On pseudo-convex partitions of a planar point set
Aichholzer et al. [O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. Tóth, Decompositions, partitions, and coverings with convex polygons and pseudo-triangles, Graphs and Combinatorics 23 (2007) 481–507] introduced the notion of pseudo-convex partitioning of planar point sets and proved that t...
Gespeichert in:
| Veröffentlicht in: | Discrete mathematics Jg. 313; H. 21; S. 2401 - 2408 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.11.2013
|
| Schlagworte: | |
| ISSN: | 0012-365X, 1872-681X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Aichholzer et al. [O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. Tóth, Decompositions, partitions, and coverings with convex polygons and pseudo-triangles, Graphs and Combinatorics 23 (2007) 481–507] introduced the notion of pseudo-convex partitioning of planar point sets and proved that the pseudo-convex partition number ψ(n) satisfies 34⌊n4⌋≤ψ(n)≤⌈n4⌉. In this paper we prove that ψ(13)=3, which improves the upper bound on ψ(n) to ⌈3n13⌉, thus answering a question posed by Aichholzer et al. in the same paper. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 0012-365X 1872-681X |
| DOI: | 10.1016/j.disc.2013.07.007 |