based topology optimization was successfully used for target...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107766
SubjectTerms Additive manufacturing
Benchmark artifacts
Matlab framework
Target stress states
Topology optimization
Witness specimens
Title Scaling-up topology optimization with target stress states via gradient-based algorithms
URI https://dx.doi.org/10.1016/j.compstruc.2025.107766
Volume 314
WOSCitedRecordID wos001473313100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0045-7949
  databaseCode: AIEXJ
  dateStart: 19950103
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006400
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5ap4f2UPqkSZuyh96MjPelXfUWQkwa2lBIWnwTq1eakMhCsoN_fmZfkpMG0lJ6EWLFruSZj5nZ8cy3CH3KKSkKloioYJRFnGkRqcz85yo5fHfGGLFk1T-_yuNjNZ8n330LQWePE5B1rdbrpPmvqoYxULZpnf0LdfeLwgDcg9LhCmqH6x8p_gSkDv4oWjUQVzaOYmkBhuHKd1z61KutAA-tIratqBtfn-vxWWuLwJaR8W_FWF-eLVqY4EnNA6eBPwuis8hxHLSrdihH_KZXhrTTdHa2d4vzTdRcrm3meWbK_wZ4mr6hq7438WjxS4MT6Mazyf5kMzlBRV_I6jNmoWtmKFGyVpgbmkxHVRqsMHO9pL9ZdJdcuDAKaezPmZj3wLiU8R0ObeuVT8zqZnGI7cD5cvEYbVEpEjVCW3tfDuZHvZ-OeWhQcl9zq_rv3tfdH7tsxCOnL9Bzv5HAew4AL9Gjsn6Fnm3QS75G8wEKOEABb0IBGyhgBwXsoIAdFDBAAd-GAh6g8Ab9mB2c7h9G_iSNKGdxvIxoVlYVLaucyEJkiamMKeAJIXFWkoooTaaVZCCQuFACdqB0KmkZV1miYUfOweq_RaN6UZfvEI5pnhVEKLD7nIODUIpzoeEWoh5NSrWN4iCjNPc08-a0k8s01BNepL1wUyPc1Al3G037iY1jWnl4yueghNQHjC4QTAE9D03e-ZfJ79HTAe4f0Aiel7voSX69PO_ajx5pN3-5mKA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling-up+topology+optimization+with+target+stress+states+via+gradient-based+algorithms&rft.jtitle=Computers+%26+structures&rft.au=Mauersberger%2C+Michael&rft.au=Dexl%2C+Florian&rft.au=Markmiller%2C+Johannes+F.C.&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7949&rft.volume=314&rft_id=info:doi/10.1016%2Fj.compstruc.2025.107766&rft.externalDocID=S0045794925001245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon