Mean‐field limit of non‐exchangeable systems
This paper deals with the derivation of the mean‐field limit for multi‐agent systems on a large class of sparse graphs. More specifically, the case of non‐exchangeable multi‐agent systems consisting of non‐identical agents is addressed. The analysis does not only involve PDEs and stochastic analysis...
Uloženo v:
| Vydáno v: | Communications on pure and applied mathematics Ročník 78; číslo 4; s. 651 - 741 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
John Wiley and Sons, Limited
01.04.2025
Wiley |
| Témata: | |
| ISSN: | 0010-3640, 1097-0312 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper deals with the derivation of the mean‐field limit for multi‐agent systems on a large class of sparse graphs. More specifically, the case of non‐exchangeable multi‐agent systems consisting of non‐identical agents is addressed. The analysis does not only involve PDEs and stochastic analysis but also graph theory through a new concept of limits of sparse graphs (extended graphons) that reflect the structure of the connectivities in the network and has critical effects on the collective dynamics. In this article some of the main restrictive hypothesis in the previous literature on the connectivities between the agents (dense graphs) and the cooperation between them (symmetric interactions) are removed. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0010-3640 1097-0312 |
| DOI: | 10.1002/cpa.22235 |