On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation

This work describes a homogenization‐based multi‐scale procedure required for the computation of the material response of non‐linear microstructures undergoing small strains. Such procedures are important for computer modelling of heterogeneous materials when the length‐scale of heterogeneities is s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in engineering Ročník 87; číslo 1-5; s. 149 - 170
Hlavní autoři: Perić, D., de Souza Neto, E. A., Feijóo, R. A., Partovi, M., Molina, A. J. Carneiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 08.07.2011
Wiley
Témata:
ISSN:0029-5981, 1097-0207, 1097-0207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This work describes a homogenization‐based multi‐scale procedure required for the computation of the material response of non‐linear microstructures undergoing small strains. Such procedures are important for computer modelling of heterogeneous materials when the length‐scale of heterogeneities is small compared to the dimensions of the body. The described multi‐scale procedure relies on a unified variational basis which, apart from the continuum‐based variational formulation at both micro‐ and macroscales of the problem, also includes the variational formulation governing micro‐to‐macro transitions. This unified variational basis leads naturally to a generic finite element‐based framework for homogenization‐based multi‐scale analysis of heterogenous solids. In addition, the unified variational formulation provides clear axiomatic basis and hierarchy related to the choice of boundary conditions at the microscale. Classical kinematical constraints are considered over the representative volume element: (i) Taylor, (ii) linear boundary displacements, (iii) periodic boundary displacement fluctuations and (iv) minimal constraint, also known as uniform boundary tractions. In this context the Hill‐Mandel averaging requirement, which links microscopic and macroscopic stress power, plays a fundamental role in defining the microscopic forces compatible with the assumed kinematics. Numerical examples of both microscale and two‐scale finite element simulations of elasto‐plastic material with microcavities are presented to illustrate the main features and scope of the described computational strategy. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList This work describes a homogenization‐based multi‐scale procedure required for the computation of the material response of non‐linear microstructures undergoing small strains. Such procedures are important for computer modelling of heterogeneous materials when the length‐scale of heterogeneities is small compared to the dimensions of the body. The described multi‐scale procedure relies on a unified variational basis which, apart from the continuum‐based variational formulation at both micro‐ and macroscales of the problem, also includes the variational formulation governing micro‐to‐macro transitions. This unified variational basis leads naturally to a generic finite element‐based framework for homogenization‐based multi‐scale analysis of heterogenous solids. In addition, the unified variational formulation provides clear axiomatic basis and hierarchy related to the choice of boundary conditions at the microscale. Classical kinematical constraints are considered over the representative volume element: (i) Taylor, (ii) linear boundary displacements, (iii) periodic boundary displacement fluctuations and (iv) minimal constraint, also known as uniform boundary tractions. In this context the Hill‐Mandel averaging requirement, which links microscopic and macroscopic stress power, plays a fundamental role in defining the microscopic forces compatible with the assumed kinematics. Numerical examples of both microscale and two‐scale finite element simulations of elasto‐plastic material with microcavities are presented to illustrate the main features and scope of the described computational strategy. Copyright © 2010 John Wiley & Sons, Ltd.
This work describes a homogenization-based multi-scale procedure required for the computation of the material response of non-linear microstructures undergoing small strains. Such procedures are important for computer modelling of heterogeneous materials when the length-scale of heterogeneities is small compared to the dimensions of the body. The described multi-scale procedure relies on a unified variational basis which, apart from the continuum-based variational formulation at both micro- and macroscales of the problem, also includes the variational formulation governing micro-to-macro transitions. This unified variational basis leads naturally to a generic finite element-based framework for homogenization-based multi-scale analysis of heterogenous solids. In addition, the unified variational formulation provides clear axiomatic basis and hierarchy related to the choice of boundary conditions at the microscale. Classical kinematical constraints are considered over the representative volume element: (i) Taylor, (ii) linear boundary displacements, (iii) periodic boundary displacement fluctuations and (iv) minimal constraint, also known as uniform boundary tractions. In this context the Hill-Mandel averaging requirement, which links microscopic and macroscopic stress power, plays a fundamental role in defining the microscopic forces compatible with the assumed kinematics. Numerical examples of both microscale and two-scale finite element simulations of elasto-plastic material with microcavities are presented to illustrate the main features and scope of the described computational strategy.
Author de Souza Neto, E. A.
Perić, D.
Partovi, M.
Molina, A. J. Carneiro
Feijóo, R. A.
Author_xml – sequence: 1
  givenname: D.
  surname: Perić
  fullname: Perić, D.
  email: d.peric@swansea.ac.uk
  organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, U.K
– sequence: 2
  givenname: E. A.
  surname: de Souza Neto
  fullname: de Souza Neto, E. A.
  organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, U.K
– sequence: 3
  givenname: R. A.
  surname: Feijóo
  fullname: Feijóo, R. A.
  organization: Laboratório Nacional de Computação Científica (LNCC/MCT), Av. Getúlio Vargas, 333, Quitandinha, Petrópolis-Rio de Janeiro, CEP 25651-075, Brazil
– sequence: 4
  givenname: M.
  surname: Partovi
  fullname: Partovi, M.
  organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, U.K
– sequence: 5
  givenname: A. J. Carneiro
  surname: Molina
  fullname: Molina, A. J. Carneiro
  organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, U.K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24260852$$DView record in Pascal Francis
BookMark eNp1kc1u1DAUhS3USkwLEo_gDRIbD_5J4pgdGpUWqUw3LSwtJ7mBC44z2BlgHoW3xWlKEVK78rX9-Vyfc0_IURgDEPJC8LXgXL4OA6wVF8UTshLcaMYl10dkla8MK00tnpKTlL5yLkTJ1Yr8vgp0wDaObBrZ4HJBp-hCwgnHkGg_Rjrs_YQstc4DdcH5Q8JEx57mxsxjABfpF5ggjp8hwLhPdHB5h86nN3QfsEfo6A-XD2ZJ52njZgEXOtpjwAkoeBggTBSH3VLdks_IcZ814Pndekpu3p1dby7Y5dX5-83bS9aqqiqYMdlK3XdV0fBGd4XSlagMN04pbbRpKmjKEsqmNiXIpm3rrlM5qFYCB61NoU7Jq0V3F8fve0iTHTC14L27dWMFl7LWUlQyoy_vUDfH0eegWkx2F3Fw8WBlIStelzO3XrgcZ0oRetviYipniz5L2nlWNs_KzrP694f7B381H0DZgv5ED4dHObv9cPY_j2mCX_e8i99spZUu7aftuf1YX2-29VbYC_UHrA22qw
CODEN IJNMBH
CitedBy_id crossref_primary_10_1016_j_mechmat_2016_01_007
crossref_primary_10_1080_15376494_2022_2144974
crossref_primary_10_1007_s00161_018_0682_2
crossref_primary_10_1016_j_finel_2023_104067
crossref_primary_10_1016_j_enganabound_2017_11_006
crossref_primary_10_1109_TMAG_2012_2237546
crossref_primary_10_1007_s40314_021_01580_w
crossref_primary_10_3390_ma10020112
crossref_primary_10_1016_j_cma_2020_113660
crossref_primary_10_1016_j_ijsolstr_2021_111412
crossref_primary_10_1016_j_enganabound_2022_11_029
crossref_primary_10_1038_s41578_019_0169_1
crossref_primary_10_1016_j_commatsci_2014_04_011
crossref_primary_10_1007_s00466_016_1358_z
crossref_primary_10_1016_j_cma_2021_113930
crossref_primary_10_1016_j_jpowsour_2024_234410
crossref_primary_10_1016_j_compstruct_2013_08_034
crossref_primary_10_1061__ASCE_EM_1943_7889_0001123
crossref_primary_10_1007_s00158_019_02293_9
crossref_primary_10_1016_j_cma_2019_112689
crossref_primary_10_1016_j_cma_2024_116881
crossref_primary_10_1016_j_compstruct_2022_115836
crossref_primary_10_1016_j_ijsolstr_2021_111400
crossref_primary_10_1016_j_enganabound_2015_01_005
crossref_primary_10_1016_j_ijplas_2015_07_001
crossref_primary_10_1016_j_ijsolstr_2013_07_021
crossref_primary_10_1007_s10704_016_0139_1
crossref_primary_10_1016_j_ijmecsci_2018_08_012
crossref_primary_10_1016_j_cma_2021_114518
crossref_primary_10_1016_j_ijmecsci_2022_108007
crossref_primary_10_1016_j_cma_2015_10_020
crossref_primary_10_1007_s11831_014_9137_5
crossref_primary_10_1016_j_commatsci_2012_06_012
crossref_primary_10_1002_nme_6209
crossref_primary_10_1016_j_cma_2023_116672
crossref_primary_10_1016_j_compstruc_2016_08_009
crossref_primary_10_1007_s41939_018_0009_9
crossref_primary_10_1016_j_cma_2022_115741
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121683
crossref_primary_10_1016_j_ijsolstr_2015_09_008
crossref_primary_10_1016_j_cma_2024_117162
crossref_primary_10_1016_j_commatsci_2023_112658
crossref_primary_10_1016_j_cma_2017_10_001
crossref_primary_10_1016_j_cma_2019_112694
crossref_primary_10_1080_15502287_2016_1145761
crossref_primary_10_1007_s10659_024_10077_6
crossref_primary_10_5216_reec_v14i2_50037
crossref_primary_10_1002_nme_7381
crossref_primary_10_1016_j_cma_2020_113234
crossref_primary_10_1016_j_ijrmms_2021_104625
crossref_primary_10_1590_1517_7076_rmat_2024_0728
crossref_primary_10_1016_j_ijsolstr_2023_112494
crossref_primary_10_1016_j_enganabound_2018_10_018
crossref_primary_10_1016_j_compstruct_2016_08_015
crossref_primary_10_3390_gels11070496
crossref_primary_10_1002_app_54512
crossref_primary_10_1007_s11831_016_9205_0
crossref_primary_10_1080_14786435_2017_1408967
crossref_primary_10_1007_s10596_013_9363_1
crossref_primary_10_1002_nme_5903
crossref_primary_10_1016_j_compstruct_2018_01_051
crossref_primary_10_1016_j_compstruct_2018_04_003
crossref_primary_10_1016_j_compstruct_2022_116229
crossref_primary_10_1007_s40430_024_05043_1
crossref_primary_10_1088_0965_0393_19_7_074008
crossref_primary_10_1007_s10659_013_9445_2
crossref_primary_10_1016_j_enganabound_2019_03_018
crossref_primary_10_1016_j_tws_2022_110158
crossref_primary_10_1002_nme_3298
crossref_primary_10_1007_s00466_016_1306_y
crossref_primary_10_1016_j_cma_2012_11_016
crossref_primary_10_1016_j_compstruc_2016_11_002
crossref_primary_10_1016_j_commatsci_2013_11_002
crossref_primary_10_1016_j_mechmat_2014_10_007
crossref_primary_10_1002_nme_3237
crossref_primary_10_1002_nme_4447
crossref_primary_10_1016_j_engappai_2024_108622
crossref_primary_10_1016_j_cma_2019_112594
crossref_primary_10_1016_j_enganabound_2020_07_004
crossref_primary_10_1016_j_ijhydene_2021_04_033
crossref_primary_10_1016_j_conbuildmat_2020_119867
crossref_primary_10_1061_JGGEFK_GTENG_12975
crossref_primary_10_1016_j_cma_2019_01_016
crossref_primary_10_1002_nme_6871
crossref_primary_10_1016_j_ijengsci_2021_103586
crossref_primary_10_1016_j_oceaneng_2016_05_055
crossref_primary_10_1016_j_compstruct_2024_118073
crossref_primary_10_1016_j_cma_2014_01_029
crossref_primary_10_1016_j_tafmec_2017_04_006
crossref_primary_10_1016_j_cma_2013_01_003
crossref_primary_10_1016_j_euromechsol_2020_104079
crossref_primary_10_1007_s41939_020_00087_x
crossref_primary_10_1016_j_cma_2019_06_013
crossref_primary_10_1016_j_electacta_2021_139045
crossref_primary_10_1016_j_enganabound_2014_10_005
crossref_primary_10_1016_j_conbuildmat_2018_12_013
crossref_primary_10_1016_j_euromechsol_2019_02_001
crossref_primary_10_1016_j_jcp_2016_10_070
crossref_primary_10_32604_cmes_2021_014142
crossref_primary_10_1016_j_ijsolstr_2015_11_027
crossref_primary_10_1108_EC_10_2014_0208
crossref_primary_10_1007_s00466_016_1333_8
crossref_primary_10_1007_s00466_020_01830_4
crossref_primary_10_1177_10567895211040549
crossref_primary_10_1016_j_ijimpeng_2015_06_022
crossref_primary_10_1016_j_cma_2020_113439
crossref_primary_10_1002_nme_4576
crossref_primary_10_1016_j_cma_2019_112663
crossref_primary_10_1016_j_euromechsol_2021_104384
crossref_primary_10_1016_j_cma_2015_10_005
crossref_primary_10_1016_j_compgeo_2022_105121
crossref_primary_10_1016_j_jbiomech_2014_11_003
crossref_primary_10_1002_nme_6002
crossref_primary_10_1016_j_commatsci_2011_10_017
crossref_primary_10_1016_j_cma_2019_07_032
Cites_doi 10.1016/S0045-7825(97)00218-1
10.1002/nme.2074
10.1002/nme.1230
10.1016/S0045-7825(97)00139-4
10.1016/S0045-7825(98)00224-2
10.1002/nme.1620360807
10.1016/S0045-7825(98)00227-8
10.1016/S0045-7825(01)00179-7
10.1016/S0045-7825(98)00218-7
10.1016/j.cma.2003.12.072
10.1002/nme.1953
10.1016/0045-7825(95)00872-1
10.1016/S0045-7825(96)01106-1
10.1016/S0045-7825(98)00221-7
10.1016/j.cma.2008.10.005
10.1007/3-540-17616-0_15
10.1098/rspa.1972.0001
10.1007/978-3-540-32360-0
10.1016/0020-7225(74)90062-7
10.1002/(SICI)1097-0207(19991210)46:10<1609::AID-NME716>3.0.CO;2-Q
10.1016/0022-5096(65)90010-4
10.1016/S0045-7825(97)00030-3
10.1002/nme.2694
10.1016/j.compstruc.2004.01.004
10.1007/s004660000212
10.1016/0045-7825(93)90225-M
10.1016/S0927-0256(99)00080-4
10.1016/j.cma.2008.11.013
10.1002/nme.274
10.1016/j.jmps.2007.06.001
10.1002/nme.2156
10.1002/9780470694626
10.1016/j.jmps.2008.11.008
10.1002/nme.960
10.1016/S0065-2156(08)70330-2
10.1007/BF02905910
10.1016/S0045-7825(99)00224-8
10.1016/j.jbiomech.2008.06.020
10.1016/0045-7825(94)90117-1
10.1098/rspa.2009.0499
10.1016/0045-7825(95)00974-4
10.1007/s00419-002-0212-2
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.3014
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 170
ExternalDocumentID 24260852
10_1002_nme_3014
NME3014
ark_67375_WNG_V8TCN8N1_H
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
.4S
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
ARCSS
GBZZK
IQODW
M6O
PALCI
RIWAO
SAMSI
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3664-990118fd64b0b7d437616909a337979b6eb55e5b895e2bcc8dd3100c2e0e77943
IEDL.DBID DRFUL
ISICitedReferencesCount 140
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291602100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
1097-0207
IngestDate Sun Nov 09 10:20:28 EST 2025
Mon Jul 21 09:15:09 EDT 2025
Sat Nov 29 06:43:43 EST 2025
Tue Nov 18 22:35:11 EST 2025
Wed Aug 20 07:26:44 EDT 2025
Tue Sep 09 05:32:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1-5
Keywords Representative volume element
Averaging method
Non linear material
Small dimension
Constraint
finite element
multi-scale analysis
Homogenization
Boundary condition
Modeling
Axiomatic
micro-to-macro transitions
Global local method
Finite element method
Heterogeneous material
Inelasticity
Elastoplasticity
Multiscale method
Plasticity
Variational calculus
Non linear effect
Microstructure
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3664-990118fd64b0b7d437616909a337979b6eb55e5b895e2bcc8dd3100c2e0e77943
Notes ArticleID:NME3014
istex:668C02FE7518DA243BCFD4F37C2D372D652A5612
ark:/67375/WNG-V8TCN8N1-H
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1022872162
PQPubID 23500
PageCount 22
ParticipantIDs proquest_miscellaneous_1022872162
pascalfrancis_primary_24260852
crossref_citationtrail_10_1002_nme_3014
crossref_primary_10_1002_nme_3014
wiley_primary_10_1002_nme_3014_NME3014
istex_primary_ark_67375_WNG_V8TCN8N1_H
PublicationCentury 2000
PublicationDate 2011-07-08
PublicationDateYYYYMMDD 2011-07-08
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-08
  day: 08
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Kouznetsova VG, Brekelmans WAM, Baaijens FPT. An approach to micro-macro modelling of heterogeneous materials. Computational Mechanics 2001; 27:37-48.
Zohdi TI, Wriggers P. Introduction to Computational Micromechanics. Springer: Berlin, 2005.
Feyel F, Chaboche J-L. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering 2000; 183:309-330.
Miehe C, Koch A. Computational micro-macro transitions of discretized microstructures undergoing small strains. Archives of Applied Mechanics 2002; 72:300-317.
Giusti SM, Novotny AA, de Souza Neto EA. Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions. Proceedings of the Royal Society A 2010; 466:1703-1723.
Fish J, Shek K, Pandheeradi M, Shephard MS. Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Computer Methods in Applied Mechanics and Engineering 1997; 148:53-73.
Watanabe I, Terada K, de Souza Neto EA, Peric D. Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis. Journal of the Mechanics and Physics of Solids 2008; 56:1105-1125.
Giusti SM, Novotny AA, de Souza Neto EA, Feijóo RA. Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes. Computer Methods in Applied Mechanics and Engineering 2009; 198:727-739.
Smit RJM, Brekelmans WAM, Meijer HEH. Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 1998; 155:181-192.
Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering 1998; 157:69-94.
Ladevèze P, Loiseau O, Dureisseix D. A micro-macro and parallel computational strategy for highly heterogeneous structures. International Journal for Numerical Methods in Engineering 2001; 52:121-138.
Miehe C, Schotte J, Schröder J. Computational micro-macro transitions and overall tangent moduli in the analysis of polycrystals at large strains. Computational Materials Science 1999; 16:372-382.
Fish J, Zheng Y. Multiscale enrichment based on partition of unity. International Journal for Numerical Methods in Engineering 2005; 62:1341-1359.
Somer DD, de Souza Neto EA, Dettmer WG, Perić D. A sub-stepping scheme for multi-scale analysis of solids. Computer Methods in Applied Mechanics and Engineering 2009; 198:1006-1016.
Yuan Z, Fish J. Toward realization of computational homogenization in practice. International Journal for Numerical Methods in Engineering 2008; 73:361-380.
de Souza Neto EA, Perić D. A computational framework for a class of fully coupled models for elastoplastic damage at finite strains with reference to the linearization aspects. Computer Methods in Applied Mechanics and Engineering 1996; 130:179-193.
Dutko M, Peric D, Owen DRJ. Universal anisotropic yield criterion based on superquadric functional representation-1: algorithmic issues and accuracy analysis. Computer Methods in Applied Mechanics and Engineering 1993; 109:73-93.
Belytschko T, Loehnert S, Song JH. Multiscale aggregating discontinuities: a method for circumventing loss of material stability. International Journal for Numerical Methods in Engineering 2008; 73:869-894.
Giusti SM, Novotny AA, de Souza Neto EA, Feijóo RA. Sensitivity of the macroscopic elasticity tensor to topological microstructural changes. Journal of the Mechanics and Physics of Solids 2009; 57:555-570.
Ghosh S, Lee K, Murthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element method. Computer Methods in Applied Mechanics and Engineering 1996; 132:63-116.
Matsui K, Terada K, Yuge K. Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Computers and Structures 2004; 82:593-606.
Zohdi TI, Oden JT, Rodin GJ. Hierarchical modeling of heterogeneous bodies. Computer Methods in Applied Mechanics and Engineering 1996; 138:273-298.
Ladevèze P. Multiscale modelling and computational strategies for composites. International Journal for Numerical Methods in Engineering 2004; 60:233-253.
Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneous media. Computer Methods in Applied Mechanics and Engineering 2001; 190:5427-5464.
Simo JC, Hughes TJR. Computational inelasticity. Springer: New York, 1998.
Miehe C, Schröder J, Schotte J. Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 1999; 171:387-418.
Markovič D, Ibrahimbegović A. On micro-macro interface conditions for micro-scale based FEM for inelastic behaviour of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering 2004; 193:5503-5523.
Wriggers P. Nonlinear Finite Element Methods. Springer: Berlin, 2008.
de Souza Neto EA, Perić D, Owen DRJ. Continuum modelling and numerical simulation of material damage at finite strains. Archives of Computational Methods in Engineering 1998; 5:311-384.
Pellegrino C, Galvanetto U, Schrefler BA. Numerical homogenization of periodic composite materials with non-linear material components. International Journal for Numerical Methods in Engineering 1999; 46:1609-1637.
Perić D, de Souza Neto EA. A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space. Computer Methods in Applied Mechanics and Engineering 1999; 171:463-489.
Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland: Amsterdam, 1993.
de Souza Neto EA, Perić D, Owen DRJ. Computational Methods for Plasticity: Theory and Applications. Wiley: Chichester, 2008.
Sanchez-Palencia E. Comportement local et macroscopique d'un type de milieux physique hétérogènes. International Journal of Engineering Science 1974; 12:231-251.
Perić D. On a class of constitutive equations in viscoplasticity: formulation and computational issues. International Journal for Numerical Methods in Engineering 1993; 36:1365-1393.
Hund A, Ramm E. Locality constraints within multiscale model for non-linear material behaviour. International Journal for Numerical Methods in Engineering 2007; 70:1613-1632.
Willis JR. Variational and related methods for the overall properties of composites. Advances in Applied Mechanics 1981; 21:1-78.
Swan CC. Techniques for stress- and strain-controlled homogenization of inelastic periodic composites. Computer Methods in Applied Mechanics and Engineering 1994; 117:249-267.
Hill R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 1965; 13(4):213-222.
Michel JC, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering 1999; 172:109-143.
Belytschko T, Song JH. Coarse-graining of multiscale crack propagation. International Journal for Numerical Methods in Engineering 2010; 81:537-563.
Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. Wiley: New York, 2000.
Oden JT, Vemaganti K, Moes N. Hierarchical modelling of heterogenous solids. Computer Methods in Applied Mechanics and Engineering 1999; 172:2-25.
Speirs DCD, de Souza Neto EA, Perić D. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. Journal of Biomechanics 2008; 41:2673-2680.
Hill R. On constitutive macro-variables for heterogeneous solids at finite strain. Proceedings of the Royal Society of London, Series A 1972; 326:131-147.
Taylor GI. Plastic strains in metals. Journal Institute of Metals 1938; 62:307-324.
1974; 12
1994; 117
1965; 13
1993; 109
2004; 60
2004; 82
2002; 72
1999; 171
2010; 466
1999; 172
2005; 62
1999; 46
1998
2009; 198
2008
2008; 56
2007; 70
2006
2005
2001; 27
1971
1993
2002
1998; 155
2010; 81
2008; 73
1998; 157
1938; 62
1981; 21
1993; 36
1997; 148
2009; 57
2001; 190
2000
1999; 16
2004; 193
1987
2000; 183
1985
1996; 132
2008; 41
1996; 130
1998; 5
1972; 326
2001; 52
1996; 138
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
Simo JC (e_1_2_8_39_2) 1998
Wriggers P (e_1_2_8_42_2) 2008
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
Suquet PM (e_1_2_8_3_2) 1985
Nemat‐Nasser S (e_1_2_8_35_2) 1993
e_1_2_8_17_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_15_2
e_1_2_8_36_2
Mandel J (e_1_2_8_32_2) 1971
Belytschko T (e_1_2_8_40_2) 2000
e_1_2_8_30_2
e_1_2_8_11_2
e_1_2_8_51_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
Taylor GI (e_1_2_8_38_2) 1938; 62
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_16_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_31_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_50_2
References_xml – reference: Zohdi TI, Oden JT, Rodin GJ. Hierarchical modeling of heterogeneous bodies. Computer Methods in Applied Mechanics and Engineering 1996; 138:273-298.
– reference: Swan CC. Techniques for stress- and strain-controlled homogenization of inelastic periodic composites. Computer Methods in Applied Mechanics and Engineering 1994; 117:249-267.
– reference: Zohdi TI, Wriggers P. Introduction to Computational Micromechanics. Springer: Berlin, 2005.
– reference: de Souza Neto EA, Perić D. A computational framework for a class of fully coupled models for elastoplastic damage at finite strains with reference to the linearization aspects. Computer Methods in Applied Mechanics and Engineering 1996; 130:179-193.
– reference: Sanchez-Palencia E. Comportement local et macroscopique d'un type de milieux physique hétérogènes. International Journal of Engineering Science 1974; 12:231-251.
– reference: Watanabe I, Terada K, de Souza Neto EA, Peric D. Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis. Journal of the Mechanics and Physics of Solids 2008; 56:1105-1125.
– reference: Feyel F, Chaboche J-L. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering 2000; 183:309-330.
– reference: Willis JR. Variational and related methods for the overall properties of composites. Advances in Applied Mechanics 1981; 21:1-78.
– reference: Hill R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 1965; 13(4):213-222.
– reference: de Souza Neto EA, Perić D, Owen DRJ. Continuum modelling and numerical simulation of material damage at finite strains. Archives of Computational Methods in Engineering 1998; 5:311-384.
– reference: Wriggers P. Nonlinear Finite Element Methods. Springer: Berlin, 2008.
– reference: Ghosh S, Lee K, Murthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element method. Computer Methods in Applied Mechanics and Engineering 1996; 132:63-116.
– reference: de Souza Neto EA, Perić D, Owen DRJ. Computational Methods for Plasticity: Theory and Applications. Wiley: Chichester, 2008.
– reference: Markovič D, Ibrahimbegović A. On micro-macro interface conditions for micro-scale based FEM for inelastic behaviour of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering 2004; 193:5503-5523.
– reference: Perić D, de Souza Neto EA. A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space. Computer Methods in Applied Mechanics and Engineering 1999; 171:463-489.
– reference: Giusti SM, Novotny AA, de Souza Neto EA, Feijóo RA. Sensitivity of the macroscopic elasticity tensor to topological microstructural changes. Journal of the Mechanics and Physics of Solids 2009; 57:555-570.
– reference: Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. Wiley: New York, 2000.
– reference: Fish J, Zheng Y. Multiscale enrichment based on partition of unity. International Journal for Numerical Methods in Engineering 2005; 62:1341-1359.
– reference: Perić D. On a class of constitutive equations in viscoplasticity: formulation and computational issues. International Journal for Numerical Methods in Engineering 1993; 36:1365-1393.
– reference: Miehe C, Schröder J, Schotte J. Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 1999; 171:387-418.
– reference: Ladevèze P, Loiseau O, Dureisseix D. A micro-macro and parallel computational strategy for highly heterogeneous structures. International Journal for Numerical Methods in Engineering 2001; 52:121-138.
– reference: Somer DD, de Souza Neto EA, Dettmer WG, Perić D. A sub-stepping scheme for multi-scale analysis of solids. Computer Methods in Applied Mechanics and Engineering 2009; 198:1006-1016.
– reference: Hill R. On constitutive macro-variables for heterogeneous solids at finite strain. Proceedings of the Royal Society of London, Series A 1972; 326:131-147.
– reference: Dutko M, Peric D, Owen DRJ. Universal anisotropic yield criterion based on superquadric functional representation-1: algorithmic issues and accuracy analysis. Computer Methods in Applied Mechanics and Engineering 1993; 109:73-93.
– reference: Matsui K, Terada K, Yuge K. Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Computers and Structures 2004; 82:593-606.
– reference: Oden JT, Vemaganti K, Moes N. Hierarchical modelling of heterogenous solids. Computer Methods in Applied Mechanics and Engineering 1999; 172:2-25.
– reference: Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneous media. Computer Methods in Applied Mechanics and Engineering 2001; 190:5427-5464.
– reference: Smit RJM, Brekelmans WAM, Meijer HEH. Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 1998; 155:181-192.
– reference: Pellegrino C, Galvanetto U, Schrefler BA. Numerical homogenization of periodic composite materials with non-linear material components. International Journal for Numerical Methods in Engineering 1999; 46:1609-1637.
– reference: Belytschko T, Song JH. Coarse-graining of multiscale crack propagation. International Journal for Numerical Methods in Engineering 2010; 81:537-563.
– reference: Hund A, Ramm E. Locality constraints within multiscale model for non-linear material behaviour. International Journal for Numerical Methods in Engineering 2007; 70:1613-1632.
– reference: Taylor GI. Plastic strains in metals. Journal Institute of Metals 1938; 62:307-324.
– reference: Belytschko T, Loehnert S, Song JH. Multiscale aggregating discontinuities: a method for circumventing loss of material stability. International Journal for Numerical Methods in Engineering 2008; 73:869-894.
– reference: Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland: Amsterdam, 1993.
– reference: Fish J, Shek K, Pandheeradi M, Shephard MS. Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Computer Methods in Applied Mechanics and Engineering 1997; 148:53-73.
– reference: Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering 1998; 157:69-94.
– reference: Ladevèze P. Multiscale modelling and computational strategies for composites. International Journal for Numerical Methods in Engineering 2004; 60:233-253.
– reference: Miehe C, Schotte J, Schröder J. Computational micro-macro transitions and overall tangent moduli in the analysis of polycrystals at large strains. Computational Materials Science 1999; 16:372-382.
– reference: Kouznetsova VG, Brekelmans WAM, Baaijens FPT. An approach to micro-macro modelling of heterogeneous materials. Computational Mechanics 2001; 27:37-48.
– reference: Simo JC, Hughes TJR. Computational inelasticity. Springer: New York, 1998.
– reference: Giusti SM, Novotny AA, de Souza Neto EA. Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions. Proceedings of the Royal Society A 2010; 466:1703-1723.
– reference: Giusti SM, Novotny AA, de Souza Neto EA, Feijóo RA. Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes. Computer Methods in Applied Mechanics and Engineering 2009; 198:727-739.
– reference: Speirs DCD, de Souza Neto EA, Perić D. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. Journal of Biomechanics 2008; 41:2673-2680.
– reference: Michel JC, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering 1999; 172:109-143.
– reference: Yuan Z, Fish J. Toward realization of computational homogenization in practice. International Journal for Numerical Methods in Engineering 2008; 73:361-380.
– reference: Miehe C, Koch A. Computational micro-macro transitions of discretized microstructures undergoing small strains. Archives of Applied Mechanics 2002; 72:300-317.
– year: 1985
– volume: 171
  start-page: 387
  year: 1999
  end-page: 418
  article-title: Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2005
– volume: 117
  start-page: 249
  year: 1994
  end-page: 267
  article-title: Techniques for stress‐ and strain‐controlled homogenization of inelastic periodic composites
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 109
  start-page: 73
  year: 1993
  end-page: 93
  article-title: Universal anisotropic yield criterion based on superquadric functional representation—1: algorithmic issues and accuracy analysis
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 56
  start-page: 1105
  year: 2008
  end-page: 1125
  article-title: Characterization of macroscopic tensile strength of polycrystalline metals with two‐scale finite element analysis
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 172
  start-page: 2
  year: 1999
  end-page: 25
  article-title: Hierarchical modelling of heterogenous solids
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 326
  start-page: 131
  year: 1972
  end-page: 147
  article-title: On constitutive macro‐variables for heterogeneous solids at finite strain
  publication-title: Proceedings of the Royal Society of London, Series A
– volume: 46
  start-page: 1609
  year: 1999
  end-page: 1637
  article-title: Numerical homogenization of periodic composite materials with non‐linear material components
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1971
– volume: 12
  start-page: 231
  year: 1974
  end-page: 251
  article-title: Comportement local et macroscopique d'un type de milieux physique hétérogènes
  publication-title: International Journal of Engineering Science
– volume: 27
  start-page: 37
  year: 2001
  end-page: 48
  article-title: An approach to micro‐macro modelling of heterogeneous materials
  publication-title: Computational Mechanics
– year: 1998
– volume: 132
  start-page: 63
  year: 1996
  end-page: 116
  article-title: Two scale analysis of heterogeneous elastic‐plastic materials with asymptotic homogenization and Voronoi cell finite element method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 57
  start-page: 555
  year: 2009
  end-page: 570
  article-title: Sensitivity of the macroscopic elasticity tensor to topological microstructural changes
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 157
  start-page: 69
  year: 1998
  end-page: 94
  article-title: A numerical method for computing the overall response of nonlinear composites with complex microstructure
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 13
  start-page: 213
  issue: 4
  year: 1965
  end-page: 222
  article-title: A self‐consistent mechanics of composite materials
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 193
  start-page: 5503
  year: 2004
  end-page: 5523
  article-title: On micro‐macro interface conditions for micro‐scale based FEM for inelastic behaviour of heterogeneous materials
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2008
– volume: 5
  start-page: 311
  year: 1998
  end-page: 384
  article-title: Continuum modelling and numerical simulation of material damage at finite strains
  publication-title: Archives of Computational Methods in Engineering
– volume: 72
  start-page: 300
  year: 2002
  end-page: 317
  article-title: Computational micro‐macro transitions of discretized microstructures undergoing small strains
  publication-title: Archives of Applied Mechanics
– volume: 138
  start-page: 273
  year: 1996
  end-page: 298
  article-title: Hierarchical modeling of heterogeneous bodies
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 1993
– volume: 52
  start-page: 121
  year: 2001
  end-page: 138
  article-title: A micro‐macro and parallel computational strategy for highly heterogeneous structures
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 62
  start-page: 1341
  year: 2005
  end-page: 1359
  article-title: Multiscale enrichment based on partition of unity
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 41
  start-page: 2673
  year: 2008
  end-page: 2680
  article-title: An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization
  publication-title: Journal of Biomechanics
– volume: 81
  start-page: 537
  year: 2010
  end-page: 563
  article-title: Coarse‐graining of multiscale crack propagation
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 183
  start-page: 309
  year: 2000
  end-page: 330
  article-title: FE multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 36
  start-page: 1365
  year: 1993
  end-page: 1393
  article-title: On a class of constitutive equations in viscoplasticity: formulation and computational issues
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1987
– volume: 73
  start-page: 361
  year: 2008
  end-page: 380
  article-title: Toward realization of computational homogenization in practice
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 60
  start-page: 233
  year: 2004
  end-page: 253
  article-title: Multiscale modelling and computational strategies for composites
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 172
  start-page: 109
  year: 1999
  end-page: 143
  article-title: Effective properties of composite materials with periodic microstructure: a computational approach
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 82
  start-page: 593
  year: 2004
  end-page: 606
  article-title: Two‐scale finite element analysis of heterogeneous solids with periodic microstructures
  publication-title: Computers and Structures
– year: 2000
– volume: 148
  start-page: 53
  year: 1997
  end-page: 73
  article-title: Computational plasticity for composite structures based on mathematical homogenization: theory and practice
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 16
  start-page: 372
  year: 1999
  end-page: 382
  article-title: Computational micro‐macro transitions and overall tangent moduli in the analysis of polycrystals at large strains
  publication-title: Computational Materials Science
– volume: 21
  start-page: 1
  year: 1981
  end-page: 78
  article-title: Variational and related methods for the overall properties of composites
  publication-title: Advances in Applied Mechanics
– volume: 171
  start-page: 463
  year: 1999
  end-page: 489
  article-title: A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 466
  start-page: 1703
  year: 2010
  end-page: 1723
  article-title: Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions
  publication-title: Proceedings of the Royal Society A
– volume: 73
  start-page: 869
  year: 2008
  end-page: 894
  article-title: Multiscale aggregating discontinuities: a method for circumventing loss of material stability
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 62
  start-page: 307
  year: 1938
  end-page: 324
  article-title: Plastic strains in metals
  publication-title: Journal Institute of Metals
– volume: 198
  start-page: 1006
  year: 2009
  end-page: 1016
  article-title: A sub‐stepping scheme for multi‐scale analysis of solids
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 198
  start-page: 727
  year: 2009
  end-page: 739
  article-title: Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2002
– year: 2006
– volume: 130
  start-page: 179
  year: 1996
  end-page: 193
  article-title: A computational framework for a class of fully coupled models for elastoplastic damage at finite strains with reference to the linearization aspects
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 190
  start-page: 5427
  year: 2001
  end-page: 5464
  article-title: A class of general algorithms for multi‐scale analyses of heterogeneous media
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 155
  start-page: 181
  year: 1998
  end-page: 192
  article-title: Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi‐level finite element modeling
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 70
  start-page: 1613
  year: 2007
  end-page: 1632
  article-title: Locality constraints within multiscale model for non‐linear material behaviour
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_8_8_2
  doi: 10.1016/S0045-7825(97)00218-1
– ident: e_1_2_8_12_2
  doi: 10.1002/nme.2074
– ident: e_1_2_8_11_2
  doi: 10.1002/nme.1230
– volume-title: Nonlinear Finite Elements for Continua and Structures
  year: 2000
  ident: e_1_2_8_40_2
– ident: e_1_2_8_13_2
  doi: 10.1016/S0045-7825(97)00139-4
– volume-title: Micromechanics: Overall Properties of Heterogeneous Materials
  year: 1993
  ident: e_1_2_8_35_2
– ident: e_1_2_8_5_2
  doi: 10.1016/S0045-7825(98)00224-2
– ident: e_1_2_8_46_2
  doi: 10.1002/nme.1620360807
– ident: e_1_2_8_9_2
  doi: 10.1016/S0045-7825(98)00227-8
– ident: e_1_2_8_23_2
  doi: 10.1016/S0045-7825(01)00179-7
– ident: e_1_2_8_16_2
  doi: 10.1016/S0045-7825(98)00218-7
– ident: e_1_2_8_26_2
  doi: 10.1016/j.cma.2003.12.072
– ident: e_1_2_8_30_2
  doi: 10.1002/nme.1953
– ident: e_1_2_8_20_2
– ident: e_1_2_8_43_2
  doi: 10.1016/0045-7825(95)00872-1
– ident: e_1_2_8_36_2
– ident: e_1_2_8_6_2
  doi: 10.1016/S0045-7825(96)01106-1
– ident: e_1_2_8_47_2
  doi: 10.1016/S0045-7825(98)00221-7
– ident: e_1_2_8_51_2
  doi: 10.1016/j.cma.2008.10.005
– volume-title: Computational inelasticity
  year: 1998
  ident: e_1_2_8_39_2
– ident: e_1_2_8_4_2
  doi: 10.1007/3-540-17616-0_15
– ident: e_1_2_8_33_2
  doi: 10.1098/rspa.1972.0001
– ident: e_1_2_8_27_2
  doi: 10.1007/978-3-540-32360-0
– ident: e_1_2_8_2_2
  doi: 10.1016/0020-7225(74)90062-7
– ident: e_1_2_8_18_2
  doi: 10.1002/(SICI)1097-0207(19991210)46:10<1609::AID-NME716>3.0.CO;2-Q
– ident: e_1_2_8_37_2
  doi: 10.1016/0022-5096(65)90010-4
– volume-title: Nonlinear Finite Element Methods
  year: 2008
  ident: e_1_2_8_42_2
– ident: e_1_2_8_10_2
  doi: 10.1016/S0045-7825(97)00030-3
– ident: e_1_2_8_29_2
  doi: 10.1002/nme.2694
– ident: e_1_2_8_24_2
  doi: 10.1016/j.compstruc.2004.01.004
– ident: e_1_2_8_19_2
  doi: 10.1007/s004660000212
– ident: e_1_2_8_45_2
  doi: 10.1016/0045-7825(93)90225-M
– ident: e_1_2_8_15_2
  doi: 10.1016/S0927-0256(99)00080-4
– ident: e_1_2_8_48_2
  doi: 10.1016/j.cma.2008.11.013
– ident: e_1_2_8_21_2
  doi: 10.1002/nme.274
– ident: e_1_2_8_25_2
  doi: 10.1016/j.jmps.2007.06.001
– ident: e_1_2_8_28_2
  doi: 10.1002/nme.2156
– volume: 62
  start-page: 307
  year: 1938
  ident: e_1_2_8_38_2
  article-title: Plastic strains in metals
  publication-title: Journal Institute of Metals
– ident: e_1_2_8_41_2
  doi: 10.1002/9780470694626
– ident: e_1_2_8_50_2
  doi: 10.1016/j.jmps.2008.11.008
– ident: e_1_2_8_22_2
  doi: 10.1002/nme.960
– ident: e_1_2_8_34_2
  doi: 10.1016/S0065-2156(08)70330-2
– ident: e_1_2_8_44_2
  doi: 10.1007/BF02905910
– ident: e_1_2_8_14_2
  doi: 10.1016/S0045-7825(99)00224-8
– ident: e_1_2_8_49_2
  doi: 10.1016/j.jbiomech.2008.06.020
– volume-title: Plasticity Today: Modelling Methods and Applications
  year: 1985
  ident: e_1_2_8_3_2
– ident: e_1_2_8_31_2
  doi: 10.1016/0045-7825(94)90117-1
– ident: e_1_2_8_52_2
  doi: 10.1098/rspa.2009.0499
– ident: e_1_2_8_7_2
  doi: 10.1016/0045-7825(95)00974-4
– ident: e_1_2_8_17_2
  doi: 10.1007/s00419-002-0212-2
– volume-title: CISM Courses and Lectures No. 97
  year: 1971
  ident: e_1_2_8_32_2
SSID ssj0011503
Score 2.4015768
Snippet This work describes a homogenization‐based multi‐scale procedure required for the computation of the material response of non‐linear microstructures undergoing...
This work describes a homogenization-based multi-scale procedure required for the computation of the material response of non-linear microstructures undergoing...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 149
SubjectTerms Boundaries
Computation
Computer simulation
Exact sciences and technology
finite element
Finite element method
Fundamental areas of phenomenology (including applications)
homogenization
Inelasticity (thermoplasticity, viscoplasticity...)
Mathematical analysis
Mathematical models
micro-to-macro transitions
Microcavities
multi-scale analysis
Nonlinearity
Physics
Solid mechanics
Structural and continuum mechanics
Title On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation
URI https://api.istex.fr/ark:/67375/WNG-V8TCN8N1-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.3014
https://www.proquest.com/docview/1022872162
Volume 87
WOSCitedRecordID wos000291602100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELeg5YE9MBiglT-TkdB4CmucOLb3hsbKHlhAaIO9WU7siGpripp24pGPwFfgq-2TcBc7USuBhMRLqzSX5mLf5e7sn38m5KVh0joFlSo3SQIFiiwjIxIWJY5ZWxqHqzXbzSZEnsuLC_UxoCpxLYznh-gH3NAz2vc1OrgpmoM10tCZe431wG0yZGC26YAM336anL_v5xAg1Uk6gAdXMu6oZ8fsoLt2IxgNsV2_IzjSNNA-ld_YYiPzXM9f2wA02f4f1e-TeyHtpG-8nTwgt1y9Q7ZDCkqDgzc7ZGuNnxCOTntS1-Yh-fWhpjPE7938-LnEj5mBA7rEaOeBXxQyYNpCFOEsPp2jJpCe0HlF63kNv6P6ZkG_Ig5nDubr5quGwj28KxzSVT2tUKlrqOLDSCWFWAt_YWpLqykmydR51Dudzjr8O0o-IueT47Ojkyjs8BCVSZalkWoXvlY2S4txIWwKbzuctlNgN0IJVWSu4NzxQiruWFGW0lqckCiZGzuB1HaPyQB0d7uEQqXlTJZYrlyWmpgVSWxiYSGDtBwishmRV11X6zLQn-MuHFfaEzczDb2isVdG5EUv-c1TfvxBZr-1ll7ALC4RIie4_pK_05_l2VEu81ifjMjehjn1F2BqBOkug7t19qXBs3G6xrQtr7EWl8itBDL7rTn9VR2dnx7j95N_FXxK7vrBcRGN5TMyWC5W7jm5U14vp81iL3jSb11DKIY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6VBAk4tFBABGhZJFROpvHPetdwqkpDEIlBKKW9rdbetRqVOChOKo48Ql-BV-NJmPGfEgkkJC6JHI_j8e6M55vd2W8BXmhPGhthpsq172OCIlNHC99zfOsZk2pLqzXLzSZEHMvz8-jTFrxp1sJU_BDtgBt5Rvm-JgenAenDNdbQmX1FCcEN6AZoRbwD3befB6ejdhIBsY7fVHjwSLoN92zfO2yu3YhGXWrY71QdqQtsoKza2WIDeq4D2DICDXb-S_e7sF0DT3ZUWco92LL5LuzUIJTVLl7swp01hkI8Gre0rsV9-PkxZzOq4Pv143pJHzONB2xJ8a4q_WKIgVlZpIhn6fEs0zXtCZtnLJ_n-Dvprxfsgipx5mjAdr4qGN6jcobXbJVPM1LqCvP4eqySYbTFv9C5YdmUYDKzVd07m86aCniSfACng5PJ8dCp93hwUj8MAycql75mJgySfiJMgO87mriL0HJEJKIktAnnlicy4tZL0lQaQ1MSqWf7VhC53UPooO72ETDMtawOfcMjGwba9RLf1a4wiCENx5ise_Cy6WuV1gTotA_HV1VRN3sKe0VRr_TgeSv5rSL9-IPMQWkurYBeXFKRnODqLH6nvsjJcSxjVw17sL9hT-0FBI4Q8Hp4t8bAFPo2TdjosuUVZeOS2JVQ5qC0p7-qo-LxCX0__lfBZ3BrOBmP1Oh9_OEJ3K6GyoXTl0-hs1ys7B7cTK-W02KxX7vVb_YCLHY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NFSH2wGBsWvkzjITGU1jzx4kNT2hbGWILE9pgb5YTO6Lamk5NO_HIR-Ar8NX4JNzFSdRKICHx0irNpbnYd7nf2eefAV7oQBgrMVPlOgwxQRG5p5Mw8EIbGJNrS6s1680mkjQVFxfydAXetGthHD9EN-BGnlG_r8nB7bUp9hZYQ8f2FSUEt6AXcRmjV_YOPg3Pj7tJBMQ6YVvhwaXwW-7ZQbDXXrsUjXrUsN-oOlJX2ECF29liCXouAtg6Ag3X_0v3-3CvAZ7srbOUB7Biyw1Yb0Aoa1y82oC1BYZCPDrpaF2rh_DzY8nGVMH36_uPGX2MNR6wGcU7V_rFEAOzukgRz9LjWaYb2hM2KVg5KfF30l9P2VeqxJmgAdvJvGJ4D-cMr9m8HBWk1A3m8c1YJcNoi3-hS8OKEcFkZl3dOxuN2wp4ktyE8-Hh2f6R1-zx4OVhHEeerJe-FiaOskGWmAjfdzRxJ9FyEpnILLYZ55ZnQnIbZHkujKEpiTywA5sQud0WrKLudhsY5lpWx6Hh0saR9oMs9LWfGMSQhmNM1n142fa1yhsCdNqH40o56uZAYa8o6pU-PO8krx3pxx9kdmtz6QT09JKK5BKuvqTv1Gdxtp-K1FdHfdhZsqfuAgJHCHgDvFtrYAp9myZsdN3yirJxQexKKLNb29Nf1VHpySF9P_pXwWdw5_RgqI7fpx8ew103Up54A_EEVmfTuX0Kt_Ob2aia7jRe9RtEXCvx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+micro-to-macro+transitions+for+multi-scale+analysis+of+non-linear+heterogeneous+materials%3A+unified+variational+basis+and+finite+element+implementation&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=PERIC%2C+D&rft.au=DE+SOUZA%2C+E.+A&rft.au=FEIJOO%2C+R.+A&rft.au=PARTOVI%2C+M&rft.date=2011-07-08&rft.pub=Wiley&rft.issn=0029-5981&rft.volume=87&rft.issue=1-5&rft.spage=149&rft.epage=170&rft_id=info:doi/10.1002%2Fnme.3014&rft.externalDBID=n%2Fa&rft.externalDocID=24260852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon