On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation
This work describes a homogenization‐based multi‐scale procedure required for the computation of the material response of non‐linear microstructures undergoing small strains. Such procedures are important for computer modelling of heterogeneous materials when the length‐scale of heterogeneities is s...
Uloženo v:
| Vydáno v: | International journal for numerical methods in engineering Ročník 87; číslo 1-5; s. 149 - 170 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester, UK
John Wiley & Sons, Ltd
08.07.2011
Wiley |
| Témata: | |
| ISSN: | 0029-5981, 1097-0207, 1097-0207 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This work describes a homogenization‐based multi‐scale procedure required for the computation of the material response of non‐linear microstructures undergoing small strains. Such procedures are important for computer modelling of heterogeneous materials when the length‐scale of heterogeneities is small compared to the dimensions of the body. The described multi‐scale procedure relies on a unified variational basis which, apart from the continuum‐based variational formulation at both micro‐ and macroscales of the problem, also includes the variational formulation governing micro‐to‐macro transitions. This unified variational basis leads naturally to a generic finite element‐based framework for homogenization‐based multi‐scale analysis of heterogenous solids. In addition, the unified variational formulation provides clear axiomatic basis and hierarchy related to the choice of boundary conditions at the microscale. Classical kinematical constraints are considered over the representative volume element: (i) Taylor, (ii) linear boundary displacements, (iii) periodic boundary displacement fluctuations and (iv) minimal constraint, also known as uniform boundary tractions. In this context the Hill‐Mandel averaging requirement, which links microscopic and macroscopic stress power, plays a fundamental role in defining the microscopic forces compatible with the assumed kinematics. Numerical examples of both microscale and two‐scale finite element simulations of elasto‐plastic material with microcavities are presented to illustrate the main features and scope of the described computational strategy. Copyright © 2010 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | This work describes a homogenization‐based multi‐scale procedure required for the computation of the material response of non‐linear microstructures undergoing small strains. Such procedures are important for computer modelling of heterogeneous materials when the length‐scale of heterogeneities is small compared to the dimensions of the body. The described multi‐scale procedure relies on a unified variational basis which, apart from the continuum‐based variational formulation at both micro‐ and macroscales of the problem, also includes the variational formulation governing micro‐to‐macro transitions. This unified variational basis leads naturally to a generic finite element‐based framework for homogenization‐based multi‐scale analysis of heterogenous solids. In addition, the unified variational formulation provides clear axiomatic basis and hierarchy related to the choice of boundary conditions at the microscale. Classical kinematical constraints are considered over the representative volume element: (i) Taylor, (ii) linear boundary displacements, (iii) periodic boundary displacement fluctuations and (iv) minimal constraint, also known as uniform boundary tractions. In this context the Hill‐Mandel averaging requirement, which links microscopic and macroscopic stress power, plays a fundamental role in defining the microscopic forces compatible with the assumed kinematics. Numerical examples of both microscale and two‐scale finite element simulations of elasto‐plastic material with microcavities are presented to illustrate the main features and scope of the described computational strategy. Copyright © 2010 John Wiley & Sons, Ltd. This work describes a homogenization-based multi-scale procedure required for the computation of the material response of non-linear microstructures undergoing small strains. Such procedures are important for computer modelling of heterogeneous materials when the length-scale of heterogeneities is small compared to the dimensions of the body. The described multi-scale procedure relies on a unified variational basis which, apart from the continuum-based variational formulation at both micro- and macroscales of the problem, also includes the variational formulation governing micro-to-macro transitions. This unified variational basis leads naturally to a generic finite element-based framework for homogenization-based multi-scale analysis of heterogenous solids. In addition, the unified variational formulation provides clear axiomatic basis and hierarchy related to the choice of boundary conditions at the microscale. Classical kinematical constraints are considered over the representative volume element: (i) Taylor, (ii) linear boundary displacements, (iii) periodic boundary displacement fluctuations and (iv) minimal constraint, also known as uniform boundary tractions. In this context the Hill-Mandel averaging requirement, which links microscopic and macroscopic stress power, plays a fundamental role in defining the microscopic forces compatible with the assumed kinematics. Numerical examples of both microscale and two-scale finite element simulations of elasto-plastic material with microcavities are presented to illustrate the main features and scope of the described computational strategy. |
| Author | de Souza Neto, E. A. Perić, D. Partovi, M. Molina, A. J. Carneiro Feijóo, R. A. |
| Author_xml | – sequence: 1 givenname: D. surname: Perić fullname: Perić, D. email: d.peric@swansea.ac.uk organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, U.K – sequence: 2 givenname: E. A. surname: de Souza Neto fullname: de Souza Neto, E. A. organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, U.K – sequence: 3 givenname: R. A. surname: Feijóo fullname: Feijóo, R. A. organization: Laboratório Nacional de Computação Científica (LNCC/MCT), Av. Getúlio Vargas, 333, Quitandinha, Petrópolis-Rio de Janeiro, CEP 25651-075, Brazil – sequence: 4 givenname: M. surname: Partovi fullname: Partovi, M. organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, U.K – sequence: 5 givenname: A. J. Carneiro surname: Molina fullname: Molina, A. J. Carneiro organization: Civil and Computational Engineering Centre, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, U.K |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24260852$$DView record in Pascal Francis |
| BookMark | eNp1kc1u1DAUhS3USkwLEo_gDRIbD_5J4pgdGpUWqUw3LSwtJ7mBC44z2BlgHoW3xWlKEVK78rX9-Vyfc0_IURgDEPJC8LXgXL4OA6wVF8UTshLcaMYl10dkla8MK00tnpKTlL5yLkTJ1Yr8vgp0wDaObBrZ4HJBp-hCwgnHkGg_Rjrs_YQstc4DdcH5Q8JEx57mxsxjABfpF5ggjp8hwLhPdHB5h86nN3QfsEfo6A-XD2ZJ52njZgEXOtpjwAkoeBggTBSH3VLdks_IcZ814Pndekpu3p1dby7Y5dX5-83bS9aqqiqYMdlK3XdV0fBGd4XSlagMN04pbbRpKmjKEsqmNiXIpm3rrlM5qFYCB61NoU7Jq0V3F8fve0iTHTC14L27dWMFl7LWUlQyoy_vUDfH0eegWkx2F3Fw8WBlIStelzO3XrgcZ0oRetviYipniz5L2nlWNs_KzrP694f7B381H0DZgv5ED4dHObv9cPY_j2mCX_e8i99spZUu7aftuf1YX2-29VbYC_UHrA22qw |
| CODEN | IJNMBH |
| CitedBy_id | crossref_primary_10_1016_j_mechmat_2016_01_007 crossref_primary_10_1080_15376494_2022_2144974 crossref_primary_10_1007_s00161_018_0682_2 crossref_primary_10_1016_j_finel_2023_104067 crossref_primary_10_1016_j_enganabound_2017_11_006 crossref_primary_10_1109_TMAG_2012_2237546 crossref_primary_10_1007_s40314_021_01580_w crossref_primary_10_3390_ma10020112 crossref_primary_10_1016_j_cma_2020_113660 crossref_primary_10_1016_j_ijsolstr_2021_111412 crossref_primary_10_1016_j_enganabound_2022_11_029 crossref_primary_10_1038_s41578_019_0169_1 crossref_primary_10_1016_j_commatsci_2014_04_011 crossref_primary_10_1007_s00466_016_1358_z crossref_primary_10_1016_j_cma_2021_113930 crossref_primary_10_1016_j_jpowsour_2024_234410 crossref_primary_10_1016_j_compstruct_2013_08_034 crossref_primary_10_1061__ASCE_EM_1943_7889_0001123 crossref_primary_10_1007_s00158_019_02293_9 crossref_primary_10_1016_j_cma_2019_112689 crossref_primary_10_1016_j_cma_2024_116881 crossref_primary_10_1016_j_compstruct_2022_115836 crossref_primary_10_1016_j_ijsolstr_2021_111400 crossref_primary_10_1016_j_enganabound_2015_01_005 crossref_primary_10_1016_j_ijplas_2015_07_001 crossref_primary_10_1016_j_ijsolstr_2013_07_021 crossref_primary_10_1007_s10704_016_0139_1 crossref_primary_10_1016_j_ijmecsci_2018_08_012 crossref_primary_10_1016_j_cma_2021_114518 crossref_primary_10_1016_j_ijmecsci_2022_108007 crossref_primary_10_1016_j_cma_2015_10_020 crossref_primary_10_1007_s11831_014_9137_5 crossref_primary_10_1016_j_commatsci_2012_06_012 crossref_primary_10_1002_nme_6209 crossref_primary_10_1016_j_cma_2023_116672 crossref_primary_10_1016_j_compstruc_2016_08_009 crossref_primary_10_1007_s41939_018_0009_9 crossref_primary_10_1016_j_cma_2022_115741 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121683 crossref_primary_10_1016_j_ijsolstr_2015_09_008 crossref_primary_10_1016_j_cma_2024_117162 crossref_primary_10_1016_j_commatsci_2023_112658 crossref_primary_10_1016_j_cma_2017_10_001 crossref_primary_10_1016_j_cma_2019_112694 crossref_primary_10_1080_15502287_2016_1145761 crossref_primary_10_1007_s10659_024_10077_6 crossref_primary_10_5216_reec_v14i2_50037 crossref_primary_10_1002_nme_7381 crossref_primary_10_1016_j_cma_2020_113234 crossref_primary_10_1016_j_ijrmms_2021_104625 crossref_primary_10_1590_1517_7076_rmat_2024_0728 crossref_primary_10_1016_j_ijsolstr_2023_112494 crossref_primary_10_1016_j_enganabound_2018_10_018 crossref_primary_10_1016_j_compstruct_2016_08_015 crossref_primary_10_3390_gels11070496 crossref_primary_10_1002_app_54512 crossref_primary_10_1007_s11831_016_9205_0 crossref_primary_10_1080_14786435_2017_1408967 crossref_primary_10_1007_s10596_013_9363_1 crossref_primary_10_1002_nme_5903 crossref_primary_10_1016_j_compstruct_2018_01_051 crossref_primary_10_1016_j_compstruct_2018_04_003 crossref_primary_10_1016_j_compstruct_2022_116229 crossref_primary_10_1007_s40430_024_05043_1 crossref_primary_10_1088_0965_0393_19_7_074008 crossref_primary_10_1007_s10659_013_9445_2 crossref_primary_10_1016_j_enganabound_2019_03_018 crossref_primary_10_1016_j_tws_2022_110158 crossref_primary_10_1002_nme_3298 crossref_primary_10_1007_s00466_016_1306_y crossref_primary_10_1016_j_cma_2012_11_016 crossref_primary_10_1016_j_compstruc_2016_11_002 crossref_primary_10_1016_j_commatsci_2013_11_002 crossref_primary_10_1016_j_mechmat_2014_10_007 crossref_primary_10_1002_nme_3237 crossref_primary_10_1002_nme_4447 crossref_primary_10_1016_j_engappai_2024_108622 crossref_primary_10_1016_j_cma_2019_112594 crossref_primary_10_1016_j_enganabound_2020_07_004 crossref_primary_10_1016_j_ijhydene_2021_04_033 crossref_primary_10_1016_j_conbuildmat_2020_119867 crossref_primary_10_1061_JGGEFK_GTENG_12975 crossref_primary_10_1016_j_cma_2019_01_016 crossref_primary_10_1002_nme_6871 crossref_primary_10_1016_j_ijengsci_2021_103586 crossref_primary_10_1016_j_oceaneng_2016_05_055 crossref_primary_10_1016_j_compstruct_2024_118073 crossref_primary_10_1016_j_cma_2014_01_029 crossref_primary_10_1016_j_tafmec_2017_04_006 crossref_primary_10_1016_j_cma_2013_01_003 crossref_primary_10_1016_j_euromechsol_2020_104079 crossref_primary_10_1007_s41939_020_00087_x crossref_primary_10_1016_j_cma_2019_06_013 crossref_primary_10_1016_j_electacta_2021_139045 crossref_primary_10_1016_j_enganabound_2014_10_005 crossref_primary_10_1016_j_conbuildmat_2018_12_013 crossref_primary_10_1016_j_euromechsol_2019_02_001 crossref_primary_10_1016_j_jcp_2016_10_070 crossref_primary_10_32604_cmes_2021_014142 crossref_primary_10_1016_j_ijsolstr_2015_11_027 crossref_primary_10_1108_EC_10_2014_0208 crossref_primary_10_1007_s00466_016_1333_8 crossref_primary_10_1007_s00466_020_01830_4 crossref_primary_10_1177_10567895211040549 crossref_primary_10_1016_j_ijimpeng_2015_06_022 crossref_primary_10_1016_j_cma_2020_113439 crossref_primary_10_1002_nme_4576 crossref_primary_10_1016_j_cma_2019_112663 crossref_primary_10_1016_j_euromechsol_2021_104384 crossref_primary_10_1016_j_cma_2015_10_005 crossref_primary_10_1016_j_compgeo_2022_105121 crossref_primary_10_1016_j_jbiomech_2014_11_003 crossref_primary_10_1002_nme_6002 crossref_primary_10_1016_j_commatsci_2011_10_017 crossref_primary_10_1016_j_cma_2019_07_032 |
| Cites_doi | 10.1016/S0045-7825(97)00218-1 10.1002/nme.2074 10.1002/nme.1230 10.1016/S0045-7825(97)00139-4 10.1016/S0045-7825(98)00224-2 10.1002/nme.1620360807 10.1016/S0045-7825(98)00227-8 10.1016/S0045-7825(01)00179-7 10.1016/S0045-7825(98)00218-7 10.1016/j.cma.2003.12.072 10.1002/nme.1953 10.1016/0045-7825(95)00872-1 10.1016/S0045-7825(96)01106-1 10.1016/S0045-7825(98)00221-7 10.1016/j.cma.2008.10.005 10.1007/3-540-17616-0_15 10.1098/rspa.1972.0001 10.1007/978-3-540-32360-0 10.1016/0020-7225(74)90062-7 10.1002/(SICI)1097-0207(19991210)46:10<1609::AID-NME716>3.0.CO;2-Q 10.1016/0022-5096(65)90010-4 10.1016/S0045-7825(97)00030-3 10.1002/nme.2694 10.1016/j.compstruc.2004.01.004 10.1007/s004660000212 10.1016/0045-7825(93)90225-M 10.1016/S0927-0256(99)00080-4 10.1016/j.cma.2008.11.013 10.1002/nme.274 10.1016/j.jmps.2007.06.001 10.1002/nme.2156 10.1002/9780470694626 10.1016/j.jmps.2008.11.008 10.1002/nme.960 10.1016/S0065-2156(08)70330-2 10.1007/BF02905910 10.1016/S0045-7825(99)00224-8 10.1016/j.jbiomech.2008.06.020 10.1016/0045-7825(94)90117-1 10.1098/rspa.2009.0499 10.1016/0045-7825(95)00974-4 10.1007/s00419-002-0212-2 |
| ContentType | Journal Article |
| Copyright | Copyright © 2010 John Wiley & Sons, Ltd. 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/nme.3014 |
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics Physics |
| EISSN | 1097-0207 |
| EndPage | 170 |
| ExternalDocumentID | 24260852 10_1002_nme_3014 NME3014 ark_67375_WNG_V8TCN8N1_H |
| Genre | article |
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION O8X .4S 6TJ ABDPE ABEML ACKIV ACSCC AGHNM AI. ARCSS GBZZK IQODW M6O PALCI RIWAO SAMSI VH1 VOH ZY4 ~A~ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3664-990118fd64b0b7d437616909a337979b6eb55e5b895e2bcc8dd3100c2e0e77943 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 140 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291602100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5981 1097-0207 |
| IngestDate | Sun Nov 09 10:20:28 EST 2025 Mon Jul 21 09:15:09 EDT 2025 Sat Nov 29 06:43:43 EST 2025 Tue Nov 18 22:35:11 EST 2025 Wed Aug 20 07:26:44 EDT 2025 Tue Sep 09 05:32:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-5 |
| Keywords | Representative volume element Averaging method Non linear material Small dimension Constraint finite element multi-scale analysis Homogenization Boundary condition Modeling Axiomatic micro-to-macro transitions Global local method Finite element method Heterogeneous material Inelasticity Elastoplasticity Multiscale method Plasticity Variational calculus Non linear effect Microstructure |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3664-990118fd64b0b7d437616909a337979b6eb55e5b895e2bcc8dd3100c2e0e77943 |
| Notes | ArticleID:NME3014 istex:668C02FE7518DA243BCFD4F37C2D372D652A5612 ark:/67375/WNG-V8TCN8N1-H ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1022872162 |
| PQPubID | 23500 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_1022872162 pascalfrancis_primary_24260852 crossref_citationtrail_10_1002_nme_3014 crossref_primary_10_1002_nme_3014 wiley_primary_10_1002_nme_3014_NME3014 istex_primary_ark_67375_WNG_V8TCN8N1_H |
| PublicationCentury | 2000 |
| PublicationDate | 2011-07-08 |
| PublicationDateYYYYMMDD | 2011-07-08 |
| PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
| PublicationYear | 2011 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Kouznetsova VG, Brekelmans WAM, Baaijens FPT. An approach to micro-macro modelling of heterogeneous materials. Computational Mechanics 2001; 27:37-48. Zohdi TI, Wriggers P. Introduction to Computational Micromechanics. Springer: Berlin, 2005. Feyel F, Chaboche J-L. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering 2000; 183:309-330. Miehe C, Koch A. Computational micro-macro transitions of discretized microstructures undergoing small strains. Archives of Applied Mechanics 2002; 72:300-317. Giusti SM, Novotny AA, de Souza Neto EA. Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions. Proceedings of the Royal Society A 2010; 466:1703-1723. Fish J, Shek K, Pandheeradi M, Shephard MS. Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Computer Methods in Applied Mechanics and Engineering 1997; 148:53-73. Watanabe I, Terada K, de Souza Neto EA, Peric D. Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis. Journal of the Mechanics and Physics of Solids 2008; 56:1105-1125. Giusti SM, Novotny AA, de Souza Neto EA, Feijóo RA. Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes. Computer Methods in Applied Mechanics and Engineering 2009; 198:727-739. Smit RJM, Brekelmans WAM, Meijer HEH. Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 1998; 155:181-192. Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering 1998; 157:69-94. Ladevèze P, Loiseau O, Dureisseix D. A micro-macro and parallel computational strategy for highly heterogeneous structures. International Journal for Numerical Methods in Engineering 2001; 52:121-138. Miehe C, Schotte J, Schröder J. Computational micro-macro transitions and overall tangent moduli in the analysis of polycrystals at large strains. Computational Materials Science 1999; 16:372-382. Fish J, Zheng Y. Multiscale enrichment based on partition of unity. International Journal for Numerical Methods in Engineering 2005; 62:1341-1359. Somer DD, de Souza Neto EA, Dettmer WG, Perić D. A sub-stepping scheme for multi-scale analysis of solids. Computer Methods in Applied Mechanics and Engineering 2009; 198:1006-1016. Yuan Z, Fish J. Toward realization of computational homogenization in practice. International Journal for Numerical Methods in Engineering 2008; 73:361-380. de Souza Neto EA, Perić D. A computational framework for a class of fully coupled models for elastoplastic damage at finite strains with reference to the linearization aspects. Computer Methods in Applied Mechanics and Engineering 1996; 130:179-193. Dutko M, Peric D, Owen DRJ. Universal anisotropic yield criterion based on superquadric functional representation-1: algorithmic issues and accuracy analysis. Computer Methods in Applied Mechanics and Engineering 1993; 109:73-93. Belytschko T, Loehnert S, Song JH. Multiscale aggregating discontinuities: a method for circumventing loss of material stability. International Journal for Numerical Methods in Engineering 2008; 73:869-894. Giusti SM, Novotny AA, de Souza Neto EA, Feijóo RA. Sensitivity of the macroscopic elasticity tensor to topological microstructural changes. Journal of the Mechanics and Physics of Solids 2009; 57:555-570. Ghosh S, Lee K, Murthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element method. Computer Methods in Applied Mechanics and Engineering 1996; 132:63-116. Matsui K, Terada K, Yuge K. Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Computers and Structures 2004; 82:593-606. Zohdi TI, Oden JT, Rodin GJ. Hierarchical modeling of heterogeneous bodies. Computer Methods in Applied Mechanics and Engineering 1996; 138:273-298. Ladevèze P. Multiscale modelling and computational strategies for composites. International Journal for Numerical Methods in Engineering 2004; 60:233-253. Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneous media. Computer Methods in Applied Mechanics and Engineering 2001; 190:5427-5464. Simo JC, Hughes TJR. Computational inelasticity. Springer: New York, 1998. Miehe C, Schröder J, Schotte J. Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 1999; 171:387-418. Markovič D, Ibrahimbegović A. On micro-macro interface conditions for micro-scale based FEM for inelastic behaviour of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering 2004; 193:5503-5523. Wriggers P. Nonlinear Finite Element Methods. Springer: Berlin, 2008. de Souza Neto EA, Perić D, Owen DRJ. Continuum modelling and numerical simulation of material damage at finite strains. Archives of Computational Methods in Engineering 1998; 5:311-384. Pellegrino C, Galvanetto U, Schrefler BA. Numerical homogenization of periodic composite materials with non-linear material components. International Journal for Numerical Methods in Engineering 1999; 46:1609-1637. Perić D, de Souza Neto EA. A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space. Computer Methods in Applied Mechanics and Engineering 1999; 171:463-489. Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland: Amsterdam, 1993. de Souza Neto EA, Perić D, Owen DRJ. Computational Methods for Plasticity: Theory and Applications. Wiley: Chichester, 2008. Sanchez-Palencia E. Comportement local et macroscopique d'un type de milieux physique hétérogènes. International Journal of Engineering Science 1974; 12:231-251. Perić D. On a class of constitutive equations in viscoplasticity: formulation and computational issues. International Journal for Numerical Methods in Engineering 1993; 36:1365-1393. Hund A, Ramm E. Locality constraints within multiscale model for non-linear material behaviour. International Journal for Numerical Methods in Engineering 2007; 70:1613-1632. Willis JR. Variational and related methods for the overall properties of composites. Advances in Applied Mechanics 1981; 21:1-78. Swan CC. Techniques for stress- and strain-controlled homogenization of inelastic periodic composites. Computer Methods in Applied Mechanics and Engineering 1994; 117:249-267. Hill R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 1965; 13(4):213-222. Michel JC, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering 1999; 172:109-143. Belytschko T, Song JH. Coarse-graining of multiscale crack propagation. International Journal for Numerical Methods in Engineering 2010; 81:537-563. Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. Wiley: New York, 2000. Oden JT, Vemaganti K, Moes N. Hierarchical modelling of heterogenous solids. Computer Methods in Applied Mechanics and Engineering 1999; 172:2-25. Speirs DCD, de Souza Neto EA, Perić D. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. Journal of Biomechanics 2008; 41:2673-2680. Hill R. On constitutive macro-variables for heterogeneous solids at finite strain. Proceedings of the Royal Society of London, Series A 1972; 326:131-147. Taylor GI. Plastic strains in metals. Journal Institute of Metals 1938; 62:307-324. 1974; 12 1994; 117 1965; 13 1993; 109 2004; 60 2004; 82 2002; 72 1999; 171 2010; 466 1999; 172 2005; 62 1999; 46 1998 2009; 198 2008 2008; 56 2007; 70 2006 2005 2001; 27 1971 1993 2002 1998; 155 2010; 81 2008; 73 1998; 157 1938; 62 1981; 21 1993; 36 1997; 148 2009; 57 2001; 190 2000 1999; 16 2004; 193 1987 2000; 183 1985 1996; 132 2008; 41 1996; 130 1998; 5 1972; 326 2001; 52 1996; 138 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 Simo JC (e_1_2_8_39_2) 1998 Wriggers P (e_1_2_8_42_2) 2008 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_2 e_1_2_8_43_2 Suquet PM (e_1_2_8_3_2) 1985 Nemat‐Nasser S (e_1_2_8_35_2) 1993 e_1_2_8_17_2 e_1_2_8_19_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_15_2 e_1_2_8_36_2 Mandel J (e_1_2_8_32_2) 1971 Belytschko T (e_1_2_8_40_2) 2000 e_1_2_8_30_2 e_1_2_8_11_2 e_1_2_8_51_2 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_2 Taylor GI (e_1_2_8_38_2) 1938; 62 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_16_2 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_31_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_50_2 |
| References_xml | – reference: Zohdi TI, Oden JT, Rodin GJ. Hierarchical modeling of heterogeneous bodies. Computer Methods in Applied Mechanics and Engineering 1996; 138:273-298. – reference: Swan CC. Techniques for stress- and strain-controlled homogenization of inelastic periodic composites. Computer Methods in Applied Mechanics and Engineering 1994; 117:249-267. – reference: Zohdi TI, Wriggers P. Introduction to Computational Micromechanics. Springer: Berlin, 2005. – reference: de Souza Neto EA, Perić D. A computational framework for a class of fully coupled models for elastoplastic damage at finite strains with reference to the linearization aspects. Computer Methods in Applied Mechanics and Engineering 1996; 130:179-193. – reference: Sanchez-Palencia E. Comportement local et macroscopique d'un type de milieux physique hétérogènes. International Journal of Engineering Science 1974; 12:231-251. – reference: Watanabe I, Terada K, de Souza Neto EA, Peric D. Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis. Journal of the Mechanics and Physics of Solids 2008; 56:1105-1125. – reference: Feyel F, Chaboche J-L. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering 2000; 183:309-330. – reference: Willis JR. Variational and related methods for the overall properties of composites. Advances in Applied Mechanics 1981; 21:1-78. – reference: Hill R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 1965; 13(4):213-222. – reference: de Souza Neto EA, Perić D, Owen DRJ. Continuum modelling and numerical simulation of material damage at finite strains. Archives of Computational Methods in Engineering 1998; 5:311-384. – reference: Wriggers P. Nonlinear Finite Element Methods. Springer: Berlin, 2008. – reference: Ghosh S, Lee K, Murthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element method. Computer Methods in Applied Mechanics and Engineering 1996; 132:63-116. – reference: de Souza Neto EA, Perić D, Owen DRJ. Computational Methods for Plasticity: Theory and Applications. Wiley: Chichester, 2008. – reference: Markovič D, Ibrahimbegović A. On micro-macro interface conditions for micro-scale based FEM for inelastic behaviour of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering 2004; 193:5503-5523. – reference: Perić D, de Souza Neto EA. A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space. Computer Methods in Applied Mechanics and Engineering 1999; 171:463-489. – reference: Giusti SM, Novotny AA, de Souza Neto EA, Feijóo RA. Sensitivity of the macroscopic elasticity tensor to topological microstructural changes. Journal of the Mechanics and Physics of Solids 2009; 57:555-570. – reference: Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. Wiley: New York, 2000. – reference: Fish J, Zheng Y. Multiscale enrichment based on partition of unity. International Journal for Numerical Methods in Engineering 2005; 62:1341-1359. – reference: Perić D. On a class of constitutive equations in viscoplasticity: formulation and computational issues. International Journal for Numerical Methods in Engineering 1993; 36:1365-1393. – reference: Miehe C, Schröder J, Schotte J. Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 1999; 171:387-418. – reference: Ladevèze P, Loiseau O, Dureisseix D. A micro-macro and parallel computational strategy for highly heterogeneous structures. International Journal for Numerical Methods in Engineering 2001; 52:121-138. – reference: Somer DD, de Souza Neto EA, Dettmer WG, Perić D. A sub-stepping scheme for multi-scale analysis of solids. Computer Methods in Applied Mechanics and Engineering 2009; 198:1006-1016. – reference: Hill R. On constitutive macro-variables for heterogeneous solids at finite strain. Proceedings of the Royal Society of London, Series A 1972; 326:131-147. – reference: Dutko M, Peric D, Owen DRJ. Universal anisotropic yield criterion based on superquadric functional representation-1: algorithmic issues and accuracy analysis. Computer Methods in Applied Mechanics and Engineering 1993; 109:73-93. – reference: Matsui K, Terada K, Yuge K. Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Computers and Structures 2004; 82:593-606. – reference: Oden JT, Vemaganti K, Moes N. Hierarchical modelling of heterogenous solids. Computer Methods in Applied Mechanics and Engineering 1999; 172:2-25. – reference: Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneous media. Computer Methods in Applied Mechanics and Engineering 2001; 190:5427-5464. – reference: Smit RJM, Brekelmans WAM, Meijer HEH. Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 1998; 155:181-192. – reference: Pellegrino C, Galvanetto U, Schrefler BA. Numerical homogenization of periodic composite materials with non-linear material components. International Journal for Numerical Methods in Engineering 1999; 46:1609-1637. – reference: Belytschko T, Song JH. Coarse-graining of multiscale crack propagation. International Journal for Numerical Methods in Engineering 2010; 81:537-563. – reference: Hund A, Ramm E. Locality constraints within multiscale model for non-linear material behaviour. International Journal for Numerical Methods in Engineering 2007; 70:1613-1632. – reference: Taylor GI. Plastic strains in metals. Journal Institute of Metals 1938; 62:307-324. – reference: Belytschko T, Loehnert S, Song JH. Multiscale aggregating discontinuities: a method for circumventing loss of material stability. International Journal for Numerical Methods in Engineering 2008; 73:869-894. – reference: Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland: Amsterdam, 1993. – reference: Fish J, Shek K, Pandheeradi M, Shephard MS. Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Computer Methods in Applied Mechanics and Engineering 1997; 148:53-73. – reference: Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering 1998; 157:69-94. – reference: Ladevèze P. Multiscale modelling and computational strategies for composites. International Journal for Numerical Methods in Engineering 2004; 60:233-253. – reference: Miehe C, Schotte J, Schröder J. Computational micro-macro transitions and overall tangent moduli in the analysis of polycrystals at large strains. Computational Materials Science 1999; 16:372-382. – reference: Kouznetsova VG, Brekelmans WAM, Baaijens FPT. An approach to micro-macro modelling of heterogeneous materials. Computational Mechanics 2001; 27:37-48. – reference: Simo JC, Hughes TJR. Computational inelasticity. Springer: New York, 1998. – reference: Giusti SM, Novotny AA, de Souza Neto EA. Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions. Proceedings of the Royal Society A 2010; 466:1703-1723. – reference: Giusti SM, Novotny AA, de Souza Neto EA, Feijóo RA. Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes. Computer Methods in Applied Mechanics and Engineering 2009; 198:727-739. – reference: Speirs DCD, de Souza Neto EA, Perić D. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. Journal of Biomechanics 2008; 41:2673-2680. – reference: Michel JC, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering 1999; 172:109-143. – reference: Yuan Z, Fish J. Toward realization of computational homogenization in practice. International Journal for Numerical Methods in Engineering 2008; 73:361-380. – reference: Miehe C, Koch A. Computational micro-macro transitions of discretized microstructures undergoing small strains. Archives of Applied Mechanics 2002; 72:300-317. – year: 1985 – volume: 171 start-page: 387 year: 1999 end-page: 418 article-title: Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2005 – volume: 117 start-page: 249 year: 1994 end-page: 267 article-title: Techniques for stress‐ and strain‐controlled homogenization of inelastic periodic composites publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 109 start-page: 73 year: 1993 end-page: 93 article-title: Universal anisotropic yield criterion based on superquadric functional representation—1: algorithmic issues and accuracy analysis publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 56 start-page: 1105 year: 2008 end-page: 1125 article-title: Characterization of macroscopic tensile strength of polycrystalline metals with two‐scale finite element analysis publication-title: Journal of the Mechanics and Physics of Solids – volume: 172 start-page: 2 year: 1999 end-page: 25 article-title: Hierarchical modelling of heterogenous solids publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 326 start-page: 131 year: 1972 end-page: 147 article-title: On constitutive macro‐variables for heterogeneous solids at finite strain publication-title: Proceedings of the Royal Society of London, Series A – volume: 46 start-page: 1609 year: 1999 end-page: 1637 article-title: Numerical homogenization of periodic composite materials with non‐linear material components publication-title: International Journal for Numerical Methods in Engineering – year: 1971 – volume: 12 start-page: 231 year: 1974 end-page: 251 article-title: Comportement local et macroscopique d'un type de milieux physique hétérogènes publication-title: International Journal of Engineering Science – volume: 27 start-page: 37 year: 2001 end-page: 48 article-title: An approach to micro‐macro modelling of heterogeneous materials publication-title: Computational Mechanics – year: 1998 – volume: 132 start-page: 63 year: 1996 end-page: 116 article-title: Two scale analysis of heterogeneous elastic‐plastic materials with asymptotic homogenization and Voronoi cell finite element method publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 57 start-page: 555 year: 2009 end-page: 570 article-title: Sensitivity of the macroscopic elasticity tensor to topological microstructural changes publication-title: Journal of the Mechanics and Physics of Solids – volume: 157 start-page: 69 year: 1998 end-page: 94 article-title: A numerical method for computing the overall response of nonlinear composites with complex microstructure publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 13 start-page: 213 issue: 4 year: 1965 end-page: 222 article-title: A self‐consistent mechanics of composite materials publication-title: Journal of the Mechanics and Physics of Solids – volume: 193 start-page: 5503 year: 2004 end-page: 5523 article-title: On micro‐macro interface conditions for micro‐scale based FEM for inelastic behaviour of heterogeneous materials publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2008 – volume: 5 start-page: 311 year: 1998 end-page: 384 article-title: Continuum modelling and numerical simulation of material damage at finite strains publication-title: Archives of Computational Methods in Engineering – volume: 72 start-page: 300 year: 2002 end-page: 317 article-title: Computational micro‐macro transitions of discretized microstructures undergoing small strains publication-title: Archives of Applied Mechanics – volume: 138 start-page: 273 year: 1996 end-page: 298 article-title: Hierarchical modeling of heterogeneous bodies publication-title: Computer Methods in Applied Mechanics and Engineering – year: 1993 – volume: 52 start-page: 121 year: 2001 end-page: 138 article-title: A micro‐macro and parallel computational strategy for highly heterogeneous structures publication-title: International Journal for Numerical Methods in Engineering – volume: 62 start-page: 1341 year: 2005 end-page: 1359 article-title: Multiscale enrichment based on partition of unity publication-title: International Journal for Numerical Methods in Engineering – volume: 41 start-page: 2673 year: 2008 end-page: 2680 article-title: An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization publication-title: Journal of Biomechanics – volume: 81 start-page: 537 year: 2010 end-page: 563 article-title: Coarse‐graining of multiscale crack propagation publication-title: International Journal for Numerical Methods in Engineering – volume: 183 start-page: 309 year: 2000 end-page: 330 article-title: FE multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 36 start-page: 1365 year: 1993 end-page: 1393 article-title: On a class of constitutive equations in viscoplasticity: formulation and computational issues publication-title: International Journal for Numerical Methods in Engineering – year: 1987 – volume: 73 start-page: 361 year: 2008 end-page: 380 article-title: Toward realization of computational homogenization in practice publication-title: International Journal for Numerical Methods in Engineering – volume: 60 start-page: 233 year: 2004 end-page: 253 article-title: Multiscale modelling and computational strategies for composites publication-title: International Journal for Numerical Methods in Engineering – volume: 172 start-page: 109 year: 1999 end-page: 143 article-title: Effective properties of composite materials with periodic microstructure: a computational approach publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 82 start-page: 593 year: 2004 end-page: 606 article-title: Two‐scale finite element analysis of heterogeneous solids with periodic microstructures publication-title: Computers and Structures – year: 2000 – volume: 148 start-page: 53 year: 1997 end-page: 73 article-title: Computational plasticity for composite structures based on mathematical homogenization: theory and practice publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 16 start-page: 372 year: 1999 end-page: 382 article-title: Computational micro‐macro transitions and overall tangent moduli in the analysis of polycrystals at large strains publication-title: Computational Materials Science – volume: 21 start-page: 1 year: 1981 end-page: 78 article-title: Variational and related methods for the overall properties of composites publication-title: Advances in Applied Mechanics – volume: 171 start-page: 463 year: 1999 end-page: 489 article-title: A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 466 start-page: 1703 year: 2010 end-page: 1723 article-title: Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions publication-title: Proceedings of the Royal Society A – volume: 73 start-page: 869 year: 2008 end-page: 894 article-title: Multiscale aggregating discontinuities: a method for circumventing loss of material stability publication-title: International Journal for Numerical Methods in Engineering – volume: 62 start-page: 307 year: 1938 end-page: 324 article-title: Plastic strains in metals publication-title: Journal Institute of Metals – volume: 198 start-page: 1006 year: 2009 end-page: 1016 article-title: A sub‐stepping scheme for multi‐scale analysis of solids publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 198 start-page: 727 year: 2009 end-page: 739 article-title: Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2002 – year: 2006 – volume: 130 start-page: 179 year: 1996 end-page: 193 article-title: A computational framework for a class of fully coupled models for elastoplastic damage at finite strains with reference to the linearization aspects publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 190 start-page: 5427 year: 2001 end-page: 5464 article-title: A class of general algorithms for multi‐scale analyses of heterogeneous media publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 155 start-page: 181 year: 1998 end-page: 192 article-title: Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi‐level finite element modeling publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 70 start-page: 1613 year: 2007 end-page: 1632 article-title: Locality constraints within multiscale model for non‐linear material behaviour publication-title: International Journal for Numerical Methods in Engineering – ident: e_1_2_8_8_2 doi: 10.1016/S0045-7825(97)00218-1 – ident: e_1_2_8_12_2 doi: 10.1002/nme.2074 – ident: e_1_2_8_11_2 doi: 10.1002/nme.1230 – volume-title: Nonlinear Finite Elements for Continua and Structures year: 2000 ident: e_1_2_8_40_2 – ident: e_1_2_8_13_2 doi: 10.1016/S0045-7825(97)00139-4 – volume-title: Micromechanics: Overall Properties of Heterogeneous Materials year: 1993 ident: e_1_2_8_35_2 – ident: e_1_2_8_5_2 doi: 10.1016/S0045-7825(98)00224-2 – ident: e_1_2_8_46_2 doi: 10.1002/nme.1620360807 – ident: e_1_2_8_9_2 doi: 10.1016/S0045-7825(98)00227-8 – ident: e_1_2_8_23_2 doi: 10.1016/S0045-7825(01)00179-7 – ident: e_1_2_8_16_2 doi: 10.1016/S0045-7825(98)00218-7 – ident: e_1_2_8_26_2 doi: 10.1016/j.cma.2003.12.072 – ident: e_1_2_8_30_2 doi: 10.1002/nme.1953 – ident: e_1_2_8_20_2 – ident: e_1_2_8_43_2 doi: 10.1016/0045-7825(95)00872-1 – ident: e_1_2_8_36_2 – ident: e_1_2_8_6_2 doi: 10.1016/S0045-7825(96)01106-1 – ident: e_1_2_8_47_2 doi: 10.1016/S0045-7825(98)00221-7 – ident: e_1_2_8_51_2 doi: 10.1016/j.cma.2008.10.005 – volume-title: Computational inelasticity year: 1998 ident: e_1_2_8_39_2 – ident: e_1_2_8_4_2 doi: 10.1007/3-540-17616-0_15 – ident: e_1_2_8_33_2 doi: 10.1098/rspa.1972.0001 – ident: e_1_2_8_27_2 doi: 10.1007/978-3-540-32360-0 – ident: e_1_2_8_2_2 doi: 10.1016/0020-7225(74)90062-7 – ident: e_1_2_8_18_2 doi: 10.1002/(SICI)1097-0207(19991210)46:10<1609::AID-NME716>3.0.CO;2-Q – ident: e_1_2_8_37_2 doi: 10.1016/0022-5096(65)90010-4 – volume-title: Nonlinear Finite Element Methods year: 2008 ident: e_1_2_8_42_2 – ident: e_1_2_8_10_2 doi: 10.1016/S0045-7825(97)00030-3 – ident: e_1_2_8_29_2 doi: 10.1002/nme.2694 – ident: e_1_2_8_24_2 doi: 10.1016/j.compstruc.2004.01.004 – ident: e_1_2_8_19_2 doi: 10.1007/s004660000212 – ident: e_1_2_8_45_2 doi: 10.1016/0045-7825(93)90225-M – ident: e_1_2_8_15_2 doi: 10.1016/S0927-0256(99)00080-4 – ident: e_1_2_8_48_2 doi: 10.1016/j.cma.2008.11.013 – ident: e_1_2_8_21_2 doi: 10.1002/nme.274 – ident: e_1_2_8_25_2 doi: 10.1016/j.jmps.2007.06.001 – ident: e_1_2_8_28_2 doi: 10.1002/nme.2156 – volume: 62 start-page: 307 year: 1938 ident: e_1_2_8_38_2 article-title: Plastic strains in metals publication-title: Journal Institute of Metals – ident: e_1_2_8_41_2 doi: 10.1002/9780470694626 – ident: e_1_2_8_50_2 doi: 10.1016/j.jmps.2008.11.008 – ident: e_1_2_8_22_2 doi: 10.1002/nme.960 – ident: e_1_2_8_34_2 doi: 10.1016/S0065-2156(08)70330-2 – ident: e_1_2_8_44_2 doi: 10.1007/BF02905910 – ident: e_1_2_8_14_2 doi: 10.1016/S0045-7825(99)00224-8 – ident: e_1_2_8_49_2 doi: 10.1016/j.jbiomech.2008.06.020 – volume-title: Plasticity Today: Modelling Methods and Applications year: 1985 ident: e_1_2_8_3_2 – ident: e_1_2_8_31_2 doi: 10.1016/0045-7825(94)90117-1 – ident: e_1_2_8_52_2 doi: 10.1098/rspa.2009.0499 – ident: e_1_2_8_7_2 doi: 10.1016/0045-7825(95)00974-4 – ident: e_1_2_8_17_2 doi: 10.1007/s00419-002-0212-2 – volume-title: CISM Courses and Lectures No. 97 year: 1971 ident: e_1_2_8_32_2 |
| SSID | ssj0011503 |
| Score | 2.4015768 |
| Snippet | This work describes a homogenization‐based multi‐scale procedure required for the computation of the material response of non‐linear microstructures undergoing... This work describes a homogenization-based multi-scale procedure required for the computation of the material response of non-linear microstructures undergoing... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 149 |
| SubjectTerms | Boundaries Computation Computer simulation Exact sciences and technology finite element Finite element method Fundamental areas of phenomenology (including applications) homogenization Inelasticity (thermoplasticity, viscoplasticity...) Mathematical analysis Mathematical models micro-to-macro transitions Microcavities multi-scale analysis Nonlinearity Physics Solid mechanics Structural and continuum mechanics |
| Title | On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation |
| URI | https://api.istex.fr/ark:/67375/WNG-V8TCN8N1-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.3014 https://www.proquest.com/docview/1022872162 |
| Volume | 87 |
| WOSCitedRecordID | wos000291602100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 issn: 0029-5981 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELeg5YE9MBiglT-TkdB4CmucOLb3hsbKHlhAaIO9WU7siGpripp24pGPwFfgq-2TcBc7USuBhMRLqzSX5mLf5e7sn38m5KVh0joFlSo3SQIFiiwjIxIWJY5ZWxqHqzXbzSZEnsuLC_UxoCpxLYznh-gH3NAz2vc1OrgpmoM10tCZe431wG0yZGC26YAM336anL_v5xAg1Uk6gAdXMu6oZ8fsoLt2IxgNsV2_IzjSNNA-ld_YYiPzXM9f2wA02f4f1e-TeyHtpG-8nTwgt1y9Q7ZDCkqDgzc7ZGuNnxCOTntS1-Yh-fWhpjPE7938-LnEj5mBA7rEaOeBXxQyYNpCFOEsPp2jJpCe0HlF63kNv6P6ZkG_Ig5nDubr5quGwj28KxzSVT2tUKlrqOLDSCWFWAt_YWpLqykmydR51Dudzjr8O0o-IueT47Ojkyjs8BCVSZalkWoXvlY2S4txIWwKbzuctlNgN0IJVWSu4NzxQiruWFGW0lqckCiZGzuB1HaPyQB0d7uEQqXlTJZYrlyWmpgVSWxiYSGDtBwishmRV11X6zLQn-MuHFfaEzczDb2isVdG5EUv-c1TfvxBZr-1ll7ALC4RIie4_pK_05_l2VEu81ifjMjehjn1F2BqBOkug7t19qXBs3G6xrQtr7EWl8itBDL7rTn9VR2dnx7j95N_FXxK7vrBcRGN5TMyWC5W7jm5U14vp81iL3jSb11DKIY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6VBAk4tFBABGhZJFROpvHPetdwqkpDEIlBKKW9rdbetRqVOChOKo48Ql-BV-NJmPGfEgkkJC6JHI_j8e6M55vd2W8BXmhPGhthpsq172OCIlNHC99zfOsZk2pLqzXLzSZEHMvz8-jTFrxp1sJU_BDtgBt5Rvm-JgenAenDNdbQmX1FCcEN6AZoRbwD3befB6ejdhIBsY7fVHjwSLoN92zfO2yu3YhGXWrY71QdqQtsoKza2WIDeq4D2DICDXb-S_e7sF0DT3ZUWco92LL5LuzUIJTVLl7swp01hkI8Gre0rsV9-PkxZzOq4Pv143pJHzONB2xJ8a4q_WKIgVlZpIhn6fEs0zXtCZtnLJ_n-Dvprxfsgipx5mjAdr4qGN6jcobXbJVPM1LqCvP4eqySYbTFv9C5YdmUYDKzVd07m86aCniSfACng5PJ8dCp93hwUj8MAycql75mJgySfiJMgO87mriL0HJEJKIktAnnlicy4tZL0lQaQ1MSqWf7VhC53UPooO72ETDMtawOfcMjGwba9RLf1a4wiCENx5ise_Cy6WuV1gTotA_HV1VRN3sKe0VRr_TgeSv5rSL9-IPMQWkurYBeXFKRnODqLH6nvsjJcSxjVw17sL9hT-0FBI4Q8Hp4t8bAFPo2TdjosuUVZeOS2JVQ5qC0p7-qo-LxCX0__lfBZ3BrOBmP1Oh9_OEJ3K6GyoXTl0-hs1ys7B7cTK-W02KxX7vVb_YCLHY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NFSH2wGBsWvkzjITGU1jzx4kNT2hbGWILE9pgb5YTO6Lamk5NO_HIR-Ar8NX4JNzFSdRKICHx0irNpbnYd7nf2eefAV7oQBgrMVPlOgwxQRG5p5Mw8EIbGJNrS6s1680mkjQVFxfydAXetGthHD9EN-BGnlG_r8nB7bUp9hZYQ8f2FSUEt6AXcRmjV_YOPg3Pj7tJBMQ6YVvhwaXwW-7ZQbDXXrsUjXrUsN-oOlJX2ECF29liCXouAtg6Ag3X_0v3-3CvAZ7srbOUB7Biyw1Yb0Aoa1y82oC1BYZCPDrpaF2rh_DzY8nGVMH36_uPGX2MNR6wGcU7V_rFEAOzukgRz9LjWaYb2hM2KVg5KfF30l9P2VeqxJmgAdvJvGJ4D-cMr9m8HBWk1A3m8c1YJcNoi3-hS8OKEcFkZl3dOxuN2wp4ktyE8-Hh2f6R1-zx4OVhHEeerJe-FiaOskGWmAjfdzRxJ9FyEpnILLYZ55ZnQnIbZHkujKEpiTywA5sQud0WrKLudhsY5lpWx6Hh0saR9oMs9LWfGMSQhmNM1n142fa1yhsCdNqH40o56uZAYa8o6pU-PO8krx3pxx9kdmtz6QT09JKK5BKuvqTv1Gdxtp-K1FdHfdhZsqfuAgJHCHgDvFtrYAp9myZsdN3yirJxQexKKLNb29Nf1VHpySF9P_pXwWdw5_RgqI7fpx8ew103Up54A_EEVmfTuX0Kt_Ob2aia7jRe9RtEXCvx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+micro-to-macro+transitions+for+multi-scale+analysis+of+non-linear+heterogeneous+materials%3A+unified+variational+basis+and+finite+element+implementation&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=PERIC%2C+D&rft.au=DE+SOUZA%2C+E.+A&rft.au=FEIJOO%2C+R.+A&rft.au=PARTOVI%2C+M&rft.date=2011-07-08&rft.pub=Wiley&rft.issn=0029-5981&rft.volume=87&rft.issue=1-5&rft.spage=149&rft.epage=170&rft_id=info:doi/10.1002%2Fnme.3014&rft.externalDBID=n%2Fa&rft.externalDocID=24260852 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |