Convolutional Autoencoder-Based Damage Detection for Urban Railway Tracks Using an Ultra-Weak FBG Array Monitoring System
Urban railway tracks inevitably suffer damage due to the cyclic load of trains, necessitating structural health monitoring (SHM) with the primary purpose of damage detection. Recently, the ultra-weak fiber Bragg grating (UWFBG) monitoring system has been employed for long-term monitoring of urban ra...
Saved in:
| Published in: | IEEE sensors journal Vol. 24; no. 20; pp. 33585 - 33593 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
15.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Urban railway tracks inevitably suffer damage due to the cyclic load of trains, necessitating structural health monitoring (SHM) with the primary purpose of damage detection. Recently, the ultra-weak fiber Bragg grating (UWFBG) monitoring system has been employed for long-term monitoring of urban railway tracks due to its ability to multiplex thousands of sensors on a single optical fiber. The vast amount of data collected imposes the importance of data-driven damage detection methods. Given the lack of labeled damage datasets, unsupervised learning methods are highlighted. This study proposes a damage detection method for urban railway tracks based on an unsupervised deep neural network, referred to as deep convolutional autoencoder (DCAE). The monitored data are first processed to the autocorrelation functions (ACFs) to be aligned across different channels, and then, the multichannel ACFs are used as the inputs of the DCAE model. Finally, the reconstruction error of the DCAE model is employed as the damage index, and field monitoring data are utilized to verify the proposed method. The results show that the proposed damage index is sensitive to track damage, and the precision of damage detection increases with the threshold of reconstruction error, reaching a peak at 1. The method also achieves a maximum F1 score of 0.90. |
|---|---|
| AbstractList | Urban railway tracks inevitably suffer damage due to the cyclic load of trains, necessitating structural health monitoring (SHM) with the primary purpose of damage detection. Recently, the ultra-weak fiber Bragg grating (UWFBG) monitoring system has been employed for long-term monitoring of urban railway tracks due to its ability to multiplex thousands of sensors on a single optical fiber. The vast amount of data collected imposes the importance of data-driven damage detection methods. Given the lack of labeled damage datasets, unsupervised learning methods are highlighted. This study proposes a damage detection method for urban railway tracks based on an unsupervised deep neural network, referred to as deep convolutional autoencoder (DCAE). The monitored data are first processed to the autocorrelation functions (ACFs) to be aligned across different channels, and then, the multichannel ACFs are used as the inputs of the DCAE model. Finally, the reconstruction error of the DCAE model is employed as the damage index, and field monitoring data are utilized to verify the proposed method. The results show that the proposed damage index is sensitive to track damage, and the precision of damage detection increases with the threshold of reconstruction error, reaching a peak at 1. The method also achieves a maximum F1 score of 0.90. |
| Author | Zhang, Shijie Lin, Chao Chen, Jiahui Li, Qiuyi Wei, Shiyin |
| Author_xml | – sequence: 1 givenname: Jiahui surname: Chen fullname: Chen, Jiahui email: chenjh7977@126.com organization: China Railway Siyuan Survey and Design Group Company Ltd., Wuhan, China – sequence: 2 givenname: Qiuyi surname: Li fullname: Li, Qiuyi email: 003713@crfsdi.com organization: China Railway Siyuan Survey and Design Group Company Ltd., Wuhan, China – sequence: 3 givenname: Shijie surname: Zhang fullname: Zhang, Shijie email: 004193@crfsdi.com organization: China Railway Siyuan Survey and Design Group Company Ltd., Wuhan, China – sequence: 4 givenname: Chao surname: Lin fullname: Lin, Chao email: 005672@crfsdi.com organization: China Railway Siyuan Survey and Design Group Company Ltd., Wuhan, China – sequence: 5 givenname: Shiyin orcidid: 0000-0001-6204-7128 surname: Wei fullname: Wei, Shiyin email: shiyin.wei@hit.edu.cn organization: School of Civil Engineering, Harbin Institute of Technology, Harbin, China |
| BookMark | eNp9kU9LAzEQxYMo2FY_gOAh4HlrstlNdo_9r1IVbIveljSdLdtuNzXJKv32ZmkP4sG5zDD83sB700bnla4AoRtKupSS9P5pNnrphiSMuiyilMfhGWrROE4CKqLkvJkZCSImPi5R29oNITQVsWihw0BXX7qsXaErWeJe7TRUSq_ABH1pYYWHcifXgIfgQDUQzrXBC7OUFX6TRfktD3hupNpavLBFtcZ-vyidkcE7yC0e9ye4Z4yHnnVVOG0aZHawDnZX6CKXpYXrU--gxXg0HzwE09fJ46A3DRTj3AV0GaU8ZcCSlYQ0YSnngnDhKwKRi1SJhOdxKIVSHiRLHoVULWOSqjxnkgrWQXfHu3ujP2uwLtvo2nizNmOUCsriJGKeEkdKGW2tgTxThZONYe-lKDNKsibnrMk5a3LOTjl7Jf2j3JtiJ83hX83tUVMAwC_eP0wIwn4Ak5GKzg |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1111_mice_13342 crossref_primary_10_1109_JSEN_2025_3574559 |
| Cites_doi | 10.1007/s11071-023-08391-0 10.1177/1475921720972416 10.1177/1475921710365437 10.1016/j.engstruct.2021.113064 10.3390/buildings14051239 10.1007/s00366-017-0563-5 10.1177/1475921720942836 10.1016/j.ymssp.2022.109175 10.1016/j.eng.2018.11.027 10.1016/j.engstruct.2008.05.024 10.1016/j.engstruct.2021.113783 10.3390/su15065391 10.1016/j.engstruct.2018.05.109 10.1016/j.engstruct.2016.04.057 10.1016/S0263-8223(03)00023-0 10.1016/j.jsv.2007.12.008 10.1177/1475921720926267 10.1016/j.jsv.2007.01.021 10.1007/s00366-021-01584-4 10.1016/j.jprocont.2024.103176 10.3390/app7050510 10.3390/app11062610 10.3390/s21103333 10.1016/j.ymssp.2012.02.014 10.1177/14759217221104224 10.1016/j.apacoust.2019.107133 10.1177/14759217211069842 10.1002/stc.1886 10.3390/s20102778 10.1016/j.jsv.2011.09.004 10.1016/j.ymssp.2022.109287 10.1016/j.ymssp.2020.107077 10.1002/stc.1503 10.3390/s22051839 10.1177/1475921716639587 10.1016/j.measurement.2018.10.095 10.1177/1475921718804132 10.1177/1475921720921772 10.1177/1475921720934051 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2024.3411652 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 33593 |
| ExternalDocumentID | 10_1109_JSEN_2024_3411652 10558770 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2023M744101 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 52208311 – fundername: Funding for the Postdoctoral Innovative Practice Position in Hubei Province for the 2022–2023 year – fundername: Key Research Project of China Railway Siyuan Survey and Design Group Company Ltd. grantid: KY2023001S – fundername: National Natural Science Foundation of China grantid: 52208311; U23A20660 – fundername: Major Scientific and Technological Research and Development projects of China Railway Construction Company Ltd. grantid: 2021-A03 – fundername: Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) grantid: 2021QNRC001 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c366t-1b49693e38dae98396670677774e7f79c786f52a7cc4960b6421cb509cff3a173 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001338604800172&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:19:11 EDT 2025 Tue Nov 18 22:37:17 EST 2025 Sat Nov 29 06:40:05 EST 2025 Wed Aug 27 02:15:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-1b49693e38dae98396670677774e7f79c786f52a7cc4960b6421cb509cff3a173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6204-7128 |
| PQID | 3117135843 |
| PQPubID | 75733 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2024_3411652 proquest_journals_3117135843 crossref_primary_10_1109_JSEN_2024_3411652 ieee_primary_10558770 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-15 |
| PublicationDateYYYYMMDD | 2024-10-15 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Zong (ref39) |
| References_xml | – ident: ref7 doi: 10.1007/s11071-023-08391-0 – ident: ref3 doi: 10.1177/1475921720972416 – ident: ref32 doi: 10.1177/1475921710365437 – ident: ref20 doi: 10.1016/j.engstruct.2021.113064 – ident: ref36 doi: 10.3390/buildings14051239 – ident: ref9 doi: 10.1007/s00366-017-0563-5 – ident: ref30 doi: 10.1177/1475921720942836 – ident: ref5 doi: 10.1016/j.ymssp.2022.109175 – ident: ref2 doi: 10.1016/j.eng.2018.11.027 – ident: ref10 doi: 10.1016/j.engstruct.2008.05.024 – ident: ref24 doi: 10.1016/j.engstruct.2021.113783 – ident: ref1 doi: 10.3390/su15065391 – ident: ref27 doi: 10.1016/j.engstruct.2018.05.109 – ident: ref8 doi: 10.1016/j.engstruct.2016.04.057 – ident: ref16 doi: 10.1016/S0263-8223(03)00023-0 – ident: ref15 doi: 10.1016/j.jsv.2007.12.008 – ident: ref21 doi: 10.1177/1475921720926267 – ident: ref11 doi: 10.1016/j.jsv.2007.01.021 – ident: ref25 doi: 10.1007/s00366-021-01584-4 – ident: ref38 doi: 10.1016/j.jprocont.2024.103176 – ident: ref6 doi: 10.3390/app7050510 – ident: ref29 doi: 10.3390/app11062610 – ident: ref28 doi: 10.3390/s21103333 – ident: ref14 doi: 10.1016/j.ymssp.2012.02.014 – ident: ref19 doi: 10.1177/14759217221104224 – ident: ref34 doi: 10.1016/j.apacoust.2019.107133 – ident: ref26 doi: 10.1177/14759217211069842 – ident: ref17 doi: 10.1002/stc.1886 – ident: ref22 doi: 10.3390/s20102778 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref39 article-title: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection – ident: ref12 doi: 10.1016/j.jsv.2011.09.004 – ident: ref35 doi: 10.1016/j.ymssp.2022.109287 – ident: ref4 doi: 10.1016/j.ymssp.2020.107077 – ident: ref13 doi: 10.1002/stc.1503 – ident: ref31 doi: 10.3390/s22051839 – ident: ref18 doi: 10.1177/1475921716639587 – ident: ref37 doi: 10.1016/j.measurement.2018.10.095 – ident: ref23 doi: 10.1177/1475921718804132 – ident: ref33 doi: 10.1177/1475921720921772 – ident: ref40 doi: 10.1177/1475921720934051 |
| SSID | ssj0019757 |
| Score | 2.429043 |
| Snippet | Urban railway tracks inevitably suffer damage due to the cyclic load of trains, necessitating structural health monitoring (SHM) with the primary purpose of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 33585 |
| SubjectTerms | Artificial neural networks Autocorrelation functions Bragg gratings Cyclic loads Damage detection Data mining Data models deep convolutional autoencoder (DCAE) Error detection Feature extraction Machine learning Monitoring Monitoring systems Optical fibers Rail transportation Railway engineering Railway tracks Reconstruction Sensors Structural health monitoring Trains ultra-weak fiber Bragg grating (UWFBG) Unsupervised learning urban railway track vibration monitoring Vibrations |
| Title | Convolutional Autoencoder-Based Damage Detection for Urban Railway Tracks Using an Ultra-Weak FBG Array Monitoring System |
| URI | https://ieeexplore.ieee.org/document/10558770 https://www.proquest.com/docview/3117135843 |
| Volume | 24 |
| WOSCitedRecordID | wos001338604800172&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA8qgu2DWmvx6gd56JMQ3Wyym82jX6dIOYp67b0tSTah4rlX9vYs99-byUZRpAXflmWyDPyS-djM_Aahby4pdGqZJkqoinDlONHG72Wd8cpVmVMm8HT__C4Gg2I0kj9is3rohbHWhuIzewCP4S6_mpgZ_Co7hGGOhRA-Q18UQnTNWs9XBlIEWk9_ghPCmRjFK0yayMPL67OBTwVTfuBtNs2z9JUTClNV3pji4F_6a-_UbB2txkASH3XIf0ILtt5AH1_QC26glTjh_Pf8M5qfTOqHuM1g2aydAIVlZRty7B1ZhU_VvTct-NS2oTirxj6axcNGqxpfqdvxXzXH3q-ZuykOVQbYvx-O20aRX1bd4f7xuVel8UKdkQAFcMeGvomG_bObkwsSxy4Qw_K8JVRzmUtmWVEpK30AlecCeOZ8oGiFE9KIIndZqoQxXjDR0CprtA88jHNMUcG-oKV6UtsthLNEszRTHMIErgqrmHTApZRTCpwEVQ8lTziUJnKSw2iMcRlyk0SWAF0J0JURuh7af17ypyPk-J_wJmD1QrCDqYd2ntAu45mdloxSmFdYcPb1H8u20Qf4Orgumu2gpbaZ2V20bB7a22mzF7bjI1Xy3KQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqWgl66INSdQsUH3qqZIhjJ46PvBZKt6sK2HZvke3YKmLJomyWav99PY5BINRK3KJorIz02fOIZ75B6LNLCp1apokSqiJcOU608XtZZ7xyVeaUCTzdPwdiOCzGY_kjNquHXhhrbSg-s9vwGO7yq6mZw6-yHRjmWAjhM_TnGecp7dq17i4NpAjEnv4MJ4QzMY6XmDSROydnh0OfDKZ821ttmmfpAzcU5qo8MsbBw_RfP1G3N-hVDCXxbof9W_TM1qvo5T2CwVW0HGec_168Q4v9aX0TNxosm7dTILGsbEP2vCur8IG68sYFH9g2lGfV2MezeNRoVeNTdTH5oxbYezZzOcOhzgD796NJ2yjyy6pL3N878qo0XqgzE6AA7vjQ19Cof3i-f0zi4AViWJ63hGouc8ksKyplpQ-h8lwA05wPFa1wQhpR5C5LlTDGCyYammWN9qGHcY4pKth7tFRPa_sB4SzRLM0Uh0CBq8IqJh2wKeWUAitB1UPJLQ6liazkMBxjUobsJJElQFcCdGWEroe-3C257ig5_ie8BljdE-xg6qGNW7TLeGpnJaMUJhYWnH38x7IttHx8_n1QDr4Ov62jFfgSODKabaCltpnbTfTC3LQXs-ZT2Jp_Afj-3-s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Autoencoder-Based+Damage+Detection+for+Urban+Railway+Tracks+Using+an+Ultra-Weak+FBG+Array+Monitoring+System&rft.jtitle=IEEE+sensors+journal&rft.au=Chen%2C+Jiahui&rft.au=Li%2C+Qiuyi&rft.au=Zhang%2C+Shijie&rft.au=Lin%2C+Chao&rft.date=2024-10-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=20&rft.spage=33585&rft.epage=33593&rft_id=info:doi/10.1109%2FJSEN.2024.3411652&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3411652 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |