Robust control design for air breathing proton exchange membrane fuel cell system via variable gain second‐order sliding mode

The nonlinear and time‐dependent characteristic and unknown modeling uncertainty of proton exchange membrane fuel cell (PEMFC) such as complex electro‐chemical, thermal, and fluid mechanic phenomena make its controller design quite challenging. In this paper, a controller based on a super twisting a...

Full description

Saved in:
Bibliographic Details
Published in:Energy science & engineering Vol. 6; no. 3; pp. 126 - 143
Main Authors: Mirrashid, Naghmeh, Rakhtala, Seyed Mehdi, Ghanbari, Mahmood
Format: Journal Article
Language:English
Published: London John Wiley & Sons, Inc 01.06.2018
Subjects:
ISSN:2050-0505, 2050-0505
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The nonlinear and time‐dependent characteristic and unknown modeling uncertainty of proton exchange membrane fuel cell (PEMFC) such as complex electro‐chemical, thermal, and fluid mechanic phenomena make its controller design quite challenging. In this paper, a controller based on a super twisting algorithm (STA) with variable gains is proposed to control the air breathing system of PEMFC. The strategy includes regulating the oxygen excess ratio (λO2) for preventing the stack oxygen starvation and maintaining optimum net power output in spite of external disturbances and model uncertainties. The proposed algorithm has the main advantages of the fixed gain STA, such as robustness against the disturbance and parametric uncertainties with the unknown boundary, chattering reduction, and finite time convergence. The Lyapunov analysis was proposed to assess the stability of the Variable Gain Super Twisting Algorithm (VGSTA). The results verified the effectiveness of the proposed controller with attaining robust regulation against uncertainties, disturbances, and noisy circumstance compared to fixed gain SOSM controllers. The novel adaptive STA control law is designed for a PEMFC as a severe nonlinear system with special features such as the robustness, relative simplicity, and finite convergence time as a new strategy for PEMFC system. The experimental noises and drift uncertainty terms/disturbances with unknown boundary for PEMFC nonlinear equations are rejected by the VGSTA. A controller based on Lyapunov theory is designed to assure uniform stability of a nonlinear system considering bounding functions for disturbances and uncertainties of a realistic PEMFC model. This proposed controller is explored have main advantages are summarized in following: (1) Robust regulation of the oxygen excess ratio to prolong the life span with chattering effect avoiding; (2) Raising transient performance features with finite convergence time; (3) More robustness to drift uncertain parameters and highly variation of load current with unknown boundary compared with the first‐order SM and ST with fixed gains; (4) Guaranteed extended range of operation, in spite of the severe nonlinearity of plant; (5) Simple controller implementation, resulting in low computational costs in real‐time environment.
AbstractList The nonlinear and time‐dependent characteristic and unknown modeling uncertainty of proton exchange membrane fuel cell (PEMFC) such as complex electro‐chemical, thermal, and fluid mechanic phenomena make its controller design quite challenging. In this paper, a controller based on a super twisting algorithm (STA) with variable gains is proposed to control the air breathing system of PEMFC. The strategy includes regulating the oxygen excess ratio (λO2) for preventing the stack oxygen starvation and maintaining optimum net power output in spite of external disturbances and model uncertainties. The proposed algorithm has the main advantages of the fixed gain STA, such as robustness against the disturbance and parametric uncertainties with the unknown boundary, chattering reduction, and finite time convergence. The Lyapunov analysis was proposed to assess the stability of the Variable Gain Super Twisting Algorithm (VGSTA). The results verified the effectiveness of the proposed controller with attaining robust regulation against uncertainties, disturbances, and noisy circumstance compared to fixed gain SOSM controllers. The novel adaptive STA control law is designed for a PEMFC as a severe nonlinear system with special features such as the robustness, relative simplicity, and finite convergence time as a new strategy for PEMFC system. The experimental noises and drift uncertainty terms/disturbances with unknown boundary for PEMFC nonlinear equations are rejected by the VGSTA. A controller based on Lyapunov theory is designed to assure uniform stability of a nonlinear system considering bounding functions for disturbances and uncertainties of a realistic PEMFC model. This proposed controller is explored have main advantages are summarized in following: (1) Robust regulation of the oxygen excess ratio to prolong the life span with chattering effect avoiding; (2) Raising transient performance features with finite convergence time; (3) More robustness to drift uncertain parameters and highly variation of load current with unknown boundary compared with the first‐order SM and ST with fixed gains; (4) Guaranteed extended range of operation, in spite of the severe nonlinearity of plant; (5) Simple controller implementation, resulting in low computational costs in real‐time environment.
The nonlinear and time‐dependent characteristic and unknown modeling uncertainty of proton exchange membrane fuel cell ( PEMFC ) such as complex electro‐chemical, thermal, and fluid mechanic phenomena make its controller design quite challenging. In this paper, a controller based on a super twisting algorithm ( STA ) with variable gains is proposed to control the air breathing system of PEMFC . The strategy includes regulating the oxygen excess ratio ( ) for preventing the stack oxygen starvation and maintaining optimum net power output in spite of external disturbances and model uncertainties. The proposed algorithm has the main advantages of the fixed gain STA , such as robustness against the disturbance and parametric uncertainties with the unknown boundary, chattering reduction, and finite time convergence. The Lyapunov analysis was proposed to assess the stability of the Variable Gain Super Twisting Algorithm ( VGSTA ). The results verified the effectiveness of the proposed controller with attaining robust regulation against uncertainties, disturbances, and noisy circumstance compared to fixed gain SOSM controllers.
The nonlinear and time‐dependent characteristic and unknown modeling uncertainty of proton exchange membrane fuel cell (PEMFC) such as complex electro‐chemical, thermal, and fluid mechanic phenomena make its controller design quite challenging. In this paper, a controller based on a super twisting algorithm (STA) with variable gains is proposed to control the air breathing system of PEMFC. The strategy includes regulating the oxygen excess ratio (λO2) for preventing the stack oxygen starvation and maintaining optimum net power output in spite of external disturbances and model uncertainties. The proposed algorithm has the main advantages of the fixed gain STA, such as robustness against the disturbance and parametric uncertainties with the unknown boundary, chattering reduction, and finite time convergence. The Lyapunov analysis was proposed to assess the stability of the Variable Gain Super Twisting Algorithm (VGSTA). The results verified the effectiveness of the proposed controller with attaining robust regulation against uncertainties, disturbances, and noisy circumstance compared to fixed gain SOSM controllers.
Author Mirrashid, Naghmeh
Ghanbari, Mahmood
Rakhtala, Seyed Mehdi
Author_xml – sequence: 1
  givenname: Naghmeh
  surname: Mirrashid
  fullname: Mirrashid, Naghmeh
  organization: Azad Aliabad University
– sequence: 2
  givenname: Seyed Mehdi
  orcidid: 0000-0002-7657-679X
  surname: Rakhtala
  fullname: Rakhtala, Seyed Mehdi
  email: sm.rakhtala@gu.ac.ir
  organization: Golestan University
– sequence: 3
  givenname: Mahmood
  surname: Ghanbari
  fullname: Ghanbari, Mahmood
BookMark eNp1kM1KAzEUhYMo-FfwEQJu3ExNJs1MsxSpPyAI_qyHTHLTRjKJJlO1K30En9EnMUNdiOjicu_iO-dyzi7a9MEDQgeUjCkh5TEkYGMqxAbaKQknRR6--ePeRqOUHgghdEIngtAd9HYT2mXqsQq-j8FhDcnOPTYhYmkjbiPIfmH9HD_G0AeP4VUtpJ8D7qBro_SAzRIcVuAcTqvUQ4efrcTPMlrZOsBzaT1OkO315_tHiBoiTs7qwbILGvbRlpEuweh776H7s9nd6UVxdX1-eXpyVShWVaKo2rI2NeVGlHzKhSYgjNEa1HSqWspzZM5KwUpCJoLxmpdaMahZTeuymhoh2R46XPvmHE9LSH3zEJbR55dNbkdQUokJy9R4TakYUopgGmV72duhHGldQ0kz9NwMPTf5aRYc_RI8RtvJuPoLLdboi3Ww-pdrZrczNvBfuimPow
CitedBy_id crossref_primary_10_46904_eea_22_70_2_1108004
crossref_primary_10_1016_j_jpowsour_2025_238396
crossref_primary_10_1002_asjc_2451
crossref_primary_10_1002_ente_202300397
crossref_primary_10_1016_j_apenergy_2020_116359
crossref_primary_10_1007_s40435_020_00686_z
crossref_primary_10_1109_TTE_2020_2970835
crossref_primary_10_1177_09596518221124168
crossref_primary_10_1002_ese3_1029
crossref_primary_10_1016_j_catcom_2021_106351
crossref_primary_10_1007_s40435_021_00902_4
crossref_primary_10_1016_j_ijhydene_2019_06_025
crossref_primary_10_1016_j_egyai_2025_100611
crossref_primary_10_1002_ese3_425
crossref_primary_10_1177_00202940221122235
crossref_primary_10_1177_16878132241272165
Cites_doi 10.1109/TAC.2012.2186179
10.1109/VSS.2012.6163495
10.1109/VSS.2010.5544713
10.1109/TIE.2009.2029588
10.1109/TIE.2012.2188256
10.1016/j.conengprac.2012.08.002
10.1007/978-1-4471-3792-4
10.1007/978-3-540-77653-6_5
10.1016/j.apenergy.2011.04.048
10.1109/VSS.2010.5544677
10.1109/JAS.2017.7510550
10.1002/rnc.723
10.1080/00207179308923053
10.1016/j.apenergy.2012.12.012
10.1016/j.automatica.2012.02.024
10.1016/j.ijhydene.2015.05.189
10.1016/j.apenergy.2012.04.047
10.1016/j.ijhydene.2012.08.007
10.1109/CDC.2011.6161412
10.1109/TEC.2007.914160
10.1109/TIE.2008.2003367
10.1016/j.jprocont.2013.08.006
10.1016/j.jpowsour.2009.04.077
10.1016/j.automatica.2012.09.008
10.1016/j.neucom.2014.12.047
10.1109/VSS.2012.6163524
10.1016/j.jprocont.2009.11.006
10.1016/j.automatica.2006.10.008
10.1002/ese3.166
10.1109/TIE.2016.2610400
10.1109/CDC.2012.6426468
10.1016/j.automatica.2017.04.032
10.1109/TIE.2016.2535118
10.1002/er.3369
10.1016/j.jpowsour.2010.11.059
10.1109/CDC.2008.4739356
10.3906/elk-1301-90
10.1016/j.apenergy.2011.01.030
10.1016/j.apenergy.2009.08.047
10.1109/TSMC.2017.2758598
10.1109/VSS.2014.6881122
10.1109/TAC.2011.2179878
10.1016/j.jpowsour.2012.04.014
ContentType Journal Article
Copyright 2018 The Authors. published by the Society of Chemical Industry and John Wiley & Sons Ltd.
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 The Authors. published by the Society of Chemical Industry and John Wiley & Sons Ltd.
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KR7
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1002/ese3.199
DatabaseName Wiley Online Library Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-0505
EndPage 143
ExternalDocumentID 10_1002_ese3_199
ESE3199
Genre article
GroupedDBID 0R~
1OC
24P
31~
5VS
8-1
8FE
8FG
8FH
AAHHS
AAZKR
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D-9
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IGS
ITC
KQ8
L6V
L8X
LK5
M7R
M7S
M~E
O9-
OK1
PCBAR
PIMPY
PROAC
PTHSS
TUS
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IVC
PHGZM
PHGZT
PQGLB
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
KR7
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3669-6b27f715f925859d0e9ffddec88cb15199532932004935752dc3e73717268f9a3
IEDL.DBID WIN
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436249000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-0505
IngestDate Wed Aug 13 06:21:02 EDT 2025
Tue Nov 18 21:43:20 EST 2025
Sat Nov 29 07:06:11 EST 2025
Wed Jan 22 16:36:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3669-6b27f715f925859d0e9ffddec88cb15199532932004935752dc3e73717268f9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7657-679X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.199
PQID 2059106943
PQPubID 2034362
PageCount 18
ParticipantIDs proquest_journals_2059106943
crossref_citationtrail_10_1002_ese3_199
crossref_primary_10_1002_ese3_199
wiley_primary_10_1002_ese3_199_ESE3199
PublicationCentury 2000
PublicationDate June 2018
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Energy science & engineering
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2017; 64
2015; 39
2017; 82
2010; 57
2017; 4
2013; 49
2012
2011
2013; 21
2010
2013; 104
2003; 13
2008
2014; 24
2009; 194
2004
2008; 55
2012; 37
2011; 196
2012; 57
2012; 99
2012; 93
2015; 23
1993; 58
2010; 87
2010; 20
2012; 212
2015; 40
2015; 155
2011; 88
2008; 23
2016; 63
2013; 60
2017
2014
2012; 48
2018; 99
2007; 43
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Liu J. (e_1_2_7_11_1) 2018; 99
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
e_1_2_7_39_1
Moreno J. A. (e_1_2_7_37_1) 2012
References_xml – year: 2011
– volume: 57
  start-page: 2100
  year: 2012
  end-page: 2105
  article-title: Variable gain super‐twisting sliding mode control
  publication-title: IEEE Trans. Autom. Control
– volume: 99
  start-page: 1
  year: 2018
  end-page: 10
  article-title: Disturbance‐observer‐based control for air management of PEM fuel cell systems via sliding mode technique
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 4
  start-page: 483
  year: 2017
  end-page: 497
  article-title: Design of second order sliding mode and sliding mode algorithms: a practical insight to DC‐DC buck converter
  publication-title: IEEE/CAA J. Automat. Sin.
– volume: 57
  start-page: 1035
  year: 2012
  end-page: 1040
  article-title: Strict Lyapunov functions for the super‐twisting algorithm
  publication-title: IEEE Trans. Autom. Control
– volume: 194
  start-page: 338
  year: 2009
  end-page: 348
  article-title: Nonlinear robust control of proton exchange membrane fuel cell by state feedback exact linearization
  publication-title: J. Power Sources
– volume: 99
  start-page: 213
  year: 2012
  end-page: 225
  article-title: Power management based on sliding control applied to fuel cell systems: a further step towards the hybrid control concept
  publication-title: Appl. Energy
– volume: 13
  start-page: 443
  year: 2003
  end-page: 463
  article-title: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults
  publication-title: Int. J. Robust Nonlinear Control
– volume: 20
  start-page: 325
  year: 2010
  end-page: 336
  article-title: Real‐time implementation of a sliding mode controller for air supply on a PEM fuel cell
  publication-title: J. Process Control
– volume: 88
  start-page: 2559
  year: 2011
  end-page: 2573
  article-title: Nonlinear control of fuel cell hybrid power sources: part I–Voltage control
  publication-title: Appl. Energy
– volume: 82
  start-page: 79
  year: 2017
  end-page: 92
  article-title: Event‐triggered sliding mode control of stochastic systems via output feedback
  publication-title: Automatica
– start-page: 289
  year: 2008
  end-page: 347
– volume: 5
  start-page: 194
  year: 2017
  end-page: 207
  article-title: Conversion of tars on solid oxide fuel cell anodes and its impact on voltages and current densities
  publication-title: Energy Sci. Eng.
– volume: 23
  start-page: 255
  year: 2015
  end-page: 278
  article-title: Control of oxygen excess ratio in a PEM fuel cell system using high‐order sliding‐mode controller and observer
  publication-title: Turk. J. Electr. Eng. Co.
– volume: 21
  start-page: 719
  year: 2013
  end-page: 726
  article-title: Experimental results applying second order sliding mode control to a PEM fuel cell based system
  publication-title: Control Eng. Pract.
– volume: 212
  start-page: 226
  year: 2012
  end-page: 232
  article-title: Sliding mode control of a linearized polymer electrolyte membrane fuel cell model
  publication-title: J. Power Sources
– start-page: 113
  year: 2012
  end-page: 149
– volume: 43
  start-page: 576
  year: 2007
  end-page: 586
  article-title: Principles of 2‐sliding mode design
  publication-title: Automatica
– volume: 93
  start-page: 98
  year: 2012
  end-page: 105
  article-title: Dynamic modeling, optimization and control of power density in a PEM fuel cell
  publication-title: Appl. Energy
– volume: 49
  start-page: 39
  year: 2013
  end-page: 47
  article-title: Adaptive sliding mode control with application to super‐twist algorithm: equivalent control method
  publication-title: Automatica
– volume: 23
  start-page: 179
  year: 2008
  end-page: 190
  article-title: Feedback‐linearization‐based nonlinear control for PEM fuel cells
  publication-title: IEEE Trans. Energy Convers.
– volume: 58
  start-page: 1247
  year: 1993
  end-page: 1263
  article-title: Sliding order and sliding accuracy in sliding mode control
  publication-title: Int. J. Control
– year: 2014
– volume: 55
  start-page: 4029
  year: 2008
  end-page: 4036
  article-title: Adaptive sliding‐mode‐observer‐based fault reconstruction for nonlinear systems with parametric uncertainties
  publication-title: IEEE Trans. Industr. Electron.
– year: 2010
– year: 2012
– volume: 40
  start-page: 13806
  year: 2015
  end-page: 13819
  article-title: An adaptive fuzzy logic controller (AFLC) for PEMFC fuel cell
  publication-title: Int. J. Hydrogen Energy
– volume: 196
  start-page: 4277
  year: 2011
  end-page: 4282
  article-title: Design and implementation of LQR/LQG strategies for oxygen stoichiometry control in PEM fuel cells based systems
  publication-title: J. Power Sources
– volume: 87
  start-page: 1410
  year: 2010
  end-page: 1417
  article-title: Experimental investigation of dynamic performance and transient responses of a kW‐class PEM fuel cell stack under various load changes
  publication-title: Appl. Energy
– volume: 57
  start-page: 1906
  year: 2010
  end-page: 1913
  article-title: Experimental validation of a PEM fuel‐cell reduced‐order model and a moto‐compressor higher order sliding‐mode control
  publication-title: IEEE Trans. Industr. Electron.
– volume: 155
  start-page: 71
  year: 2015
  end-page: 79
  article-title: A second order sliding mode control and a neural network to drive a knee joint actuated orthosis
  publication-title: Neurocomputing
– volume: 64
  start-page: 22
  year: 2017
  end-page: 31
  article-title: Extended state observer‐based sliding‐mode control for three‐phase power converters
  publication-title: IEEE Trans. Industr. Electron.
– volume: 39
  start-page: 1664
  year: 2015
  end-page: 1672
  article-title: Theoretical analysis and optimum integration strategy of the PEM fuel cell and internal combustion engine hybrid system for vehicle applications
  publication-title: Int. J. Energy Res.
– volume: 48
  start-page: 759
  year: 2012
  end-page: 769
  article-title: A novel adaptive‐gain supertwisting sliding mode controller: methodology and application
  publication-title: Automatica
– volume: 63
  start-page: 3261
  year: 2016
  end-page: 3270
  article-title: Robust model‐based fault diagnosis for PEM fuel cell air‐feed system
  publication-title: IEEE Trans. Industr. Electron.
– year: 2008
– year: 2004
– volume: 104
  start-page: 945
  year: 2013
  end-page: 957
  article-title: Robust control of the PEM fuel cell air‐feed system via sub‐optimal second order sliding mode
  publication-title: Appl. Energy
– volume: 37
  start-page: 16104
  year: 2012
  end-page: 16116
  article-title: Pressure control in a PEM fuel cell via second order sliding mode
  publication-title: Int. J. Hydrogen Energy
– volume: 60
  start-page: 538
  year: 2013
  end-page: 545
  article-title: Lyapunov‐designed super‐twisting sliding mode control for wind energy conversion optimization
  publication-title: IEEE Trans. Industr. Electron.
– volume: 24
  start-page: 203
  year: 2014
  end-page: 224
  article-title: Design of finite‐time high‐order sliding mode state observer: a practical insight to PEM fuel cell system
  publication-title: J. Process Control
– year: 2017
– ident: e_1_2_7_36_1
  doi: 10.1109/TAC.2012.2186179
– ident: e_1_2_7_24_1
  doi: 10.1109/VSS.2012.6163495
– ident: e_1_2_7_33_1
  doi: 10.1109/VSS.2010.5544713
– ident: e_1_2_7_27_1
  doi: 10.1109/TIE.2009.2029588
– ident: e_1_2_7_34_1
  doi: 10.1109/TIE.2012.2188256
– ident: e_1_2_7_8_1
  doi: 10.1016/j.conengprac.2012.08.002
– ident: e_1_2_7_9_1
  doi: 10.1007/978-1-4471-3792-4
– ident: e_1_2_7_20_1
  doi: 10.1007/978-3-540-77653-6_5
– ident: e_1_2_7_3_1
  doi: 10.1016/j.apenergy.2011.04.048
– ident: e_1_2_7_28_1
  doi: 10.1109/VSS.2010.5544677
– ident: e_1_2_7_32_1
  doi: 10.1109/JAS.2017.7510550
– ident: e_1_2_7_17_1
  doi: 10.1002/rnc.723
– ident: e_1_2_7_44_1
  doi: 10.1080/00207179308923053
– ident: e_1_2_7_6_1
  doi: 10.1016/j.apenergy.2012.12.012
– ident: e_1_2_7_38_1
  doi: 10.1016/j.automatica.2012.02.024
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ijhydene.2015.05.189
– ident: e_1_2_7_40_1
  doi: 10.1016/j.apenergy.2012.04.047
– ident: e_1_2_7_25_1
  doi: 10.1016/j.ijhydene.2012.08.007
– start-page: 113
  volume-title: Sliding modes after the first decade of the 21st century
  year: 2012
  ident: e_1_2_7_37_1
– ident: e_1_2_7_7_1
  doi: 10.1109/CDC.2011.6161412
– ident: e_1_2_7_14_1
  doi: 10.1109/TEC.2007.914160
– ident: e_1_2_7_18_1
  doi: 10.1109/TIE.2008.2003367
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jprocont.2013.08.006
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jpowsour.2009.04.077
– ident: e_1_2_7_39_1
  doi: 10.1016/j.automatica.2012.09.008
– ident: e_1_2_7_31_1
  doi: 10.1016/j.neucom.2014.12.047
– ident: e_1_2_7_29_1
  doi: 10.1109/VSS.2012.6163524
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jprocont.2009.11.006
– ident: e_1_2_7_19_1
  doi: 10.1016/j.automatica.2006.10.008
– ident: e_1_2_7_2_1
  doi: 10.1002/ese3.166
– ident: e_1_2_7_23_1
  doi: 10.1109/TIE.2016.2610400
– ident: e_1_2_7_30_1
  doi: 10.1109/CDC.2012.6426468
– ident: e_1_2_7_12_1
  doi: 10.1016/j.automatica.2017.04.032
– ident: e_1_2_7_21_1
  doi: 10.1109/TIE.2016.2535118
– ident: e_1_2_7_5_1
  doi: 10.1002/er.3369
– volume: 99
  start-page: 1
  year: 2018
  ident: e_1_2_7_11_1
  article-title: Disturbance‐observer‐based control for air management of PEM fuel cell systems via sliding mode technique
  publication-title: IEEE Trans. Control Syst. Technol.
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jpowsour.2010.11.059
– ident: e_1_2_7_45_1
  doi: 10.1109/CDC.2008.4739356
– ident: e_1_2_7_26_1
  doi: 10.3906/elk-1301-90
– ident: e_1_2_7_4_1
  doi: 10.1016/j.apenergy.2011.01.030
– ident: e_1_2_7_10_1
  doi: 10.1016/j.apenergy.2009.08.047
– ident: e_1_2_7_22_1
  doi: 10.1109/TSMC.2017.2758598
– ident: e_1_2_7_46_1
  doi: 10.1109/VSS.2014.6881122
– ident: e_1_2_7_35_1
  doi: 10.1109/TAC.2011.2179878
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jpowsour.2012.04.014
SSID ssj0001414901
Score 2.1474087
Snippet The nonlinear and time‐dependent characteristic and unknown modeling uncertainty of proton exchange membrane fuel cell (PEMFC) such as complex...
The nonlinear and time‐dependent characteristic and unknown modeling uncertainty of proton exchange membrane fuel cell ( PEMFC ) such as complex...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126
SubjectTerms Algorithms
Automobile industry
Breathing
Control systems design
Controllers
Disturbances
Fuel cells
Fuel technology
Lyapunov stability
Organic chemistry
oxygen excess ratio
PEM fuel cell
Proton exchange membrane fuel cells
Robust control
second‐order sliding mode
Sliding mode control
Stability analysis
Time dependence
Twisting
Uncertainty
Variable gain
variable gain super twisting algorithm
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gcIADb8RgICMhOBW6pq-cEEJDHBBCvMStSlIHTRodrNvEDX4Cv5FfgtN2bAfgwt1pK9mxP7v2Z8b2fCOFkD46Rge-42PkOspV5Ay5DI2MELGYSru_iC4v44cHcVUV3PKqrXLkEwtHnXa1rZFTkh5QZAuFz4-fXxy7Ncr-Xa1WaEyzGcuS4BatezfjGotP-N9tjjhnXe8Ic-SHJdHrRBQaQ8tJgFpEmLPF_37bEluosCWclMawzKYwW2HzE4yDq-ztuqsGeR-qDnVIiwYOIOQKst0DZSGkrUmB5W_oZoCv5WQwPOET5dUZghlgB2y5H0oSaBi2JQwp47YzWPAo2xnkNslOP98_Cl5PICRrAyTYpTtr7O6sdXt67lQ7GBzNw1A4ofIiEzUDIzxKLETqojCGXKKOY60ILQgRcEIM9q4JTtDPSzXHiFOS6IWxEZKvs1rWzXCDga8jV0lB1sHJbQRSkbTfxNQo3aQTaZ0djHSS6Iqg3O7J6CQltbKXWO0l9Mo62_2WfC5JOX6QaYx0lVTXMk_Giqqz_ULVv55PWjctck9i8-_nbLE5glBx2TzWYLV-b4DbbFYP--28t1OY4xfrq-0O
  priority: 102
  providerName: ProQuest
Title Robust control design for air breathing proton exchange membrane fuel cell system via variable gain second‐order sliding mode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.199
https://www.proquest.com/docview/2059106943
Volume 6
WOSCitedRecordID wos000436249000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: PCBAR
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: M7S
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: BENPR
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: PIMPY
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC509aAH3-LoGkoQPYXNpDuPPqrM4oIOYdfHegrdnW4Z2M0sk5lhb_oT_I3-Eqs6mZ0VFASvoZo06arqrypVXwE8l14rpaWLvc1kLF2RxCYx5AyFzr0unHOhK-3Tu2I6LY-PVTVUVXIvTM8PcZFwY8sI_poNXJtub0sa6jonuNeO3O9YBpv8fDDdplckQf8w_DhNMv7dm2Qb6tkk3dus_f0y2iLMyzg1XDT7t_9ni3fg1gAv8VWvD3fhimvvwc1LpIP34dvh3Ky6JQ5F6tiEGg4k8Ip6tkDDKJLTUsgUDvMW3XnfHIyn7pQ20zr0K3eCnPHHngca1zONawq6uQ0Lv-pZix3H2c3P7z8CtScSmOU7EnnuzgP4uD_58OZtPIxhiK3IcxXnJi18Mc68Sim2UE3ilPfkFW1ZWkOAQalMEGhgc1OC0F_aWOEKQXFimpdeafEQdtp56x4BSlskRitSEEGeI9OGpOXYNd7YMa1oRvBycx61HTjKeVTGSd2zK6c1f9KaXjmCZxeSZz0vxx9kdjdHWg-W2dWkDoSQciXFCF6Ew_vr-npyNCEPpR7_q-ATuEF4quwryXZhZ7lYuadw3a6Xs24RwdVUVhFcez2ZVodRCP4jLjU9omfVwfvqSxRU-BcmsvGQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFIly4F0RKDBIPE4Lm7X34QNCPFK1aoiqUqreFts7iyKlm5JNApzgJ_BL-FH8Esb7IDkAtx64217J-3nmm_H4G4AHMtdKaUlebkPpSYp9z_iGjaHQUa5jIqpepR0N4uEwOT5W-2vwo30L48oqW5tYGepsYl2OnIP0kD1bpKR4fvrRc12j3O1q20KjhsUeffnEIVv5bPc1_9-HQbDdP3y14zVdBTwrokh5kQniPO6FuQqYKqvMJ5XnfMhtkljD_k-pULAPdOhRgslMkFlBseCwJ4iSXGnB656DdSlkKDuw_rI_3D9YZnUkRxx-r1W59YOnVJJ4UkvLrvi9JZldpcSVT9u-_L_txhW41LBnfFHD_SqsUXENLq5oKl6HrwcTMy9n2NTgY1aVqCBzc9SjKRpHkl3WDZ1CxaRA-ly_fcYTOjHsuAnzOY3RXWhgLXONi5HGheaTasaEH_SowNKlEbKf375XyqXIXN1RAHRthW7AuzPZgU3oFJOCbgJKG_tGK8a_YMMYasOjZY-y3Ngez8i68LjFQGobCXbXCWSc1uLRQerQkvInu3D_98jTWnbkD2O2WmykjeEp0yUwuvCogtZf56f9t302wOrWv9e5Bxd2Dt8M0sHucO82bDBhTOpSuS3ozKZzugPn7WI2Kqd3m8OA8P6sEfcLthxHew
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VghAceCMCBQaJx2npZu19-IAQoomoWkUVBdTbYnvHKFK6KdkkwAl-Ar-Hn8MvYbwPkgNw64G77ZW838x8Y4-_AXgonVZKSwqcjWUgKQ0DExp2hkInTqdEVL9Ke7efjkbZ0ZE62IAf3VsYX1bZ-cTaURdT68_IOUmPObIlSopt15ZFHOwMn598DHwHKX_T2rXTaCCyR18-cfpWPdvd4X_9KIqGgzcvXwVth4HAiiRRQWKi1KX92KmIabMqQlLOscHbLLOGY6FSseB46JGkBBObqLCCUsEpUJRkTmnB656Bs6mMlajLBg9X5zuSc4-w3-ndhtE2VSSeNiKzaxFwRWvXyXEd3YaX_-d9uQKXWk6NLxojuAobVF6Di2tKi9fh6-upWVRzbCvzsagLV5AZO-rxDI2nzv4sDr1uxbRE-ty8iMZjOjYczgndgiborzmwEb_G5VjjUrP9mgnhBz0usfKHC8XPb99rPVNkBu-JAfpmQzfg7answE3YLKcl3QKUNg2NVmwVgt1lrA2Pln0qnLF9nlH04EmHh9y2wuy-P8gkbySlo9wjJ-dP9uDB75EnjRjJH8ZsdTjJW3dU5SuQ9OBxDbO_zs8HhwN2y-r2v9e5D-cZZvn-7mjvDlxgFpk19XNbsDmfLegunLPL-bia3autAuH9acPtF0f5Tv0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+control+design+for+air+breathing+proton+exchange+membrane+fuel+cell+system+via+variable+gain+second%E2%80%90order+sliding+mode&rft.jtitle=Energy+science+%26+engineering&rft.au=Mirrashid%2C+Naghmeh&rft.au=Rakhtala%2C+Seyed+Mehdi&rft.au=Ghanbari%2C+Mahmood&rft.date=2018-06-01&rft.issn=2050-0505&rft.eissn=2050-0505&rft.volume=6&rft.issue=3&rft.spage=126&rft.epage=143&rft_id=info:doi/10.1002%2Fese3.199&rft.externalDBID=10.1002%252Fese3.199&rft.externalDocID=ESE3199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon