Cinematographic Camera Diffusion Model

Designing effective camera trajectories in virtual 3D environments is a challenging task even for experienced animators. Despite an elaborate film grammar, forged through years of experience, that enables the specification of camera motions through cinematographic properties (framing, shots sizes, a...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 43; no. 2; pp. 1 - n/a
Main Authors: Jiang, Hongda, Wang, Xi, Christie, Marc, Liu, Libin, Chen, Baoquan
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.05.2024
Wiley
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Designing effective camera trajectories in virtual 3D environments is a challenging task even for experienced animators. Despite an elaborate film grammar, forged through years of experience, that enables the specification of camera motions through cinematographic properties (framing, shots sizes, angles, motions), there are endless possibilities in deciding how to place and move cameras with characters. Dealing with these possibilities is part of the complexity of the problem. While numerous techniques have been proposed in the literature (optimization‐based solving, encoding of empirical rules, learning from real examples,…), the results either lack variety or ease of control. In this paper, we propose a cinematographic camera diffusion model using a transformer‐based architecture to handle temporality and exploit the stochasticity of diffusion models to generate diverse and qualitative trajectories conditioned by high‐level textual descriptions. We extend the work by integrating keyframing constraints and the ability to blend naturally between motions using latent interpolation, in a way to augment the degree of control of the designers. We demonstrate the strengths of this text‐to‐camera motion approach through qualitative and quantitative experiments and gather feedback from professional artists. The code and data are available at https://github.com/jianghd1996/Camera-control.
AbstractList Designing effective camera trajectories in virtual 3D environments is a challenging task even for experienced animators. Despitean elaborate film grammar, forged through years of experience, that enables the specification of camera motions throughcinematographic properties (framing, shots sizes, angles, motions), there are endless possibilities in deciding how to placeand move cameras with characters. Dealing with these possibilities is part of the complexity of the problem. While numeroustechniques have been proposed in the literature (optimization-based solving, encoding of empirical rules, learning from realexamples, etc.), the results either lack variety or ease of control. In this paper, we propose a cinematographic camera diffusion model using a transformer-based architecture to handle temporality and exploit the stochasticity of diffusion models to generate diverse and qualitative trajectories conditioned by high-level textual descriptions. We extend the work by integrating keyframing constraints and the ability to blend naturally between motions using latent interpolation, in a way to augment the degree of control of the designers. We demonstrate the strengths of this text-to-camera motion approach through qualitative and quantitative experiments and gather feedback from professionalartists.
Designing effective camera trajectories in virtual 3D environments is a challenging task even for experienced animators. Despite an elaborate film grammar, forged through years of experience, that enables the specification of camera motions through cinematographic properties (framing, shots sizes, angles, motions), there are endless possibilities in deciding how to place and move cameras with characters. Dealing with these possibilities is part of the complexity of the problem. While numerous techniques have been proposed in the literature (optimization‐based solving, encoding of empirical rules, learning from real examples,…), the results either lack variety or ease of control. In this paper, we propose a cinematographic camera diffusion model using a transformer‐based architecture to handle temporality and exploit the stochasticity of diffusion models to generate diverse and qualitative trajectories conditioned by high‐level textual descriptions. We extend the work by integrating keyframing constraints and the ability to blend naturally between motions using latent interpolation, in a way to augment the degree of control of the designers. We demonstrate the strengths of this text‐to‐camera motion approach through qualitative and quantitative experiments and gather feedback from professional artists. The code and data are available at https://github.com/jianghd1996/Camera-control .
Designing effective camera trajectories in virtual 3D environments is a challenging task even for experienced animators. Despite an elaborate film grammar, forged through years of experience, that enables the specification of camera motions through cinematographic properties (framing, shots sizes, angles, motions), there are endless possibilities in deciding how to place and move cameras with characters. Dealing with these possibilities is part of the complexity of the problem. While numerous techniques have been proposed in the literature (optimization‐based solving, encoding of empirical rules, learning from real examples,…), the results either lack variety or ease of control. In this paper, we propose a cinematographic camera diffusion model using a transformer‐based architecture to handle temporality and exploit the stochasticity of diffusion models to generate diverse and qualitative trajectories conditioned by high‐level textual descriptions. We extend the work by integrating keyframing constraints and the ability to blend naturally between motions using latent interpolation, in a way to augment the degree of control of the designers. We demonstrate the strengths of this text‐to‐camera motion approach through qualitative and quantitative experiments and gather feedback from professional artists. The code and data are available at https://github.com/jianghd1996/Camera-control.
Designing effective camera trajectories in virtual 3D environments is a challenging task even for experienced animators. Despite an elaborate film grammar, forged through years of experience, that enables the specification of camera motions through cinematographic properties (framing, shots sizes, angles, motions), there are endless possibilities in deciding how to place and move cameras with characters. Dealing with these possibilities is part of the complexity of the problem. While numerous techniques have been proposed in the literature (optimization‐based solving, encoding of empirical rules, learning from real examples,…), the results either lack variety or ease of control.In this paper, we propose a cinematographic camera diffusion model using a transformer‐based architecture to handle temporality and exploit the stochasticity of diffusion models to generate diverse and qualitative trajectories conditioned by high‐level textual descriptions. We extend the work by integrating keyframing constraints and the ability to blend naturally between motions using latent interpolation, in a way to augment the degree of control of the designers. We demonstrate the strengths of this text‐to‐camera motion approach through qualitative and quantitative experiments and gather feedback from professional artists. The code and data are available at https://github.com/jianghd1996/Camera-control.
Author Liu, Libin
Chen, Baoquan
Christie, Marc
Jiang, Hongda
Wang, Xi
Author_xml – sequence: 1
  givenname: Hongda
  orcidid: 0000-0002-0296-4431
  surname: Jiang
  fullname: Jiang, Hongda
  organization: National Key Laboratory of General AI
– sequence: 2
  givenname: Xi
  orcidid: 0000-0001-6586-1926
  surname: Wang
  fullname: Wang, Xi
  organization: Team VISTA, LIX, École Polytechnique
– sequence: 3
  givenname: Marc
  surname: Christie
  fullname: Christie, Marc
  organization: University Rennes, Inria, CNRS, IRISA
– sequence: 4
  givenname: Libin
  orcidid: 0000-0003-2280-6817
  surname: Liu
  fullname: Liu, Libin
  organization: National Key Laboratory of General AI
– sequence: 5
  givenname: Baoquan
  surname: Chen
  fullname: Chen, Baoquan
  email: baoquan@pku.edu.cn
  organization: National Key Laboratory of General AI
BackLink https://hal.science/hal-04826479$$DView record in HAL
BookMark eNp1kE9PAjEQxRuDiYAe_AYkJiYeFqbb7Z89klXABONFz00pLZQsW-wuGr69xUW96Fxm8vKbyZvXQ53KVwahawxDHGukV3aIKVB6hro4YzwRjOYd1AUcZx71C9Sr6w0AZJzRLrotXGW2qvGroHZrpweF2pqgBvfO2n3tfDV48ktTXqJzq8raXJ16H71OHl6KWTJ_nj4W43miCWM0MZqCTZdL4JRaTXINOTYMLBULQnTKNKQ6XxArRCYISaMpA2KhLDEcU8YXpI_u2rtrVcpdcFsVDtIrJ2fjuTxqkImUZTx_x5G9adld8G97Uzdy4_ehivYkAcrTPBMijdSopXTwdR2Mldo1qomfNUG5UmKQx-BkDE5-Bffr4Wfj28hf7On6hyvN4X9QFtNJu_EJv117XQ
CitedBy_id crossref_primary_10_1109_TMM_2025_3542956
Cites_doi 10.1145/3181975
10.1145/133994.134088
10.4000/1895.4455
10.1109/CVPR52688.2022.01042
10.1145/3072959.3073712
10.1109/CVPR42600.2020.01016
10.1145/3592097
10.1109/CVPR52688.2022.01117
10.1145/1690388.1690432
10.1109/CVPR.2016.308
10.1145/3503250
10.1007/978-3-540-85412-8_11
10.1145/3422622
10.1007/978-3-031-19836-6_41
10.1109/CVPR52729.2023.01624
10.1109/ICCV48922.2021.00678
10.1007/978-3-030-33950-0_11
10.1109/ICRA.2018.8460703
ContentType Journal Article
Copyright 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
2024 The Eurographics Association and John Wiley & Sons Ltd.
Attribution
Copyright_xml – notice: 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
– notice: 2024 The Eurographics Association and John Wiley & Sons Ltd.
– notice: Attribution
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1111/cgf.15055
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1467-8659
EndPage n/a
ExternalDocumentID oai:HAL:hal-04826479v1
10_1111_cgf_15055
CGF15055
Genre article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2022ZD0160803
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c3665-ec50f2dd0755fc39c091e60f58b33c26c02c9b3f8848332016e08baf3e71567b3
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208910000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Tue Oct 14 20:24:07 EDT 2025
Sun Nov 09 08:13:53 EST 2025
Sat Nov 29 03:41:23 EST 2025
Tue Nov 18 21:05:27 EST 2025
Sun Jul 06 04:45:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cinematography
Animation
Generative AI
Camera control
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3665-ec50f2dd0755fc39c091e60f58b33c26c02c9b3f8848332016e08baf3e71567b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6586-1926
0000-0003-2280-6817
0000-0002-0296-4431
0000-0001-6080-8026
OpenAccessLink https://hal.science/hal-04826479
PQID 3057294882
PQPubID 30877
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_04826479v1
proquest_journals_3057294882
crossref_citationtrail_10_1111_cgf_15055
crossref_primary_10_1111_cgf_15055
wiley_primary_10_1111_cgf_15055_CGF15055
PublicationCentury 2000
PublicationDate May 2024
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2012; 1.66
2021; 40.6
2021; 65.1
2019; 38.6
2009
2020; 63.11
2008
2002; 2
2017; 36.4
1992
2020; 33
1991
2020; 21.1
2001; 20
2021; 34
2023
2022
2021
2020
2008; 27
2018
2016
2015
2020; 39.4
2013
2015; 34.4
2018; 37.3
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
Leake Mackenzie (e_1_2_8_24_2) 2017; 36
e_1_2_8_23_2
e_1_2_8_26_2
Dhariwal Prafulla (e_1_2_8_9_2) 2021
e_1_2_8_2_2
e_1_2_8_4_2
Shacked Ram (e_1_2_8_35_2) 2001
Dhariwal Prafulla (e_1_2_8_10_2) 2021; 34
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
Jiang Hongda (e_1_2_8_19_2) 2020; 39
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
Christie Marc (e_1_2_8_7_2) 2008
Lino Christophe (e_1_2_8_22_2) 2015; 34
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
Jiang Hongda (e_1_2_8_18_2) 2021; 40
Radford Alec (e_1_2_8_32_2) 2021
e_1_2_8_38_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_36_2
Raffel Colin (e_1_2_8_33_2) 2020; 21
Ho Jonathan (e_1_2_8_15_2) 2020; 33
Sohl‐Dickstein Jascha (e_1_2_8_37_2) 2015
Xu Ken (e_1_2_8_42_2) 2002; 2
Wang Miao (e_1_2_8_40_2) 2019; 38
e_1_2_8_31_2
e_1_2_8_30_2
Mildenhall Ben (e_1_2_8_25_2) 2021; 65
e_1_2_8_11_2
Arijon Daniel (e_1_2_8_3_2) 1991
References_xml – start-page: 10146
  year: 2020
  end-page: 10155
– start-page: 263
  year: 2009
  end-page: 270
– start-page: 11461
  year: 2022
  end-page: 11471
– start-page: 8748
  year: 2021
  end-page: 8763
  article-title: Learning transferable visual models from natural language supervision
– volume: 2
  start-page: 25
  year: 2002
  end-page: 34
  article-title: Constraint‐based automatic placement for scene composition
  publication-title: Graphics Interface.
– start-page: 10684
  year: 2022
  end-page: 10695
– volume: 65.1
  start-page: 99
  year: 2021
  end-page: 106
  article-title: Nerf: Representing scenes as neural radiance fields for view synthesis
  publication-title: Communications of the ACM
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  article-title: Denoising diffusion probabilistic models
  publication-title: Advances in Neural Information Processing Systems
– volume: 63.11
  start-page: 139
  year: 2020
  end-page: 144
  article-title: Generative adversarial networks
  publication-title: Communications of the ACM
– volume: 20
  start-page: 215
  issue: 3
  year: 2001
  end-page: 227
  article-title: Automatic lighting design using a perceptual quality metric
– start-page: 2818
  year: 2016
  end-page: 2826
– start-page: 16933
  year: 2023
  end-page: 16942
– year: 2021
– volume: 34.4
  year: 2015
  article-title: Intuitive and Efficient Camera Control with the Toric Space
  publication-title: ACM Trans. Graph.
– volume: 36.4
  start-page: 130
  year: 2017
  end-page: 1
  article-title: Computational video editing for dialogue‐driven scenes
  publication-title: ACM Trans. Graph.
– volume: 36.4
  start-page: 1
  year: 2017
  end-page: 10
  article-title: Real‐time planning for automated multi‐view drone cinematography
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 6858
  year: 2021
  end-page: 6868
– volume: 1.66
  start-page: 8
  year: 2012
  end-page: 33
  article-title: The Cinematic Paradigm
  publication-title: Journal 1895.
– volume: 37.3
  start-page: 1
  year: 2018
  end-page: 18
  article-title: Directing cinematographic drones
  publication-title: ACM Trans. on Graphics
– volume: 40.6
  start-page: 6
  year: 2021
  end-page: 8
  article-title: Camera Keyframing with Style and Control
  publication-title: ACM Trans. Graph.
– start-page: 118
  year: 2008
  end-page: 129
– start-page: 2256
  year: 2015
  end-page: 2265
  article-title: Deep unsupervised learning using nonequilibrium thermodynamics
– volume: 38.6
  start-page: 177
  year: 2019
  end-page: 1
  article-title: Write‐a‐video: computational video montage from themed text
  publication-title: ACM Trans. Graph.
– year: 2022
– year: 2023
– start-page: 119
  year: 2020
  end-page: 129
  article-title: Autonomous drone cinematographer: Using artistic principles to create smooth, safe, occlusion‐free trajectories for aerial filming
– volume: 34
  start-page: 8780
  year: 2021
  end-page: 8794
  article-title: Diffusion models beat gans on image synthesis
  publication-title: Advances in neural information processing systems
– year: 1991
– start-page: 331
  year: 1992
  end-page: 340
– start-page: 7039
  year: 2018
  end-page: 7046
– volume: 39.4
  year: 2020
  article-title: Example‐Driven Virtual Cinematography by Learning Camera Behaviors
  publication-title: ACM Trans. Graph.
– volume: 27
  start-page: 2197
  issue: 8
  year: 2008
  end-page: 2218
  article-title: Camera control in computer graphics
– volume: 34
  start-page: 8780
  year: 2021
  end-page: 8794
  article-title: Diffusion Models Beat GANs on Image Synthesis
– start-page: 732
  year: 2022
  end-page: 749
  article-title: The One Where They Reconstructed 3D Humans and Environments in TV Shows
– volume: 21.1
  start-page: 5485
  year: 2020
  end-page: 5551
  article-title: Exploring the limits of transfer learning with a unified text‐to‐text transformer
  publication-title: The Journal of Machine Learning Research
– year: 2013
– volume: 40
  start-page: 6
  year: 2021
  ident: e_1_2_8_18_2
  article-title: Camera Keyframing with Style and Control
  publication-title: ACM Trans. Graph.
– ident: e_1_2_8_11_2
  doi: 10.1145/3181975
– ident: e_1_2_8_13_2
  doi: 10.1145/133994.134088
– ident: e_1_2_8_16_2
– ident: e_1_2_8_2_2
  doi: 10.4000/1895.4455
– start-page: 215
  volume-title: Computer graphics forum
  year: 2001
  ident: e_1_2_8_35_2
– ident: e_1_2_8_41_2
– volume-title: Grammar of the film language
  year: 1991
  ident: e_1_2_8_3_2
– ident: e_1_2_8_38_2
– ident: e_1_2_8_30_2
  doi: 10.1109/CVPR52688.2022.01042
– start-page: 8748
  volume-title: International conference on machine learning
  year: 2021
  ident: e_1_2_8_32_2
– start-page: 2256
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: e_1_2_8_37_2
– ident: e_1_2_8_26_2
  doi: 10.1145/3072959.3073712
– volume: 34
  start-page: 8780
  year: 2021
  ident: e_1_2_8_10_2
  article-title: Diffusion models beat gans on image synthesis
  publication-title: Advances in neural information processing systems
– volume: 39
  year: 2020
  ident: e_1_2_8_19_2
  article-title: Example‐Driven Virtual Cinematography by Learning Camera Behaviors
  publication-title: ACM Trans. Graph.
– ident: e_1_2_8_34_2
  doi: 10.1109/CVPR42600.2020.01016
– ident: e_1_2_8_4_2
  doi: 10.1145/3592097
– start-page: 2197
  volume-title: Computer Graphics Forum
  year: 2008
  ident: e_1_2_8_7_2
– ident: e_1_2_8_23_2
  doi: 10.1109/CVPR52688.2022.01117
– volume: 33
  start-page: 6840
  year: 2020
  ident: e_1_2_8_15_2
  article-title: Denoising diffusion probabilistic models
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_31_2
– ident: e_1_2_8_6_2
– ident: e_1_2_8_8_2
  doi: 10.1145/1690388.1690432
– ident: e_1_2_8_20_2
– ident: e_1_2_8_17_2
– ident: e_1_2_8_36_2
  doi: 10.1109/CVPR.2016.308
– volume: 38
  start-page: 177
  year: 2019
  ident: e_1_2_8_40_2
  article-title: Write‐a‐video: computational video montage from themed text
  publication-title: ACM Trans. Graph.
– volume: 65
  start-page: 99
  year: 2021
  ident: e_1_2_8_25_2
  article-title: Nerf: Representing scenes as neural radiance fields for view synthesis
  publication-title: Communications of the ACM
  doi: 10.1145/3503250
– volume: 21
  start-page: 5485
  year: 2020
  ident: e_1_2_8_33_2
  article-title: Exploring the limits of transfer learning with a unified text‐to‐text transformer
  publication-title: The Journal of Machine Learning Research
– ident: e_1_2_8_21_2
  doi: 10.1007/978-3-540-85412-8_11
– volume: 2
  start-page: 25
  year: 2002
  ident: e_1_2_8_42_2
  article-title: Constraint‐based automatic placement for scene composition
  publication-title: Graphics Interface.
– ident: e_1_2_8_12_2
  doi: 10.1145/3422622
– ident: e_1_2_8_29_2
  doi: 10.1007/978-3-031-19836-6_41
– volume: 34
  year: 2015
  ident: e_1_2_8_22_2
  article-title: Intuitive and Efficient Camera Control with the Toric Space
  publication-title: ACM Trans. Graph.
– ident: e_1_2_8_39_2
  doi: 10.1109/CVPR52729.2023.01624
– ident: e_1_2_8_27_2
  doi: 10.1109/ICCV48922.2021.00678
– ident: e_1_2_8_28_2
– start-page: 8780
  volume-title: Advances in Neural Information Processing Systems
  year: 2021
  ident: e_1_2_8_9_2
– ident: e_1_2_8_5_2
  doi: 10.1007/978-3-030-33950-0_11
– volume: 36
  start-page: 130
  year: 2017
  ident: e_1_2_8_24_2
  article-title: Computational video editing for dialogue‐driven scenes
  publication-title: ACM Trans. Graph.
– ident: e_1_2_8_14_2
  doi: 10.1109/ICRA.2018.8460703
SSID ssj0004765
Score 2.4631748
Snippet Designing effective camera trajectories in virtual 3D environments is a challenging task even for experienced animators. Despite an elaborate film grammar,...
Designing effective camera trajectories in virtual 3D environments is a challenging task even for experienced animators. Despitean elaborate film grammar,...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial Intelligence
Artists
Cameras
CCS Concepts
Cinematography
Computational Geometry
Computer Science
Computing methodologies → Procedural animation
Virtual environments
Title Cinematographic Camera Diffusion Model
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15055
https://www.proquest.com/docview/3057294882
https://hal.science/hal-04826479
Volume 43
WOSCitedRecordID wos001208910000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_m5oM--C1OpxQR8aXSJUva4tPorHsYQ8TJ3kqTJjoYU_b193vplxUUBN9CeyVJc3f53ZH8DuAq4UwkfpvYiC643eGxtmMVM9v4Y8MQp0nK0_0ycIdDbzz2H2twV9yFyfghyoSbsYzUXxsDj8WiYuTyVd8immFsAxoE9bZTh0bvKRwNvq5FupwV1N6GNCYnFjIHecqPv21HG2_mMGQFaVbxarrhhLv_Guoe7OQ40-pmirEPNTU7gO0K--AhXAfYRsCakVZPpBXEJkNl9SZar0wSzTKF0qZHMArvn4O-nZdNsCXlnNlKMkeTJEEwwLSkvkRIoLijmScolYRLh0hfUO15HY9SBABcOZ6INVUuBnOuoMdQn73P1AlYbkK1JD7u66ZQrq_jpC2EI2THTTAUUu0m3BR_L5I5p7gpbTGNitgCpx6lU2_CZSn6kRFp_CiES1C-N9TX_e4gMs_Q0yB2c_01dtoqVijKDW4RodvCMAG9EcExpWvxey9R8BCmjdO_i57BFkE4kx11bEF9OV-pc9iU6-VkMb_INe8T12bXzQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED-2KagPfovTqUVEfKl0TZO24MvYrBPrENlkb6VNEx2MKfv6-730ywoKgm-hvZKkubv87kh-B3ARMxrFbtPUEV0w3WKh1EMRUl35Y8UQJ82Ep_vFt3s9Zzh0nypwk9-FSfkhioSbsozEXysDVwnpkpXzV3mNcIbSKqxYqEa0BiudZ2_gf92LtBnNub0Va0zGLKRO8hQff9uPqm_qNGQJapYBa7LjeFv_G-s2bGZIU2ulqrEDFTHZhY0S_-AeXLaxjZA1pa0eca0dqhyV1hlJuVBpNE2VShvvw8C77be7elY4QeeEMaoLTg1pxjHCASo5cTmCAsEMSZ2IEG4ybpjcjYh0HMshBCEAE4YThZIIG8M5OyIHUJu8T8QhaHZMJDdd3NlVqVxXhnEzioyIW3aMwZBo1uEq_30Bz1jFVXGLcZBHFzj1IJl6Hc4L0Y-USuNHIVyD4r0iv-62_EA9Q1-D6M12l9hpI1-iIDO5WYCOCwMF9EcmjilZjN97Cdp3XtI4-rvoGax1-49-4N_3Ho5h3URwkx58bEBtPl2IE1jly_loNj3N1PAT1oTbvQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mJqIPfovTqUVEfKl0TZO24MvYrBPLGOJkb6VNEx2MOfb193vplxUUBN9CeyVJk7v7Xbj8DuAqZjSK3aapI7pgusVCqYcipLqyx4ohTpoJT_erb_d6znDo9itwl9-FSfkhigM3pRmJvVYKLqaxLGk5f5O3CGcoXYOaRV2GalnrPHsD_-tepM1ozu2tWGMyZiGVyVN8_M0frb2rbMgS1CwD1sTjeDv_G-subGdIU2ulW2MPKmKyD1sl_sEDuG5jGyFrSls94lo7VGdUWmck5VIdo2mqVNr4EAbe_Uu7q2eFE3ROGKO64NSQZhwjHKCSE5cjKBDMkNSJCOEm44bJ3YhIx7EcQhACMGE4USiJsDGcsyNyBNXJx0Qcg2bHRHLTRc-uSuW6MoybUWRE3LJjDIZEsw43-e8LeMYqropbjIM8usCpB8nU63BZiE5TKo0fhXANiveK_Lrb8gP1DG0NojfbXWGnjXyJgkzl5gEaLgwU0B6ZOKZkMX7vJWg_eEnj5O-iF7DR73iB_9h7OoVNE7FNmvfYgOpithRnsM5Xi9F8dp7twk-Va9s4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cinematographic+Camera+Diffusion+Model&rft.jtitle=Computer+graphics+forum&rft.au=Jiang%2C+Hongda&rft.au=Wang%2C+Xi&rft.au=Christie%2C+Marc&rft.au=Liu%2C+Libin&rft.date=2024-05-01&rft.pub=Wiley&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=2&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1111%2Fcgf.15055&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04826479v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon