Recent advances in explainable Machine Learning models for wildfire prediction

Climate change has caused increasingly frequent occurrences of forest fires around the world. Machine Learning (ML) and Artificial Intelligence models have emerged to predict both the onset of wildfires and evaluate the extent of damage a wildfire would cause. However, understanding what factors lea...

Full description

Saved in:
Bibliographic Details
Published in:Applied computing and geosciences Vol. 27; p. 100266
Main Authors: Sengupta, Abira, Woodford, Brendon J.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2025
Elsevier
Subjects:
ISSN:2590-1974, 2590-1974
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Climate change has caused increasingly frequent occurrences of forest fires around the world. Machine Learning (ML) and Artificial Intelligence models have emerged to predict both the onset of wildfires and evaluate the extent of damage a wildfire would cause. However, understanding what factors lead to generating models that exhibit optimal performance and providing insight into the importance of features on model outcomes is the subject of ongoing research. To help answer these questions, we propose a framework which adopts recent advances in methods for obtaining optimal models along with the application of SHAP (SHapley Additive exPlanations) values to obtain the most important features which affect the performance of wildfire prediction models. We use this framework as a classification task to predict the likelihood of wildfire occurrence based on environmental conditions, using a data set which represents instances of forest fires in Algerian, and as a regression task to predict the burned area once a wildfire has begun, using a data set from Portugal that recorded the area burned after a fire event. Insights provided by this framework allow us to assess the efficacy of specific ML models for wildfire prediction, ultimately making recommendations as to which ML models are more suited towards these challenging tasks. [Display omitted] •Machine learning model framework for wildfire forecasting and burned area estimation.•Shapley values show interactions between features that influence model predictions.•Adopting a new method to show contributions of hyper-parameters on model learning.
AbstractList Climate change has caused increasingly frequent occurrences of forest fires around the world. Machine Learning (ML) and Artificial Intelligence models have emerged to predict both the onset of wildfires and evaluate the extent of damage a wildfire would cause. However, understanding what factors lead to generating models that exhibit optimal performance and providing insight into the importance of features on model outcomes is the subject of ongoing research. To help answer these questions, we propose a framework which adopts recent advances in methods for obtaining optimal models along with the application of SHAP (SHapley Additive exPlanations) values to obtain the most important features which affect the performance of wildfire prediction models. We use this framework as a classification task to predict the likelihood of wildfire occurrence based on environmental conditions, using a data set which represents instances of forest fires in Algerian, and as a regression task to predict the burned area once a wildfire has begun, using a data set from Portugal that recorded the area burned after a fire event. Insights provided by this framework allow us to assess the efficacy of specific ML models for wildfire prediction, ultimately making recommendations as to which ML models are more suited towards these challenging tasks.
Climate change has caused increasingly frequent occurrences of forest fires around the world. Machine Learning (ML) and Artificial Intelligence models have emerged to predict both the onset of wildfires and evaluate the extent of damage a wildfire would cause. However, understanding what factors lead to generating models that exhibit optimal performance and providing insight into the importance of features on model outcomes is the subject of ongoing research. To help answer these questions, we propose a framework which adopts recent advances in methods for obtaining optimal models along with the application of SHAP (SHapley Additive exPlanations) values to obtain the most important features which affect the performance of wildfire prediction models. We use this framework as a classification task to predict the likelihood of wildfire occurrence based on environmental conditions, using a data set which represents instances of forest fires in Algerian, and as a regression task to predict the burned area once a wildfire has begun, using a data set from Portugal that recorded the area burned after a fire event. Insights provided by this framework allow us to assess the efficacy of specific ML models for wildfire prediction, ultimately making recommendations as to which ML models are more suited towards these challenging tasks. [Display omitted] •Machine learning model framework for wildfire forecasting and burned area estimation.•Shapley values show interactions between features that influence model predictions.•Adopting a new method to show contributions of hyper-parameters on model learning.
ArticleNumber 100266
Author Woodford, Brendon J.
Sengupta, Abira
Author_xml – sequence: 1
  givenname: Abira
  orcidid: 0000-0002-6867-3362
  surname: Sengupta
  fullname: Sengupta, Abira
  email: sengupta.abira0609@gmail.com
– sequence: 2
  givenname: Brendon J.
  surname: Woodford
  fullname: Woodford, Brendon J.
BookMark eNp9kNtKAzEQhoNU8NQn8CYv0JrTZncvvBDxUKgKotdhNpnUlDVbkqXq2xutiFdezfAz_8fwHZFJHCIScsrZnDOuz9ZzsLDKc8FEVRImtN4jh6Jq2Yy3tZr82Q_INOc1KzcV51XND8n9I1qMIwW3hWgx0xApvm96CBG6Hukd2JcQkS4RUgxxRV8Hh32mfkj0LfTOh4R0k9AFO4YhnpB9D33G6c88Js_XV0-Xt7Plw83i8mI5s1LrccZFeQna2ndaNgx8q5yQqLu6EYx7h413GirfcNX4WnotdddKxWsF2ipEJY_JYsd1A6zNJoVXSB9mgGC-gyGtDKQx2B4NStdgo4RqtVfAmw4rJZmQXCPXlmFhyR3LpiHnhP6Xx5n5MmzW5tuw-TJsdoZL63zXKjZwGzCZbAMWha4YsWP5I_zb_wRnTYX4
Cites_doi 10.1175/1520-0442(2004)017<2866:SDPICA>2.0.CO;2
10.1214/13-STS451
10.1109/ACCESS.2019.2957837
10.1016/j.ecoinf.2024.102598
10.1006/jcss.1997.1504
10.3390/rs13132513
10.1007/s11676-024-01717-7
10.1071/WF06002
10.1038/nclimate1633
10.5194/bg-13-3359-2016
10.1109/5254.708428
10.1029/2010RG000345
10.1080/01621459.1937.10503522
10.1016/j.aci.2018.08.003
10.1016/j.agwat.2019.105758
10.1071/WF18018
10.1007/s10346-015-0557-6
10.5558/tfc65258-4
10.1023/A:1010933404324
10.1029/2022GL099368
10.3389/frsen.2022.825190
10.32604/jai.2024.054314
10.1016/S1364-8152(01)00072-X
10.3390/rs16040715
10.1177/030913259101500205
10.1029/2008GL035333
10.1162/neco.2006.18.7.1678
10.1016/j.heliyon.2023.e18064
10.1016/j.jenvman.2008.07.005
10.3390/math9060691
10.1016/j.rse.2020.111702
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.acags.2025.100266
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2590-1974
ExternalDocumentID oai_doaj_org_article_e3d8e842496f4a18be54302316e16c0e
10_1016_j_acags_2025_100266
S2590197425000485
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACLIJ
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-c366t-12259a97fb6380af94d23e6b78201fde8fd6a5f8148f73f636b934174a6c4ee43
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001546503100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2590-1974
IngestDate Fri Oct 03 12:53:11 EDT 2025
Sat Nov 29 07:28:41 EST 2025
Sun Oct 19 01:40:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Explainable artificial intelligence
Hyper-parameter optimisation
SHAP values
Forest fires
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-12259a97fb6380af94d23e6b78201fde8fd6a5f8148f73f636b934174a6c4ee43
ORCID 0000-0002-6867-3362
OpenAccessLink https://doaj.org/article/e3d8e842496f4a18be54302316e16c0e
ParticipantIDs doaj_primary_oai_doaj_org_article_e3d8e842496f4a18be54302316e16c0e
crossref_primary_10_1016_j_acags_2025_100266
elsevier_sciencedirect_doi_10_1016_j_acags_2025_100266
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Applied computing and geosciences
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Conover, Iman (b11) 1979
Farhad Mortezapour, Thinagaran, Norwati, Raihani (b18) 2024; 6
Hansen, Ruedy, Sato, Lo (b24) 2010; 48
Hearst, Dumais, Osuna, Platt, Scholkopf (b27) 1998; 13
Badhan, Shamsaei, Ebrahimian, Bebis, Lareau, Rowell (b4) 2024; 16
Breiman (b7) 2001; 45
Davies, Legg (b14) 2016; e2649
Shabbar, Skinner (b42) 2004; 17
Abid, Izeboudjen (b1) 2020
Raghunath, Kumar, Venkatesan, Singh, Mahesh, Singh (b40) 2022; 21
Freund, Schapire (b20) 1997; 55
Tharwat (b48) 2021; 17
Fan, Ma, Wu, Zhang, Yu, Zeng (b17) 2019; 225
Mell, Jenkins, Gould, Cheney (b36) 2007; 16
The European Space Agency (b49) 2021
Suthaharan (b46) 2015; no. 36
Goodchild (b23) 1991; 15
Hantson, Arneth, Harrison, Kelley, Prentice, Rabin, Archibald, Mouillot, Arnold, Artaxo, Bachelet, Ciais, Forrest, Friedlingstein, Hickler, Kaplan, Kloster, Knorr, Lasslop, Li, Mangeon, Melton, Meyn, Sitch, Spessa, van der Werf, Voulgarakis, Yue (b25) 2016; 13
Sullivan (b45) 2019
Chen, Guestrin (b10) 2016
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b29) 2017; 30
Anon (b3) 1993
Hastie, Tibshirani, Friedman (b26) 2009
Tien Bui, Tuan, Klempe, Pradhan, Revhaug (b50) 2016; 13
Kondylatos, Prapas, Ronco, Papoutsis, Camps-Valls, Piles, Fernández-Torres, Carvalhais (b31) 2022; 49
Shrestha, Solomatine (b43) 2006; 18
Bhatt, Chouhan (b6) 2024; 35
Gibson, Danaher, Hehir, Collins (b22) 2020; 240
Jaafari, Pourghasemi (b28) 2019
Martínez, Vega-Garcia, Chuvieco (b35) 2009; 90
Cortez, Morais (b12) 2007
Dessler, Zhang, Yang (b16) 2008; 35
Naderpour, Rizeei, Ramezani (b37) 2021; 13
Akiba, Sano, Yanase, Ohta, Koyama (b2) 2019
Breiman, Friedman, Olshen, Stone (b8) 2017
Friedman (b21) 1937; 32
Oliveira, Torgo, Santos Costa (b38) 2021; 9
Zaidi (b53) 2023; 9
Tyukavina, Potapov, Hansen, Pickens, Stehman, Turubanova, Parker, Zalles, Lima, Kommareddy, Song, Wang, Harris (b51) 2022; 3
Liang, Zhang, Wang (b32) 2019; 7
Sarkar, Majhi, Pathak, Biswas, Mahapatra, Kumar, Bhatt, Kuniyal, Nautiyal (b41) 2024; 81
Dai (b13) 2013; 3
Taylor, Woolford, Dean, Martell (b47) 2013; 28
Khalil Alsmadi, Omar, Noah, Almarashdah (b30) 2009
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b39) 2011; 12
California Air Resources Board (b9) 2024
Lundberg, Lee (b34) 2017
Bergstra, Yamins, Cox (b5) 2013
de Bem, de Carvalho Júnior, Matricardi, Guimarães, Gomes (b15) 2018; 28
Finney, Grenfell, McHugh (b19) 2009; 55
Stocks, Lynham, Lawson, Alexander, Wagner, McAlpine, Dube (b44) 1989; 65
Watanabe, Bansal, Hutter (b52) 2023
Lopes, Cruz, Viegas (b33) 2002; 17
Hastie (10.1016/j.acags.2025.100266_b26) 2009
Davies (10.1016/j.acags.2025.100266_b14) 2016; e2649
Tyukavina (10.1016/j.acags.2025.100266_b51) 2022; 3
Stocks (10.1016/j.acags.2025.100266_b44) 1989; 65
Oliveira (10.1016/j.acags.2025.100266_b38) 2021; 9
Tharwat (10.1016/j.acags.2025.100266_b48) 2021; 17
Taylor (10.1016/j.acags.2025.100266_b47) 2013; 28
Sullivan (10.1016/j.acags.2025.100266_b45) 2019
Conover (10.1016/j.acags.2025.100266_b11) 1979
Finney (10.1016/j.acags.2025.100266_b19) 2009; 55
California Air Resources Board (10.1016/j.acags.2025.100266_b9) 2024
Breiman (10.1016/j.acags.2025.100266_b8) 2017
Bhatt (10.1016/j.acags.2025.100266_b6) 2024; 35
Shrestha (10.1016/j.acags.2025.100266_b43) 2006; 18
Akiba (10.1016/j.acags.2025.100266_b2) 2019
Naderpour (10.1016/j.acags.2025.100266_b37) 2021; 13
Sarkar (10.1016/j.acags.2025.100266_b41) 2024; 81
Khalil Alsmadi (10.1016/j.acags.2025.100266_b30) 2009
Martínez (10.1016/j.acags.2025.100266_b35) 2009; 90
Shabbar (10.1016/j.acags.2025.100266_b42) 2004; 17
Cortez (10.1016/j.acags.2025.100266_b12) 2007
Anon (10.1016/j.acags.2025.100266_b3) 1993
Fan (10.1016/j.acags.2025.100266_b17) 2019; 225
Ke (10.1016/j.acags.2025.100266_b29) 2017; 30
The European Space Agency (10.1016/j.acags.2025.100266_b49) 2021
Mell (10.1016/j.acags.2025.100266_b36) 2007; 16
Badhan (10.1016/j.acags.2025.100266_b4) 2024; 16
Tien Bui (10.1016/j.acags.2025.100266_b50) 2016; 13
Farhad Mortezapour (10.1016/j.acags.2025.100266_b18) 2024; 6
Bergstra (10.1016/j.acags.2025.100266_b5) 2013
Jaafari (10.1016/j.acags.2025.100266_b28) 2019
Goodchild (10.1016/j.acags.2025.100266_b23) 1991; 15
Pedregosa (10.1016/j.acags.2025.100266_b39) 2011; 12
Friedman (10.1016/j.acags.2025.100266_b21) 1937; 32
Liang (10.1016/j.acags.2025.100266_b32) 2019; 7
Hearst (10.1016/j.acags.2025.100266_b27) 1998; 13
Freund (10.1016/j.acags.2025.100266_b20) 1997; 55
Abid (10.1016/j.acags.2025.100266_b1) 2020
Zaidi (10.1016/j.acags.2025.100266_b53) 2023; 9
Hansen (10.1016/j.acags.2025.100266_b24) 2010; 48
de Bem (10.1016/j.acags.2025.100266_b15) 2018; 28
Breiman (10.1016/j.acags.2025.100266_b7) 2001; 45
Dai (10.1016/j.acags.2025.100266_b13) 2013; 3
Suthaharan (10.1016/j.acags.2025.100266_b46) 2015; no. 36
Hantson (10.1016/j.acags.2025.100266_b25) 2016; 13
Gibson (10.1016/j.acags.2025.100266_b22) 2020; 240
Kondylatos (10.1016/j.acags.2025.100266_b31) 2022; 49
Lundberg (10.1016/j.acags.2025.100266_b34) 2017
Watanabe (10.1016/j.acags.2025.100266_b52) 2023
Raghunath (10.1016/j.acags.2025.100266_b40) 2022; 21
Lopes (10.1016/j.acags.2025.100266_b33) 2002; 17
Dessler (10.1016/j.acags.2025.100266_b16) 2008; 35
Chen (10.1016/j.acags.2025.100266_b10) 2016
References_xml – volume: 28
  start-page: 586
  year: 2013
  end-page: 615
  ident: b47
  article-title: Wildfire prediction to inform fire management: Statistical science challenges
  publication-title: Statist. Sci.
– volume: 17
  start-page: 168
  year: 2021
  end-page: 192
  ident: b48
  article-title: Classification assessment methods
  publication-title: Appl. Comput. Inform.
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: b21
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Amer. Statist. Assoc.
– volume: 9
  year: 2021
  ident: b38
  article-title: Evaluation procedures for forecasting with spatiotemporal data
  publication-title: Mathematics
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: b20
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. System Sci.
– volume: 15
  start-page: 194
  year: 1991
  end-page: 200
  ident: b23
  article-title: Geographic information systems
  publication-title: Prog. Hum. Geogr.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b39
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– year: 1979
  ident: b11
  article-title: Multiple-comparisons procedures. Informal report
– start-page: 607
  year: 2019
  end-page: 619
  ident: b28
  article-title: 28 - factors influencing regional-scale wildfire probability in Iran: An application of random forest and support vector machine
  publication-title: Spatial Modeling in GIS and R for Earth and Environmental Sciences
– volume: 18
  start-page: 1678
  year: 2006
  end-page: 1710
  ident: b43
  article-title: Experiments with AdaBoost.RT, an improved boosting scheme for regression
  publication-title: Neural Comput.
– volume: 3
  year: 2022
  ident: b51
  article-title: Global trends of forest loss due to fire from 2001 to 2019
  publication-title: Front. Remote. Sens.
– volume: 28
  start-page: 35
  year: 2018
  end-page: 45
  ident: b15
  article-title: Predicting wildfire vulnerability using logistic regression and artificial neural networks: a case study in Brazil
  publication-title: Int. J. Wildland Fire
– start-page: 48
  year: 1993
  ident: b3
  article-title: Fire Weather Index System Tables for New Zealand
– volume: 6
  start-page: 301
  year: 2024
  end-page: 360
  ident: b18
  article-title: A comprehensive overview and comparative analysis on deep learning models
  publication-title: J. Artif. Intell.
– start-page: 785
  year: 2016
  end-page: –794
  ident: b10
  article-title: XGBoost: A scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 2623
  year: 2019
  end-page: 2631
  ident: b2
  article-title: Optuna: A next-generation hyperparameter optimization framework
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– volume: 13
  year: 2021
  ident: b37
  article-title: Forest fire risk prediction: A spatial deep neural network-based framework
  publication-title: Remote. Sens.
– volume: e2649
  year: 2016
  ident: b14
  article-title: Regional variation in fire weather controls the reported occurrence of Scottish wildfires
  publication-title: Peer J
– start-page: 4389
  year: 2023
  end-page: 4396
  ident: b52
  article-title: PED-ANOVA: Efficiently quantifying hyperparameter importance in arbitrary subspaces
  publication-title: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence
– start-page: 363
  year: 2020
  end-page: 370
  ident: b1
  article-title: Predicting forest fire in Algeria using data mining techniques: Case study of the decision tree algorithm
  publication-title: Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) Volume 4-Advanced Intelligent Systems for Applied Computing Sciences
– volume: 9
  year: 2023
  ident: b53
  article-title: Predicting wildfires in Algerian forests using machine learning models
  publication-title: Heliyon
– volume: 35
  year: 2008
  ident: b16
  article-title: Water-vapor climate feedback inferred from climate fluctuations, 2003–2008
  publication-title: Geophys. Res. Lett.
– volume: 16
  start-page: 1
  year: 2007
  end-page: 22
  ident: b36
  article-title: A physics based approach to modeling grassland fires
  publication-title: Int. J. Wildland Fire
– year: 2009
  ident: b26
  publication-title: The Elements of Statistical Learning Data Mining, Inference, and Prediction
– volume: 81
  year: 2024
  ident: b41
  article-title: Ensembling machine learning models to identify forest fire-susceptible zones in Northeast India
  publication-title: Ecol. Inform.
– volume: 7
  start-page: 176746
  year: 2019
  end-page: 176755
  ident: b32
  article-title: A neural network model for wildfire scale prediction using meteorological factors
  publication-title: IEEE Access
– volume: 65
  start-page: 258
  year: 1989
  end-page: 265
  ident: b44
  article-title: The Canadian forest fire danger rating system: An overview
  publication-title: For. Chron.
– start-page: 4768
  year: 2017
  end-page: 4777
  ident: b34
  article-title: A unified approach to interpreting model predictions
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems
– volume: 48
  year: 2010
  ident: b24
  article-title: Global surface temperature change
  publication-title: Rev. Geophys.
– volume: 17
  start-page: 2866
  year: 2004
  end-page: 2880
  ident: b42
  article-title: Summer drought patterns in Canada and the relationship to global sea surface temperatures
  publication-title: J. Clim.
– volume: 16
  year: 2024
  ident: b4
  article-title: Deep learning approach to improve spatial resolution of GOES-17 wildfire boundaries using VIIRS satellite data
  publication-title: Remote. Sens.
– volume: 13
  start-page: 361
  year: 2016
  end-page: 378
  ident: b50
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
– volume: 55
  start-page: 249
  year: 2009
  end-page: 255
  ident: b19
  article-title: Modeling containment of large wildfires using generalized linear mixed-model analysis
  publication-title: For. Sci.
– volume: 17
  start-page: 269
  year: 2002
  end-page: 285
  ident: b33
  article-title: - an integrated software system for the numerical simulation of fire spread on complex topography
  publication-title: Environ. Model. Softw.
– volume: 30
  start-page: 3146
  year: 2017
  end-page: 3154
  ident: b29
  article-title: LightGBM: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 21
  start-page: 1295
  year: 2022
  end-page: 1322
  ident: b40
  article-title: XGBoost regression classifier (XRC) model for cyber attack detection and classification using inception V4
  publication-title: J. Web Eng.
– volume: no. 36
  year: 2015
  ident: b46
  publication-title: Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning
– year: 2024
  ident: b9
– volume: 225
  year: 2019
  ident: b17
  article-title: Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data
  publication-title: Agricult. Water. Manag.
– volume: 3
  start-page: 52
  year: 2013
  end-page: 58
  ident: b13
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nat. Clim. Chang.
– start-page: 1
  year: 2019
  end-page: 8
  ident: b45
  article-title: Physical modelling of wildland fires
  publication-title: Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires
– volume: 35
  start-page: 67
  year: 2024
  ident: b6
  article-title: An enhanced method for predicting and analysing forest fires using an attention-based CNN model
  publication-title: J. For. Res.
– year: 2017
  ident: b8
  article-title: Classification and Regression Trees
– year: 2007
  ident: b12
  article-title: A data mining approach to predict forest fires using meteorological data
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b7
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 13
  start-page: 18
  year: 1998
  end-page: 28
  ident: b27
  article-title: Support vector machines
  publication-title: IEEE Intell. Syst. Appl.
– start-page: I
  year: 2013
  end-page: 115–I–123
  ident: b5
  article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
  publication-title: Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28
– volume: 49
  year: 2022
  ident: b31
  article-title: Wildfire danger prediction and understanding with deep learning
  publication-title: Geophys. Res. Lett.
– start-page: 296
  year: 2009
  end-page: 299
  ident: b30
  article-title: Performance comparison of multi-layer perceptron (back propagation, delta rule and perceptron) algorithms in neural networks
  publication-title: 2009 IEEE International Advance Computing Conference
– year: 2021
  ident: b49
  article-title: New long-term dataset to analyse global fire trends
– volume: 90
  start-page: 1241
  year: 2009
  end-page: 1252
  ident: b35
  article-title: Human-caused wildfire risk rating for prevention planning in Spain
  publication-title: J. Environ. Manag.
– volume: 240
  year: 2020
  ident: b22
  article-title: A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 3359
  year: 2016
  end-page: 3375
  ident: b25
  article-title: The status and challenge of global fire modelling
  publication-title: Biogeosciences
– start-page: 607
  year: 2019
  ident: 10.1016/j.acags.2025.100266_b28
  article-title: 28 - factors influencing regional-scale wildfire probability in Iran: An application of random forest and support vector machine
– start-page: 785
  year: 2016
  ident: 10.1016/j.acags.2025.100266_b10
  article-title: XGBoost: A scalable tree boosting system
– volume: 17
  start-page: 2866
  issue: 14
  year: 2004
  ident: 10.1016/j.acags.2025.100266_b42
  article-title: Summer drought patterns in Canada and the relationship to global sea surface temperatures
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2004)017<2866:SDPICA>2.0.CO;2
– volume: 28
  start-page: 586
  issue: 4
  year: 2013
  ident: 10.1016/j.acags.2025.100266_b47
  article-title: Wildfire prediction to inform fire management: Statistical science challenges
  publication-title: Statist. Sci.
  doi: 10.1214/13-STS451
– volume: 7
  start-page: 176746
  year: 2019
  ident: 10.1016/j.acags.2025.100266_b32
  article-title: A neural network model for wildfire scale prediction using meteorological factors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957837
– volume: 81
  year: 2024
  ident: 10.1016/j.acags.2025.100266_b41
  article-title: Ensembling machine learning models to identify forest fire-susceptible zones in Northeast India
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2024.102598
– year: 2024
  ident: 10.1016/j.acags.2025.100266_b9
– start-page: 48
  year: 1993
  ident: 10.1016/j.acags.2025.100266_b3
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.acags.2025.100266_b20
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. System Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 13
  issue: 13
  year: 2021
  ident: 10.1016/j.acags.2025.100266_b37
  article-title: Forest fire risk prediction: A spatial deep neural network-based framework
  publication-title: Remote. Sens.
  doi: 10.3390/rs13132513
– start-page: I
  year: 2013
  ident: 10.1016/j.acags.2025.100266_b5
  article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
– start-page: 4768
  year: 2017
  ident: 10.1016/j.acags.2025.100266_b34
  article-title: A unified approach to interpreting model predictions
– volume: 21
  start-page: 1295
  issue: 4
  year: 2022
  ident: 10.1016/j.acags.2025.100266_b40
  article-title: XGBoost regression classifier (XRC) model for cyber attack detection and classification using inception V4
  publication-title: J. Web Eng.
– volume: 55
  start-page: 249
  issue: 3
  year: 2009
  ident: 10.1016/j.acags.2025.100266_b19
  article-title: Modeling containment of large wildfires using generalized linear mixed-model analysis
  publication-title: For. Sci.
– year: 2007
  ident: 10.1016/j.acags.2025.100266_b12
– start-page: 2623
  year: 2019
  ident: 10.1016/j.acags.2025.100266_b2
  article-title: Optuna: A next-generation hyperparameter optimization framework
– volume: 35
  start-page: 67
  issue: 1
  year: 2024
  ident: 10.1016/j.acags.2025.100266_b6
  article-title: An enhanced method for predicting and analysing forest fires using an attention-based CNN model
  publication-title: J. For. Res.
  doi: 10.1007/s11676-024-01717-7
– volume: 16
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.acags.2025.100266_b36
  article-title: A physics based approach to modeling grassland fires
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF06002
– volume: 30
  start-page: 3146
  year: 2017
  ident: 10.1016/j.acags.2025.100266_b29
  article-title: LightGBM: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2021
  ident: 10.1016/j.acags.2025.100266_b49
– volume: 3
  start-page: 52
  issue: 1
  year: 2013
  ident: 10.1016/j.acags.2025.100266_b13
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1633
– volume: 13
  start-page: 3359
  issue: 11
  year: 2016
  ident: 10.1016/j.acags.2025.100266_b25
  article-title: The status and challenge of global fire modelling
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-3359-2016
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  ident: 10.1016/j.acags.2025.100266_b27
  article-title: Support vector machines
  publication-title: IEEE Intell. Syst. Appl.
  doi: 10.1109/5254.708428
– volume: 48
  issue: 4
  year: 2010
  ident: 10.1016/j.acags.2025.100266_b24
  article-title: Global surface temperature change
  publication-title: Rev. Geophys.
  doi: 10.1029/2010RG000345
– start-page: 1
  year: 2019
  ident: 10.1016/j.acags.2025.100266_b45
  article-title: Physical modelling of wildland fires
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 10.1016/j.acags.2025.100266_b21
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1937.10503522
– volume: 17
  start-page: 168
  issue: 1
  year: 2021
  ident: 10.1016/j.acags.2025.100266_b48
  article-title: Classification assessment methods
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.08.003
– volume: 225
  year: 2019
  ident: 10.1016/j.acags.2025.100266_b17
  article-title: Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data
  publication-title: Agricult. Water. Manag.
  doi: 10.1016/j.agwat.2019.105758
– volume: 28
  start-page: 35
  issue: 1
  year: 2018
  ident: 10.1016/j.acags.2025.100266_b15
  article-title: Predicting wildfire vulnerability using logistic regression and artificial neural networks: a case study in Brazil
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF18018
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.acags.2025.100266_b39
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 361
  year: 2016
  ident: 10.1016/j.acags.2025.100266_b50
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
  doi: 10.1007/s10346-015-0557-6
– volume: 65
  start-page: 258
  issue: 4
  year: 1989
  ident: 10.1016/j.acags.2025.100266_b44
  article-title: The Canadian forest fire danger rating system: An overview
  publication-title: For. Chron.
  doi: 10.5558/tfc65258-4
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.acags.2025.100266_b7
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 49
  issue: 17
  year: 2022
  ident: 10.1016/j.acags.2025.100266_b31
  article-title: Wildfire danger prediction and understanding with deep learning
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2022GL099368
– volume: 3
  year: 2022
  ident: 10.1016/j.acags.2025.100266_b51
  article-title: Global trends of forest loss due to fire from 2001 to 2019
  publication-title: Front. Remote. Sens.
  doi: 10.3389/frsen.2022.825190
– start-page: 296
  year: 2009
  ident: 10.1016/j.acags.2025.100266_b30
  article-title: Performance comparison of multi-layer perceptron (back propagation, delta rule and perceptron) algorithms in neural networks
– year: 2017
  ident: 10.1016/j.acags.2025.100266_b8
– volume: 6
  start-page: 301
  issue: 1
  year: 2024
  ident: 10.1016/j.acags.2025.100266_b18
  article-title: A comprehensive overview and comparative analysis on deep learning models
  publication-title: J. Artif. Intell.
  doi: 10.32604/jai.2024.054314
– year: 2009
  ident: 10.1016/j.acags.2025.100266_b26
– volume: 17
  start-page: 269
  issue: 3
  year: 2002
  ident: 10.1016/j.acags.2025.100266_b33
  article-title: FireStation - an integrated software system for the numerical simulation of fire spread on complex topography
  publication-title: Environ. Model. Softw.
  doi: 10.1016/S1364-8152(01)00072-X
– volume: no. 36
  year: 2015
  ident: 10.1016/j.acags.2025.100266_b46
– volume: 16
  issue: 4
  year: 2024
  ident: 10.1016/j.acags.2025.100266_b4
  article-title: Deep learning approach to improve spatial resolution of GOES-17 wildfire boundaries using VIIRS satellite data
  publication-title: Remote. Sens.
  doi: 10.3390/rs16040715
– volume: 15
  start-page: 194
  issue: 2
  year: 1991
  ident: 10.1016/j.acags.2025.100266_b23
  article-title: Geographic information systems
  publication-title: Prog. Hum. Geogr.
  doi: 10.1177/030913259101500205
– volume: 35
  issue: 20
  year: 2008
  ident: 10.1016/j.acags.2025.100266_b16
  article-title: Water-vapor climate feedback inferred from climate fluctuations, 2003–2008
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL035333
– start-page: 363
  year: 2020
  ident: 10.1016/j.acags.2025.100266_b1
  article-title: Predicting forest fire in Algeria using data mining techniques: Case study of the decision tree algorithm
– volume: 18
  start-page: 1678
  issue: 7
  year: 2006
  ident: 10.1016/j.acags.2025.100266_b43
  article-title: Experiments with AdaBoost.RT, an improved boosting scheme for regression
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1678
– volume: 9
  issue: 7
  year: 2023
  ident: 10.1016/j.acags.2025.100266_b53
  article-title: Predicting wildfires in Algerian forests using machine learning models
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e18064
– volume: 90
  start-page: 1241
  issue: 2
  year: 2009
  ident: 10.1016/j.acags.2025.100266_b35
  article-title: Human-caused wildfire risk rating for prevention planning in Spain
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2008.07.005
– volume: e2649
  issue: 4
  year: 2016
  ident: 10.1016/j.acags.2025.100266_b14
  article-title: Regional variation in fire weather controls the reported occurrence of Scottish wildfires
  publication-title: Peer J
– year: 1979
  ident: 10.1016/j.acags.2025.100266_b11
– start-page: 4389
  year: 2023
  ident: 10.1016/j.acags.2025.100266_b52
  article-title: PED-ANOVA: Efficiently quantifying hyperparameter importance in arbitrary subspaces
– volume: 9
  issue: 6
  year: 2021
  ident: 10.1016/j.acags.2025.100266_b38
  article-title: Evaluation procedures for forecasting with spatiotemporal data
  publication-title: Mathematics
  doi: 10.3390/math9060691
– volume: 240
  year: 2020
  ident: 10.1016/j.acags.2025.100266_b22
  article-title: A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111702
SSID ssj0002511571
Score 2.3090072
Snippet Climate change has caused increasingly frequent occurrences of forest fires around the world. Machine Learning (ML) and Artificial Intelligence models have...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 100266
SubjectTerms Explainable artificial intelligence
Forest fires
Hyper-parameter optimisation
Machine learning
SHAP values
Title Recent advances in explainable Machine Learning models for wildfire prediction
URI https://dx.doi.org/10.1016/j.acags.2025.100266
https://doaj.org/article/e3d8e842496f4a18be54302316e16c0e
Volume 27
WOSCitedRecordID wos001546503100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-1974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511571
  issn: 2590-1974
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-1974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511571
  issn: 2590-1974
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQAokF8SnKlzwwEhHHju2MgFoYaMUAUjfLju2qCIWqLQgWfjtnJ4FMsLBkiCI7ehf7vVPO7xA6S732RuYy0bmwwVSbJFIakRTcWpv5krg0HhS-E6ORHI-L-06rr1ATVtsD18BdOGqlkwyyBO6ZJtK4nIVGN4Q7wsvUhd0XVE8nmQp7cBDOuSCtzVAs6NKlngSD7iyPvqPRF_GHiqJjf4eROiwz2EKbjTzEl_VrbaMVV-2g9ZvYfvdjF41A5QFL4ObP_QJPK-zeZ8_NESg8jKWRDjeuqRMcG90sMChTDKLYetjg8Gwefs6EgOyhx0H_4fo2aToiJCXlfJkQWH2FLoQ3sGxS7QtmM-q4CaZ3xFsnveU69xJyHC-o55SbAmhKMM1L5hyj-2i1eqncAcKaW6p1CWxNCROZ0cBmBfCZZJDipV700HkLjprVxheqrQh7UhFLFbBUNZY9dBUA_H40uFbHGxBL1cRS_RXLHuIt_KoRADWxw1DT32Y__I_Zj9BGGLIuIDtGq8v5qztBa-XbcrqYn8bvC67Dz_4XY2nT_Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+explainable+Machine+Learning+models+for+wildfire+prediction&rft.jtitle=Applied+computing+and+geosciences&rft.au=Abira+Sengupta&rft.au=Brendon+J.+Woodford&rft.date=2025-09-01&rft.pub=Elsevier&rft.eissn=2590-1974&rft.volume=27&rft.spage=100266&rft_id=info:doi/10.1016%2Fj.acags.2025.100266&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3d8e842496f4a18be54302316e16c0e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1974&client=summon