On pseudo-convex partitions of a planar point set

Aichholzer et al. [O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. Tóth, Decompositions, partitions, and coverings with convex polygons and pseudo-triangles, Graphs and Combinatorics 23 (2007) 481–507] introduced the notion of pseudo-convex partitioning of planar point sets and proved that t...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics Vol. 313; no. 21; pp. 2401 - 2408
Main Authors: Bhattacharya, Bhaswar B., Das, Sandip
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2013
Subjects:
ISSN:0012-365X, 1872-681X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aichholzer et al. [O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. Tóth, Decompositions, partitions, and coverings with convex polygons and pseudo-triangles, Graphs and Combinatorics 23 (2007) 481–507] introduced the notion of pseudo-convex partitioning of planar point sets and proved that the pseudo-convex partition number ψ(n) satisfies 34⌊n4⌋≤ψ(n)≤⌈n4⌉. In this paper we prove that ψ(13)=3, which improves the upper bound on ψ(n) to ⌈3n13⌉, thus answering a question posed by Aichholzer et al. in the same paper.
AbstractList Aichholzer et al. [O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. TA3th, Decompositions, partitions, and coverings with convex polygons and pseudo-triangles, Graphs and Combinatorics 23 (2007) 481a507] introduced the notion of pseudo-convex partitioning of planar point sets and proved that the pseudo-convex partition number I(n)I(n) satisfies 34an4aaOI(n)aOan4a. In this paper we prove that I(13)=3I(13)=3, which improves the upper bound on I(n)I(n) to a3n13a, thus answering a question posed by Aichholzer et al. in the same paper.
Aichholzer et al. [O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. Tóth, Decompositions, partitions, and coverings with convex polygons and pseudo-triangles, Graphs and Combinatorics 23 (2007) 481–507] introduced the notion of pseudo-convex partitioning of planar point sets and proved that the pseudo-convex partition number ψ(n) satisfies 34⌊n4⌋≤ψ(n)≤⌈n4⌉. In this paper we prove that ψ(13)=3, which improves the upper bound on ψ(n) to ⌈3n13⌉, thus answering a question posed by Aichholzer et al. in the same paper.
Author Das, Sandip
Bhattacharya, Bhaswar B.
Author_xml – sequence: 1
  givenname: Bhaswar B.
  surname: Bhattacharya
  fullname: Bhattacharya, Bhaswar B.
  email: bhaswar.bhattacharya@gmail.com, bhaswar@stanford.edu
  organization: Department of Statistics, Stanford University, CA, USA
– sequence: 2
  givenname: Sandip
  surname: Das
  fullname: Das, Sandip
  email: sandipdas@isical.ac.in
  organization: Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, India
BookMark eNqFkD1rwzAQhkVJoUnaP9DJYxe7OsmWbehSQr8gkKWFbEKWT6DgWK6khPbf1yadOqTTcdz7HHfPgsx61yMht0AzoCDud1lrg84YBZ7RMqO0vCBzqEqWigq2MzKnFFjKRbG9IosQdnTsBa_mBDZ9MgQ8tC7Vrj_iVzIoH220rg-JM4lKhk71yieDs31MAsZrcmlUF_Dmty7Jx_PT--o1XW9e3laP61RzIWLKqBFK11zUojFcmIJCrducNyXjTdPWDJQCkdNxwMFwZYzKS4ZKIFZKV5ovyd1p7-Dd5wFDlPvxRezGc9AdggRRQgE1her_aAE8r1kl2BitTlHtXQgejdQ2qund6JXtJFA5CZU7OQmVk1BJSzkKHVH2Bx283Sv_fR56OEE4qjpa9DJoi73G1nrUUbbOnsN_AGVukHk
CitedBy_id crossref_primary_10_3390_sym10100447
Cites_doi 10.1556/SScMath.2011.1173
10.1007/s00454-007-1343-6
10.1007/s00373-007-0752-x
10.4153/CMB-1983-077-8
10.1016/0166-218X(94)00120-3
10.1007/s10998-013-9078-z
10.1007/s00454-007-9018-x
10.1016/S0925-7721(01)00023-2
10.1142/S0252959902000456
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.disc.2013.07.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-681X
EndPage 2408
ExternalDocumentID 10_1016_j_disc_2013_07_007
S0012365X13003075
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WH7
XPP
ZMT
~G-
29G
41~
6TJ
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FA8
FGOYB
G-2
HZ~
MVM
R2-
RNS
SEW
VH1
WUQ
XOL
ZCG
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c366t-20f6ac93696bf36f5019cd43b723bbd921aa1640f5031f3affa472ea6ee8ac8c3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324442200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-365X
IngestDate Mon Sep 29 03:45:22 EDT 2025
Sun Nov 09 12:21:29 EST 2025
Sat Nov 29 06:17:47 EST 2025
Tue Nov 18 22:25:06 EST 2025
Fri Feb 23 02:17:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Discrete geometry
Partition
Convex hull
Empty convex polygons
Pseudo-triangles
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-20f6ac93696bf36f5019cd43b723bbd921aa1640f5031f3affa472ea6ee8ac8c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://dx.doi.org/10.1016/j.disc.2013.07.007
PQID 1513492862
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1671519018
proquest_miscellaneous_1513492862
crossref_citationtrail_10_1016_j_disc_2013_07_007
crossref_primary_10_1016_j_disc_2013_07_007
elsevier_sciencedirect_doi_10_1016_j_disc_2013_07_007
PublicationCentury 2000
PublicationDate 20131101
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 20131101
  day: 01
PublicationDecade 2010
PublicationTitle Discrete mathematics
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hosono, Urabe (br000045) 2001; 20
Bhattacharya, Das (br000015) 2013; 66
Harborth (br000030) 1978; 33
Xu, Ding (br000075) 2002; 23
Aichholzer, Huemer, Kappes, Speckmann, Tóth (br000005) 2007; 23
Bhattacharya, Das (br000010) 2011; 48
Valtr (br000070) 2008
Nicolás (br000055) 2007; 38
Hosono, Urabe (br000040) 2004; vol. 3742
Horton (br000035) 1983; 26
Gerken (br000025) 2008; 39
Urabe (br000065) 1996; 64
Erdős (br000020) 1978; 5
Rote, Santos, Streinu (br000060) 2008
Hosono, Urabe (br000050) 2008; vol. 4535
Bhattacharya (10.1016/j.disc.2013.07.007_br000015) 2013; 66
Urabe (10.1016/j.disc.2013.07.007_br000065) 1996; 64
Valtr (10.1016/j.disc.2013.07.007_br000070) 2008
Xu (10.1016/j.disc.2013.07.007_br000075) 2002; 23
Aichholzer (10.1016/j.disc.2013.07.007_br000005) 2007; 23
Gerken (10.1016/j.disc.2013.07.007_br000025) 2008; 39
Horton (10.1016/j.disc.2013.07.007_br000035) 1983; 26
Hosono (10.1016/j.disc.2013.07.007_br000040) 2004; vol. 3742
Rote (10.1016/j.disc.2013.07.007_br000060) 2008
Bhattacharya (10.1016/j.disc.2013.07.007_br000010) 2011; 48
Harborth (10.1016/j.disc.2013.07.007_br000030) 1978; 33
Erdős (10.1016/j.disc.2013.07.007_br000020) 1978; 5
Hosono (10.1016/j.disc.2013.07.007_br000045) 2001; 20
Hosono (10.1016/j.disc.2013.07.007_br000050) 2008; vol. 4535
Nicolás (10.1016/j.disc.2013.07.007_br000055) 2007; 38
References_xml – volume: 5
  start-page: 52
  year: 1978
  end-page: 54
  ident: br000020
  article-title: Some more problems on elementary geometry
  publication-title: Australian Mathematical Society Gazette
– volume: 38
  start-page: 389
  year: 2007
  end-page: 397
  ident: br000055
  article-title: The empty hexagon theorem
  publication-title: Discrete and Computational Geometry
– start-page: 343
  year: 2008
  end-page: 410
  ident: br000060
  article-title: Pseudo-triangulations—a survey
  publication-title: Surveys on Discrete and Computational Geometry, Twenty Years Later
– volume: 64
  start-page: 179
  year: 1996
  end-page: 191
  ident: br000065
  article-title: On a partition into convex polygons
  publication-title: Discrete Applied Mathematics
– volume: 23
  start-page: 481
  year: 2007
  end-page: 507
  ident: br000005
  article-title: Decompositions, partitions, and coverings with convex polygons and pseudo-triangles
  publication-title: Graphs and Combinatorics
– volume: 20
  start-page: 97
  year: 2001
  end-page: 104
  ident: br000045
  article-title: On the number of disjoint convex quadrilaterals for a planar point set
  publication-title: Computational Geometry: Theory and Applications
– volume: 33
  start-page: 116
  year: 1978
  end-page: 118
  ident: br000030
  article-title: Konvexe funfecke in ebenen Punktmengen
  publication-title: Elemente der Mathematik
– volume: 48
  start-page: 445
  year: 2011
  end-page: 457
  ident: br000010
  article-title: On the minimum size of a point set containing a 5-hole and a disjoint 4-hole
  publication-title: Studia Scientiarum Mathematicarum Hungarica
– volume: 39
  start-page: 239
  year: 2008
  end-page: 272
  ident: br000025
  article-title: Empty convex hexagons in planar point sets
  publication-title: Discrete and Computational Geometry
– volume: 26
  start-page: 482
  year: 1983
  end-page: 484
  ident: br000035
  article-title: Sets with no empty convex 7-gons
  publication-title: Canadian Mathematical Bulletin
– volume: 23
  start-page: 487
  year: 2002
  end-page: 494
  ident: br000075
  article-title: On the empty convex partition of a finite set in the plane
  publication-title: Chinese Annals of Mathematics
– volume: vol. 3742
  start-page: 117
  year: 2004
  end-page: 122
  ident: br000040
  article-title: On the minimum size of a point set containing two non-intersecting empty convex polygons
  publication-title: JCDCG
– start-page: 433
  year: 2008
  end-page: 441
  ident: br000070
  article-title: On empty hexagons
  publication-title: Surveys on Discrete and Computational Geometry, Twenty Years Later
– volume: vol. 4535
  start-page: 90
  year: 2008
  end-page: 100
  ident: br000050
  article-title: A minimal planar point set with specified disjoint empty convex subsets
  publication-title: KyotoCGGT
– volume: 66
  start-page: 73
  year: 2013
  end-page: 86
  ident: br000015
  article-title: Disjoint empty convex pentagons in planar point sets
  publication-title: Periodica Mathematica Hungarica
– volume: 33
  start-page: 116
  issue: 5
  year: 1978
  ident: 10.1016/j.disc.2013.07.007_br000030
  article-title: Konvexe funfecke in ebenen Punktmengen
  publication-title: Elemente der Mathematik
– volume: 48
  start-page: 445
  issue: 4
  year: 2011
  ident: 10.1016/j.disc.2013.07.007_br000010
  article-title: On the minimum size of a point set containing a 5-hole and a disjoint 4-hole
  publication-title: Studia Scientiarum Mathematicarum Hungarica
  doi: 10.1556/SScMath.2011.1173
– volume: 38
  start-page: 389
  year: 2007
  ident: 10.1016/j.disc.2013.07.007_br000055
  article-title: The empty hexagon theorem
  publication-title: Discrete and Computational Geometry
  doi: 10.1007/s00454-007-1343-6
– volume: 23
  start-page: 481
  year: 2007
  ident: 10.1016/j.disc.2013.07.007_br000005
  article-title: Decompositions, partitions, and coverings with convex polygons and pseudo-triangles
  publication-title: Graphs and Combinatorics
  doi: 10.1007/s00373-007-0752-x
– volume: 26
  start-page: 482
  year: 1983
  ident: 10.1016/j.disc.2013.07.007_br000035
  article-title: Sets with no empty convex 7-gons
  publication-title: Canadian Mathematical Bulletin
  doi: 10.4153/CMB-1983-077-8
– volume: 64
  start-page: 179
  year: 1996
  ident: 10.1016/j.disc.2013.07.007_br000065
  article-title: On a partition into convex polygons
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/0166-218X(94)00120-3
– volume: 66
  start-page: 73
  issue: 1
  year: 2013
  ident: 10.1016/j.disc.2013.07.007_br000015
  article-title: Disjoint empty convex pentagons in planar point sets
  publication-title: Periodica Mathematica Hungarica
  doi: 10.1007/s10998-013-9078-z
– volume: 39
  start-page: 239
  year: 2008
  ident: 10.1016/j.disc.2013.07.007_br000025
  article-title: Empty convex hexagons in planar point sets
  publication-title: Discrete and Computational Geometry
  doi: 10.1007/s00454-007-9018-x
– volume: vol. 4535
  start-page: 90
  year: 2008
  ident: 10.1016/j.disc.2013.07.007_br000050
  article-title: A minimal planar point set with specified disjoint empty convex subsets
– volume: 20
  start-page: 97
  year: 2001
  ident: 10.1016/j.disc.2013.07.007_br000045
  article-title: On the number of disjoint convex quadrilaterals for a planar point set
  publication-title: Computational Geometry: Theory and Applications
  doi: 10.1016/S0925-7721(01)00023-2
– volume: 23
  start-page: 487
  issue: 4
  year: 2002
  ident: 10.1016/j.disc.2013.07.007_br000075
  article-title: On the empty convex partition of a finite set in the plane
  publication-title: Chinese Annals of Mathematics
  doi: 10.1142/S0252959902000456
– start-page: 433
  year: 2008
  ident: 10.1016/j.disc.2013.07.007_br000070
  article-title: On empty hexagons
– volume: 5
  start-page: 52
  year: 1978
  ident: 10.1016/j.disc.2013.07.007_br000020
  article-title: Some more problems on elementary geometry
  publication-title: Australian Mathematical Society Gazette
– start-page: 343
  year: 2008
  ident: 10.1016/j.disc.2013.07.007_br000060
  article-title: Pseudo-triangulations—a survey
– volume: vol. 3742
  start-page: 117
  year: 2004
  ident: 10.1016/j.disc.2013.07.007_br000040
  article-title: On the minimum size of a point set containing two non-intersecting empty convex polygons
SSID ssj0001638
Score 1.9922708
Snippet Aichholzer et al. [O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. Tóth, Decompositions, partitions, and coverings with convex polygons and...
Aichholzer et al. [O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. TA3th, Decompositions, partitions, and coverings with convex polygons and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2401
SubjectTerms Combinatorial analysis
Convex hull
Coverings
Discrete geometry
Empty convex polygons
Graphs
Mathematical analysis
Partition
Partitioning
Partitions
Polygons
Pseudo-triangles
Upper bounds
Title On pseudo-convex partitions of a planar point set
URI https://dx.doi.org/10.1016/j.disc.2013.07.007
https://www.proquest.com/docview/1513492862
https://www.proquest.com/docview/1671519018
Volume 313
WOSCitedRecordID wos000324442200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-681X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0001638
  issn: 0012-365X
  databaseCode: AIEXJ
  dateStart: 19950120
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivBQkblHQJk5i54JUQREgaDkUaW_WxLHVrYqzarJl-feMYyfpruiKHrhEediWk88Zj8fzzRDyBiW-TBnMogSyMkpjDREwrqIEf6w0g1xz1QVx_cqOjvh8XnyfTN71XJjLc2YMX6-L5X-FGu8h2JY6ewO4h0bxBp4j6HhE2PH4T8Afm3DZqFVVR51H-Tpc2kKDwxvYxNHGBriuF6YNG7VhnP-wQDGCenT4cwjnOtrRT6FtwdK0frt8zafQ_ALLVRnN3Y2zMpvKuUb39oSYemLdFRlpwxjm2fyqjKSOMOoHg-M09yIv9bVVf8n_KpqdleDsrWUbW5c62gVNdSlvN-Ngb81Pg9dg75B2JmwbwrYhZnb7nN0iewnLCj4lewefD-dfhrnYaptuLnbv5GlTzsNvuyfXqSZbk3SneZzcJ_f8kiE4cFA_IBNlHpK730aAHpH42AQboAcj6EGtAwgc6EEHeoCgPyY_Ph6evP8U-WQYkaR53uIQ1znILv1iqWmuM9TNZZXSkiW0LKsiiQFw6TvDBzTWFLSGlCUKcqU4SC7pEzI1tVFPScC1zUwEWczKKpX5rOg2eSDOuJRloqt9EvffQUgfKd4mLDkX1yOwT8KhztLFSdlZOus_r_CantPgBI6WnfVe91gIFIN2bwuMqleNQMXVxtnE9fmOMjnDYqgA82c36u1zcmf8UV6QaXuxUi_JbXnZLpqLV37I_QEDU4n6
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+pseudo-convex+partitions+of+a+planar+point+set&rft.jtitle=Discrete+mathematics&rft.au=Bhattacharya%2C+Bhaswar+B.&rft.au=Das%2C+Sandip&rft.date=2013-11-01&rft.issn=0012-365X&rft.volume=313&rft.issue=21&rft.spage=2401&rft.epage=2408&rft_id=info:doi/10.1016%2Fj.disc.2013.07.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2013_07_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon