Comparison of the Remapping Algorithms for the Advanced Technology Microwave Sounder (ATMS)
One of the limitations in using spaceborne, microwave radiometer data for atmospheric remote sensing is the nonuniform spatial resolution. Remapping algorithms can be applied to the data to ameliorate this limitation. In this paper, two remapping algorithms, the Backus–Gilbert inversion (BGI) techni...
Gespeichert in:
| Veröffentlicht in: | Remote sensing (Basel, Switzerland) Jg. 12; H. 4; S. 672 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
MDPI AG
01.02.2020
|
| Schlagworte: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | One of the limitations in using spaceborne, microwave radiometer data for atmospheric remote sensing is the nonuniform spatial resolution. Remapping algorithms can be applied to the data to ameliorate this limitation. In this paper, two remapping algorithms, the Backus–Gilbert inversion (BGI) technique and the filter algorithm (AFA), widely used in the operational data preprocessing of the Advanced Technology Microwave Sounder (ATMS), are investigated. The algorithms are compared using simulations and actual ATMS data. Results show that both algorithms can effectively enhance or degrade the resolution of the data. The BGI has a higher remapping accuracy than the AFA. It outperforms the AFA by producing less bias around coastlines and hurricane centers where the signal changes sharply. It shows no obvious bias around the scan ends where the AFA has a noticeable positive bias in the resolution-enhanced image. However, the BGI achieves the resolution enhancement at the expense of increasing the noise by 0.5 K. The use of the antenna pattern instead of the point spread function in the algorithm causes the persistent bias found in the AFA-remapped image, leading not only to an inaccurate antenna temperature expression but also to the neglect of the geometric deformation of the along-scan field-of-views. |
|---|---|
| AbstractList | One of the limitations in using spaceborne, microwave radiometer data for atmospheric remote sensing is the nonuniform spatial resolution. Remapping algorithms can be applied to the data to ameliorate this limitation. In this paper, two remapping algorithms, the Backus−Gilbert inversion (BGI) technique and the filter algorithm (AFA), widely used in the operational data preprocessing of the Advanced Technology Microwave Sounder (ATMS), are investigated. The algorithms are compared using simulations and actual ATMS data. Results show that both algorithms can effectively enhance or degrade the resolution of the data. The BGI has a higher remapping accuracy than the AFA. It outperforms the AFA by producing less bias around coastlines and hurricane centers where the signal changes sharply. It shows no obvious bias around the scan ends where the AFA has a noticeable positive bias in the resolution-enhanced image. However, the BGI achieves the resolution enhancement at the expense of increasing the noise by 0.5 K. The use of the antenna pattern instead of the point spread function in the algorithm causes the persistent bias found in the AFA-remapped image, leading not only to an inaccurate antenna temperature expression but also to the neglect of the geometric deformation of the along-scan field-of-views. One of the limitations in using spaceborne, microwave radiometer data for atmospheric remote sensing is the nonuniform spatial resolution. Remapping algorithms can be applied to the data to ameliorate this limitation. In this paper, two remapping algorithms, the Backus–Gilbert inversion (BGI) technique and the filter algorithm (AFA), widely used in the operational data preprocessing of the Advanced Technology Microwave Sounder (ATMS), are investigated. The algorithms are compared using simulations and actual ATMS data. Results show that both algorithms can effectively enhance or degrade the resolution of the data. The BGI has a higher remapping accuracy than the AFA. It outperforms the AFA by producing less bias around coastlines and hurricane centers where the signal changes sharply. It shows no obvious bias around the scan ends where the AFA has a noticeable positive bias in the resolution-enhanced image. However, the BGI achieves the resolution enhancement at the expense of increasing the noise by 0.5 K. The use of the antenna pattern instead of the point spread function in the algorithm causes the persistent bias found in the AFA-remapped image, leading not only to an inaccurate antenna temperature expression but also to the neglect of the geometric deformation of the along-scan field-of-views. |
| Author | Zhou, Jun Yang, Hu |
| Author_xml | – sequence: 1 givenname: Jun surname: Zhou fullname: Zhou, Jun – sequence: 2 givenname: Hu surname: Yang fullname: Yang, Hu |
| BookMark | eNptUU1vEzEQtVCRKKUXfoGPBSngr7WzxygCWqkVEg0nDtbEHieudu3F3hT13-M2CBBiLvP05s0bPc1LcpJyQkJec_ZOyp69L5ULppg24hk5FcyIhRK9OPkLvyDntd6xVlLynqlT8m2dxwlKrDnRHOi8R_oFR5immHZ0NexyifN-rDTk8jRc-XtIDj3doNunPOTdA72JruQfcI_0Nh-Sx0IvVpub2zevyPMAQ8XzX_2MfP34YbO-XFx__nS1Xl0vnNR6XggtvGFhCb3hTGJvVODLXjoPWy2NQoed61TwBhAkl1ujfQDOoGVgAoOUZ-Tq6Osz3NmpxBHKg80Q7RORy85CmaMb0DrDveqEZM1abWW3DUKzpWs4MNOo5nVx9JpK_n7AOtsxVofDAAnzoVrRL7XSnZSiSd8epS19rQXD79Oc2ceH2D8PaWL2j9jFGeaY01wgDv9b-QlQgY2w |
| CitedBy_id | crossref_primary_10_1109_TGRS_2021_3138395 crossref_primary_10_1016_j_aosl_2024_100484 crossref_primary_10_1007_s00376_021_0358_x crossref_primary_10_1109_TGRS_2022_3182630 crossref_primary_10_3390_rs14122781 crossref_primary_10_3390_rs12142177 crossref_primary_10_1016_j_rse_2024_114068 crossref_primary_10_1109_TGRS_2023_3291752 |
| Cites_doi | 10.1109/TGRS.2005.844099 10.3390/rs10020275 10.1175/2010JAMC2271.1 10.1109/36.134084 10.1109/CVPR.2016.181 10.1109/36.58966 10.1109/36.662726 10.1109/TAP.1978.1141919 10.1109/TGRS.2011.2148200 10.1117/1.JRS.8.084692 10.1109/36.905237 10.1109/CVPR.2017.300 10.1109/TGRS.2019.2923886 10.1109/TGRS.2013.2255614 10.1109/36.225536 10.1109/TGRS.2012.2197003 10.1117/1.JRS.8.083656 10.1029/2012JD018144 10.3390/rs11070771 10.1109/TGRS.2014.2310702 10.1109/36.338362 10.3390/rs11202432 10.1109/IGARSS.2016.7729095 10.1109/CVPR.2013.142 10.1007/s11430-010-4074-0 10.1111/j.1365-246X.1968.tb00216.x 10.1109/36.58969 10.1111/j.1365-246X.1967.tb02159.x 10.1109/CVPR.2012.6247952 10.1109/TGRS.2009.2013635 10.1007/978-3-319-10593-2_13 10.1029/2018JD028934 10.1109/CVPR.2016.207 10.1109/36.142920 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7S9 L.6 DOA |
| DOI | 10.3390/rs12040672 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_c71d45230b634b35bf2608c34bf07634 10_3390_rs12040672 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c366t-262d70f8a97103e974f1893cdab6374ece5c54fd7aea313b76dfa10a03302ef33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519564600083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Mon Nov 10 04:33:00 EST 2025 Fri Sep 05 12:25:49 EDT 2025 Sat Nov 29 07:20:06 EST 2025 Tue Nov 18 21:42:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-262d70f8a97103e974f1893cdab6374ece5c54fd7aea313b76dfa10a03302ef33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/c71d45230b634b35bf2608c34bf07634 |
| PQID | 2986465332 |
| PQPubID | 24069 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c71d45230b634b35bf2608c34bf07634 proquest_miscellaneous_2986465332 crossref_primary_10_3390_rs12040672 crossref_citationtrail_10_3390_rs12040672 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Li (ref_5) 2014; 8 Stogryn (ref_9) 1978; AP-26 Backus (ref_35) 1968; 16 Robinson (ref_12) 1992; 30 ref_36 Yang (ref_16) 2014; 52 Lenti (ref_21) 2014; 52 ref_32 Migliaccio (ref_20) 2005; 43 ref_31 Sethmann (ref_17) 1994; 32 ref_30 Backus (ref_34) 1967; 13 Poe (ref_10) 1990; 28 ref_39 Piles (ref_18) 2009; 47 Early (ref_23) 2001; 39 Hu (ref_33) 2019; 57 ref_37 Liu (ref_19) 2014; 8 Yang (ref_7) 2011; 50 Long (ref_13) 1998; 36 Yang (ref_15) 2012; 29 Zou (ref_6) 2018; 123 ref_25 Farrar (ref_11) 1992; 30 ref_24 Long (ref_22) 1993; 31 Yang (ref_2) 2011; 49 Goodberlet (ref_3) 1990; 28 ref_1 Wang (ref_14) 2011; 54 ref_29 ref_28 ref_27 ref_26 ref_8 Weng (ref_38) 2012; 117 Yang (ref_4) 2012; 50 |
| References_xml | – volume: 43 start-page: 1159 year: 2005 ident: ref_20 article-title: Microwave Radiometer Spatial Resolution Enhancement publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.844099 – ident: ref_30 doi: 10.3390/rs10020275 – volume: 50 start-page: 77 year: 2011 ident: ref_7 article-title: Special Sensor Microwave Imager (SSM/I) intersensor calibration using a simultaneous conical overpass technique publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/2010JAMC2271.1 – volume: 30 start-page: 349 year: 1992 ident: ref_11 article-title: Spatial resolution enhancement of terrestrial features using deconvolved SSM/I microwave brightness temperatures publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.134084 – ident: ref_39 – ident: ref_25 doi: 10.1109/CVPR.2016.181 – volume: 29 start-page: 23 year: 2012 ident: ref_15 article-title: Study of channel resolution matching of spaceborne microwave radiometer and its application in MWRI of FY-3 satellite publication-title: Aerosp. Shanghai – ident: ref_37 – ident: ref_1 – volume: 28 start-page: 800 year: 1990 ident: ref_10 article-title: Optimum Interpolation of Imaging Microwave Radiometer Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.58966 – volume: 36 start-page: 407 year: 1998 ident: ref_13 article-title: Spatial resolution enhancement of SSM/I data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.662726 – volume: AP-26 start-page: 720 year: 1978 ident: ref_9 article-title: Estimates of brightness temperatures from scanning radiometer data publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.1978.1141919 – volume: 49 start-page: 4552 year: 2011 ident: ref_2 article-title: The FengYun-3 microwave radiation imager on-orbit verification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2148200 – volume: 8 start-page: 084692 year: 2014 ident: ref_5 article-title: Spatiotemporal analysis of snow depth inversion based on the FengYun-3B microwave radiation imager: A case study in Heilongjiang Province, China publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.8.084692 – volume: 39 start-page: 291 year: 2001 ident: ref_23 article-title: Image reconstruction and enhanced resolution imaging from irregular samples publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.905237 – ident: ref_29 doi: 10.1109/CVPR.2017.300 – volume: 57 start-page: 8954 year: 2019 ident: ref_33 article-title: Microwave Radiometer Data Superresolution Using Image Degradation and Residual Network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2923886 – volume: 52 start-page: 1834 year: 2014 ident: ref_21 article-title: On the spatial resolution enhancement of microwave radiometer data in Banach spaces publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2255614 – volume: 31 start-page: 700 year: 1993 ident: ref_22 article-title: Resolution enhancement of spaceborne scatterometer data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.225536 – volume: 50 start-page: 4986 year: 2012 ident: ref_4 article-title: Environmental data records from FengYun-3B microwave radiation imager publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2197003 – volume: 8 start-page: 083656 year: 2014 ident: ref_19 article-title: Resolution enhancement of passive microwave images from geostationary Earth orbit via a projective sphere coordinate system publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.8.083656 – volume: 117 start-page: D19112 year: 2012 ident: ref_38 article-title: Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2012JD018144 – ident: ref_31 doi: 10.3390/rs11070771 – volume: 52 start-page: 7290 year: 2014 ident: ref_16 article-title: Optimal ATMS Remapping algorithm for Climate Research publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2310702 – volume: 32 start-page: 1144 year: 1994 ident: ref_17 article-title: Spatial resolution improvement of SSM/I data with image restoration techniques publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.338362 – ident: ref_32 doi: 10.3390/rs11202432 – ident: ref_8 doi: 10.1109/IGARSS.2016.7729095 – ident: ref_27 doi: 10.1109/CVPR.2013.142 – volume: 54 start-page: 410 year: 2011 ident: ref_14 article-title: The development of an algorithm to enhance and match the resolution of satellite measurements from AMSR-E publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-010-4074-0 – volume: 16 start-page: 169 year: 1968 ident: ref_35 article-title: Resolving power of gross Earth data publication-title: Geophys. J. R. Astron. Soc. doi: 10.1111/j.1365-246X.1968.tb00216.x – volume: 28 start-page: 823 year: 1990 ident: ref_3 article-title: Ocean surface wind speed measurements of the Special Sensor Microwave/Imager (SSM/I) publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.58969 – volume: 13 start-page: 247 year: 1967 ident: ref_34 article-title: Numerical applications of a formalism for geophysical inverse problems publication-title: Geophys. J. R. Astron. Soc. doi: 10.1111/j.1365-246X.1967.tb02159.x – ident: ref_28 doi: 10.1109/CVPR.2012.6247952 – volume: 47 start-page: 2182 year: 2009 ident: ref_18 article-title: Spatial-resolution enhancement of SMOS data: A deconvolution-based approach publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2013635 – ident: ref_36 – ident: ref_24 doi: 10.1007/978-3-319-10593-2_13 – volume: 123 start-page: 10815 year: 2018 ident: ref_6 article-title: Hurricane Warm-Core Retrievals from AMSU-A and Remapped ATMS Measurements with Rain Contamination Eliminated publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2018JD028934 – ident: ref_26 doi: 10.1109/CVPR.2016.207 – volume: 30 start-page: 419 year: 1992 ident: ref_12 article-title: A technique for enhancing and matching the resolution of microwave measurements from the SSM/I instrument publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.142920 |
| SSID | ssj0000331904 |
| Score | 2.2933109 |
| Snippet | One of the limitations in using spaceborne, microwave radiometer data for atmospheric remote sensing is the nonuniform spatial resolution. Remapping algorithms... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 672 |
| SubjectTerms | advanced technology microwave sounder (atms) algorithms backus–gilbert inversion algorithm coasts deformation filter algorithm hurricanes microwave radiometers remapping remote sensing temperature |
| Title | Comparison of the Remapping Algorithms for the Advanced Technology Microwave Sounder (ATMS) |
| URI | https://www.proquest.com/docview/2986465332 https://doaj.org/article/c71d45230b634b35bf2608c34bf07634 |
| Volume | 12 |
| WOSCitedRecordID | wos000519564600083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (ProQuest) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-igl7ET5wfI6IHdyi2SZp0xykbetgoTmHqoaT5UEE32abixb_dl7SbioIXL6E0gZb3XvJ-vyT8HkIHoVbMhKIecKnjACIkgillVSASroWGlJQL6YtNiE4n6fXq6ZdSX-5OWCEPXBjuSIlIM7d1mXPKchrnFhB4ouDZAgWnXgkUUM8XMuXXYAqhFbJCj5QCrz8ajiICAcsF-ZaBvFD_j3XYJ5fWMloqUSFuFH-zgmZMfxUtlAXK797W0M3JtF4gHlgMqA2fm0fpxBVucePhdgAc_-5xhAGC-s5GebSPP7fOcdvdvXuVLwZ3XS0lM8SHjYt2t7aOLlvNi5PToKyLECjK-TggnGgR2kTWAR5QA4zARgA7lJZgI8GMMrGKmdVCGkkjmguurYxCCUYJibGUbqDZ_qBvNhEWjCe5VRryWM5ilgNVDomMJHdzX1BTQbWJrTJVioa72hUPGZAHZ9fs064VtD8d-1RIZfw66tiZfDrCyVv7F-D0rHR69pfTK2hv4rAMpoM745B9M3geZcTJzXPAsGTrPz60jRaJI9j-mvYOmh0Pn80umlcv4_vRsIrmjpud9LzqY6_qro12XfvehDaNr6E_PWunVx9CPN9m |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+the+Remapping+Algorithms+for+the+Advanced+Technology+Microwave+Sounder+%28ATMS%29&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jun+Zhou&rft.au=Hu+Yang&rft.date=2020-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=4&rft.spage=672&rft_id=info:doi/10.3390%2Frs12040672&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c71d45230b634b35bf2608c34bf07634 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |