Comparison of solution strategies for multibody dynamics equations
In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the choice of the coordinates leads to very different formalisms. The set of constraint equations appears very different in complexity or in size depe...
Uložené v:
| Vydané v: | International journal for numerical methods in engineering Ročník 88; číslo 7; s. 637 - 656 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Ltd
18.11.2011
Wiley |
| Predmet: | |
| ISSN: | 0029-5981, 1097-0207, 1097-0207 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the choice of the coordinates leads to very different formalisms. The set of constraint equations appears very different in complexity or in size depending on whether either relative, natural or reference point Cartesian coordinates are adopted. Second, once such a choice has been made, different solution strategies can be followed. It seems that formalisms based on redundant coordinates are often used in commercial software, whereas those based on a minimum number of coordinates are usually preferred in real‐time computations.
In this paper, with reference to models with redundant absolute coordinates, the problem of coordinate reduction will be discussed and a group of 11 different methods will be compared on the basis of their computational efficiency. In particular, methods based on constraint orthogonalization and on the use of pseudoinverse matrices have been selected, together with other methods based on least‐squares block solution. The methods have been implemented on three different test cases. The main purpose is to provide hints and guidelines on the choice and availability of solution strategies during simulation of moderate size multibody systems. Copyright © 2011 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the choice of the coordinates leads to very different formalisms. The set of constraint equations appears very different in complexity or in size depending on whether either
relative
,
natural
or
reference point Cartesian
coordinates are adopted. Second, once such a choice has been made, different solution strategies can be followed. It seems that formalisms based on redundant coordinates are often used in commercial software, whereas those based on a minimum number of coordinates are usually preferred in real‐time computations.
In this paper, with reference to models with redundant absolute coordinates, the problem of coordinate reduction will be discussed and a group of 11 different methods will be compared on the basis of their computational efficiency. In particular, methods based on constraint orthogonalization and on the use of pseudoinverse matrices have been selected, together with other methods based on least‐squares block solution. The methods have been implemented on three different test cases. The main purpose is to provide hints and guidelines on the choice and availability of solution strategies during simulation of moderate size multibody systems. Copyright © 2011 John Wiley & Sons, Ltd. In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the choice of the coordinates leads to very different formalisms. The set of constraint equations appears very different in complexity or in size depending on whether either relative, natural or reference point Cartesian coordinates are adopted. Second, once such a choice has been made, different solution strategies can be followed. It seems that formalisms based on redundant coordinates are often used in commercial software, whereas those based on a minimum number of coordinates are usually preferred in real‐time computations. In this paper, with reference to models with redundant absolute coordinates, the problem of coordinate reduction will be discussed and a group of 11 different methods will be compared on the basis of their computational efficiency. In particular, methods based on constraint orthogonalization and on the use of pseudoinverse matrices have been selected, together with other methods based on least‐squares block solution. The methods have been implemented on three different test cases. The main purpose is to provide hints and guidelines on the choice and availability of solution strategies during simulation of moderate size multibody systems. Copyright © 2011 John Wiley & Sons, Ltd. In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the choice of the coordinates leads to very different formalisms. The set of constraint equations appears very different in complexity or in size depending on whether either relative, natural or reference point Cartesian coordinates are adopted. Second, once such a choice has been made, different solution strategies can be followed. It seems that formalisms based on redundant coordinates are often used in commercial software, whereas those based on a minimum number of coordinates are usually preferred in real-time computations. In this paper, with reference to models with redundant absolute coordinates, the problem of coordinate reduction will be discussed and a group of 11 different methods will be compared on the basis of their computational efficiency. In particular, methods based on constraint orthogonalization and on the use of pseudoinverse matrices have been selected, together with other methods based on least-squares block solution. The methods have been implemented on three different test cases. The main purpose is to provide hints and guidelines on the choice and availability of solution strategies during simulation of moderate size multibody systems. |
| Author | Pennestrì, E. Mariti, L. Valentini, P. P. Belfiore, N. P. |
| Author_xml | – sequence: 1 givenname: L. surname: Mariti fullname: Mariti, L. organization: Department of Mechanical Engineering, University of Rome 'Tor Vergata', via del Politecnico, 1, 00133 Rome, Italy – sequence: 2 givenname: N. P. surname: Belfiore fullname: Belfiore, N. P. organization: Department of Mechanical and Aerospace Engineering, 'Sapienza' University of Rome, via Eudossiana, 18, 00184 Rome, Italy – sequence: 3 givenname: E. surname: Pennestrì fullname: Pennestrì, E. email: pennestri@mec.uniroma2.it organization: Department of Mechanical Engineering, University of Rome 'Tor Vergata', via del Politecnico, 1, 00133 Rome, Italy – sequence: 4 givenname: P. P. surname: Valentini fullname: Valentini, P. P. organization: Department of Mechanical Engineering, University of Rome 'Tor Vergata', via del Politecnico, 1, 00133 Rome, Italy |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24604167$$DView record in Pascal Francis |
| BookMark | eNp1kE1P3DAQhi0EEgtU6k_IBamXLB47ieNju-IbFlUUKvVieZMJMiTxridRu_--XkBUrehpRppnXr169th273tk7CPwKXAujvoOpxI032IT4FqlXHC1zSbxpNNcl7DL9ogeOQfIuZywLzPfLW1w5PvENwn5dhxc3GkIdsAHh5Q0PiTd2A5u4et1Uq9727mKElyNdoPSAdtpbEv44XXus7uT42-zs_Tq5vR89vkqrWRR8BQKVYISKHTWqHqxqFGC0rLOFaAUiJpDLXKxyBqQWMZ6NUirMyFsLrWutdxnn15yl8GvRqTBdI4qbFvbox_JABeiLBSUIqKHr6ilyrZNsH3lyCyD62xYG5EVPIt9_kRWwRMFbN4Q4Gaj00SdZqMzotN_0MoNzwKiKde-95C-PPx0La7_G2zm18d_844G_PXG2_BkYlOVm-_zUzOb_7i9v7y4NV_lbwp2liI |
| CODEN | IJNMBH |
| CitedBy_id | crossref_primary_10_1016_j_mechmachtheory_2013_06_008 crossref_primary_10_1007_s00419_017_1317_y crossref_primary_10_1007_s00419_020_01706_2 crossref_primary_10_1016_j_fusengdes_2022_113240 crossref_primary_10_1007_s11071_015_2111_4 crossref_primary_10_1016_j_mechmachtheory_2021_104332 crossref_primary_10_1016_j_ymssp_2021_108701 crossref_primary_10_1016_j_ymssp_2021_107896 crossref_primary_10_1007_s11044_013_9390_7 crossref_primary_10_1016_j_jfranklin_2016_11_027 crossref_primary_10_1016_j_mechmachtheory_2022_105134 crossref_primary_10_3390_buildings11020050 crossref_primary_10_1007_s00170_024_14960_3 crossref_primary_10_1016_j_compstruc_2024_107465 crossref_primary_10_1016_j_mechmachtheory_2018_11_021 crossref_primary_10_1016_j_apm_2023_01_037 crossref_primary_10_1007_s11044_023_09882_z crossref_primary_10_1007_s00419_017_1279_0 crossref_primary_10_1061__ASCE_EM_1943_7889_0001000 crossref_primary_10_1016_j_mechmachtheory_2020_103999 crossref_primary_10_1007_s13369_022_07062_3 crossref_primary_10_1007_s11044_021_09802_z crossref_primary_10_1007_s11044_021_09803_y crossref_primary_10_1061__ASCE_EM_1943_7889_0001119 crossref_primary_10_1061__ASCE_EM_1943_7889_0001937 crossref_primary_10_1177_0954407013505745 crossref_primary_10_1061__ASCE_SC_1943_5576_0000581 crossref_primary_10_1007_s11044_023_09930_8 crossref_primary_10_1016_j_jsv_2017_05_038 crossref_primary_10_1016_j_apm_2016_10_025 crossref_primary_10_3390_a17010035 crossref_primary_10_1016_j_mechmachtheory_2023_105368 crossref_primary_10_1061__ASCE_EM_1943_7889_0002081 crossref_primary_10_1007_s11044_015_9458_7 crossref_primary_10_1007_s12008_023_01704_y crossref_primary_10_35453_NEDJR_STMECH_2019_0058 crossref_primary_10_1007_s11044_016_9530_y crossref_primary_10_1061__ASCE_EM_1943_7889_0001232 |
| Cites_doi | 10.1007/s11044-007-9069-z 10.1115/1.1364492 10.1016/0093-6413(89)90055-4 10.1007/978-3-642-76159-1 10.1016/0045-7949(88)90267-2 10.1115/1.1961875 10.1023/A:1009724704839 10.1115/1.3260799 10.1007/s11044-007-9047-5 10.1115/1.3167743 10.1115/1.3256318 10.1016/0045-7825(72)90018-7 10.1115/1.3167159 10.1007/BF01559692 10.1007/978-3-663-09828-7 10.1007/s11044-009-9167-1 http://dx.doi.org/10.1115/1.2803257 10.1115/1.3169173 10.1115/1.3258699 10.2514/3.20524 10.1115/1.3258819 10.1115/1.3173739 10.1017/CBO9780511665479 10.1098/rspa.2006.1662 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 John Wiley & Sons, Ltd. 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2011 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/nme.3190 |
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics Physics |
| EISSN | 1097-0207 |
| EndPage | 656 |
| ExternalDocumentID | 24604167 10_1002_nme_3190 NME3190 ark_67375_WNG_CNZSVKJS_Q |
| Genre | article |
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI RWS WRC AAYXX CITATION O8X .4S 6TJ ABDPE ABEML ACKIV ACSCC AGHNM AI. ARCSS GBZZK IQODW M6O PALCI RIWAO SAMSI VH1 VOH ZY4 ~A~ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3660-1678172e294f7dbbde31793d571e32ee901d252b4f13e8115d13a9422a5399d93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296445000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5981 1097-0207 |
| IngestDate | Thu Oct 02 06:54:46 EDT 2025 Mon Jul 21 09:14:48 EDT 2025 Sat Nov 29 06:43:44 EST 2025 Tue Nov 18 22:45:31 EST 2025 Wed Jan 22 16:45:36 EST 2025 Tue Nov 11 03:32:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | numerical methods multibody dynamics Constraint Redundancy Solid dynamic Pseudoinverse N body system Cartesian coordinate Dynamical system Real time Modeling Complexity DAE system Computation time Orthogonalization Least squares method |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3660-1678172e294f7dbbde31793d571e32ee901d252b4f13e8115d13a9422a5399d93 |
| Notes | istex:A2762931DDE6EC5E4B897DA1EF753426B937D237 ark:/67375/WNG-CNZSVKJS-Q ArticleID:NME3190 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1022867182 |
| PQPubID | 23500 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_1022867182 pascalfrancis_primary_24604167 crossref_primary_10_1002_nme_3190 crossref_citationtrail_10_1002_nme_3190 wiley_primary_10_1002_nme_3190_NME3190 istex_primary_ark_67375_WNG_CNZSVKJS_Q |
| PublicationCentury | 2000 |
| PublicationDate | 18 November 2011 |
| PublicationDateYYYYMMDD | 2011-11-18 |
| PublicationDate_xml | – month: 11 year: 2011 text: 18 November 2011 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
| PublicationYear | 2011 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Wang JT, Huston RL. A comparison of analysis methods of redundant multibody systems. Mechanics Research Communications 1989; 16:175-182. Kamman RL, Huston JW. Dynamics of constrained multibody systems. ASME Journal of Applied Mechanics 1985; 51:899-903. Kim SS, Vanderploeg MJ. QR decomposition for state space representation of constrained mechanical dynamic systems. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1986; 108:176-182. Udwadia FE, Kalaba RE. Analytical Dynamics a New Approach. Cambridge University Press: Cambridge, 1996. Eich-Soellner E, Führer C. Numerical Methods in Multibody Dynamics. B.G. Teubner: Stuttgart, 1998. Haug EJ. Computer-aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon: Newton, MA, 1989. Udwadia FE, Kalaba R. Explicit equations of motion for mechanical systems with nonideal constraints. ASME Journal of Applied Mechanics 2001; 68:462-467. Campbell SL. Generalized Inverses of Linear Transformations. Dover Publications, Inc.: New York, 1979. Amirouche FML, Ider SK. Coordinate reduction in the dynamics of constrained multibody systems-a new approach. ASME Journal of Applied Mechanics 1988; 55:899-904. Shabana AA. Computational Dynamics. Wiley: New York, 1994. Pennestrì E, Vita L, de Falco D. An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia-Kalaba formulation. Journal of Aerospace Engineering 2008; 22:365-372. Shabana AA. Dynamics of Multibody Systems. Wiley: New York, 1989. Nikravesh PE. Initial condition correction in multibody dynamics. Multibody System Dynamics 2007; 18:107-115. Singh RP, Likins PW. Singular value decomposition for constrained mechanical systems. ASME Journal of Applied Mechanics 1985; 52:943-948. Kurdila A, Papastravidis JG. Kamat MP. Role of Maggi's equations in computational methods for constrained multibody systems. Journal of Guidance, Control, and Dynamics 1990; 13:113-120. Unda J, de Jalon JG, Losantos F, Emparantza R. A comparative study of different formulations of the dynamic equations of constrained mechanical systems. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1987; 109:466-474. Borri M, Bottasso CL, Mantegazza P. Equivalence of Kane's and Maggi's equations. Meccanica 1990; 25:272-274. Baumgarte JW. A new method of stabilization for holonomic constraints. ASME Journal of Applied Mechanics 1983; 50:869-870. Wehage RA, Haug EJ. Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. ASME Journal of Mechanical Design 1982; 134:247-255. Cheli F, Pennestrì E. Cinematica e Dinamica dei Sistemi Multibody, vol. 1. Casa Editrice Ambrosiana: Milano, 2006. Bauchau O, Laulusa A. Review of classical approaches for constraints enforcement in multibody systems. Journal of Computational and Non Linear Dynamics 2008; 3:1-8. Mani NK, Haug EJ, Atkinson KE. Singular value decomposition for analysis of mechanical system dynamics. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1985; 107:82-87. Erberhard P, Schielen W. Computational dynamics of multibody systems: history, formalisms, and applications. ASME Journal of Computational and Nonlinear Dynamics 2006; 1:3-12. Laulusa A, Bauchau OA. Review of classical approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics 2008; 3. http://dx.doi.org/10.1115/1.2803257. Golub G, van Loan C. Matrix Computations (3rd edn). The Johns Hopkins University Press: London, 1996. Vlasenko D, Kasper R. Implementation of consequent stabilization method for simulation of multibodies described in absolute coordinates. Multibody System Dynamics 2009; 22:297-315. Baumgarte JW. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering 1972; 1:1-16. Wang JT, Huston RL. Computational methods in constrained multibody dynamics: matrix formalisms. Computers and Structures 1988; 29:331-338. Amirouche F. Fundamentals of Multibody Dynamics. Birkhhäuser: Basel, 2004. Pennestrì E, Valentini PP, Vita L. Multibody dynamics simulation of planar linkages with Dahl friction. Multibody System Dynamics 2007; 17:321-347. Udwadia FE, Phohomsiri P. Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proceedings of the Royal Society, Series A 2006; 462:2097-2117. Maggi GA. Di alcune nuove forme della dinamica applicabili ai sistemi anolonomi. Rendiconti della Regia Accademia dei Lincei-Serie V 1901; X:287-291. Arabyan A, Wu F. An improved formulation for constrained mechanical systems. Multibody System Dynamics 1998; 2:49-69. 2007; 17 2009; 22 2007; 18 1990; 13 1987; 109 1998 1988; 55 1996 1994 2004 1983; 50 2006; 1 2008; 3 1985; 107 1991 2001; 68 1972; 1 1979 1986; 108 1990; 25 1988; 29 1982; 134 2006; 462 1985; 51 2008; 22 1985; 52 1998; 2 1989; 16 1901; X 1969 1989 e_1_2_10_22_2 e_1_2_10_23_2 e_1_2_10_21_2 Shabana AA (e_1_2_10_26_2) 1994 Golub G (e_1_2_10_30_2) 1996 Pennestrì E (e_1_2_10_18_2) 2008; 22 Haug EJ (e_1_2_10_7_2) 1989 Bauchau O (e_1_2_10_4_2) 2008; 3 e_1_2_10_19_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_2_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_16_2 e_1_2_10_13_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_9_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_12_2 e_1_2_10_33_2 e_1_2_10_32_2 e_1_2_10_10_2 e_1_2_10_31_2 Campbell SL (e_1_2_10_35_2) 1979 Cheli F (e_1_2_10_36_2) 2006 Shabana AA (e_1_2_10_37_2) 1989 Maggi GA (e_1_2_10_20_2) 1901 e_1_2_10_28_2 e_1_2_10_29_2 Amirouche F (e_1_2_10_27_2) 2004 e_1_2_10_24_2 e_1_2_10_25_2 |
| References_xml | – reference: Kim SS, Vanderploeg MJ. QR decomposition for state space representation of constrained mechanical dynamic systems. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1986; 108:176-182. – reference: Cheli F, Pennestrì E. Cinematica e Dinamica dei Sistemi Multibody, vol. 1. Casa Editrice Ambrosiana: Milano, 2006. – reference: Udwadia FE, Kalaba RE. Analytical Dynamics a New Approach. Cambridge University Press: Cambridge, 1996. – reference: Udwadia FE, Kalaba R. Explicit equations of motion for mechanical systems with nonideal constraints. ASME Journal of Applied Mechanics 2001; 68:462-467. – reference: Laulusa A, Bauchau OA. Review of classical approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics 2008; 3. http://dx.doi.org/10.1115/1.2803257. – reference: Wang JT, Huston RL. Computational methods in constrained multibody dynamics: matrix formalisms. Computers and Structures 1988; 29:331-338. – reference: Wang JT, Huston RL. A comparison of analysis methods of redundant multibody systems. Mechanics Research Communications 1989; 16:175-182. – reference: Pennestrì E, Valentini PP, Vita L. Multibody dynamics simulation of planar linkages with Dahl friction. Multibody System Dynamics 2007; 17:321-347. – reference: Nikravesh PE. Initial condition correction in multibody dynamics. Multibody System Dynamics 2007; 18:107-115. – reference: Kurdila A, Papastravidis JG. Kamat MP. Role of Maggi's equations in computational methods for constrained multibody systems. Journal of Guidance, Control, and Dynamics 1990; 13:113-120. – reference: Maggi GA. Di alcune nuove forme della dinamica applicabili ai sistemi anolonomi. Rendiconti della Regia Accademia dei Lincei-Serie V 1901; X:287-291. – reference: Baumgarte JW. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering 1972; 1:1-16. – reference: Amirouche FML, Ider SK. Coordinate reduction in the dynamics of constrained multibody systems-a new approach. ASME Journal of Applied Mechanics 1988; 55:899-904. – reference: Mani NK, Haug EJ, Atkinson KE. Singular value decomposition for analysis of mechanical system dynamics. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1985; 107:82-87. – reference: Singh RP, Likins PW. Singular value decomposition for constrained mechanical systems. ASME Journal of Applied Mechanics 1985; 52:943-948. – reference: Wehage RA, Haug EJ. Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. ASME Journal of Mechanical Design 1982; 134:247-255. – reference: Udwadia FE, Phohomsiri P. Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proceedings of the Royal Society, Series A 2006; 462:2097-2117. – reference: Campbell SL. Generalized Inverses of Linear Transformations. Dover Publications, Inc.: New York, 1979. – reference: Haug EJ. Computer-aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon: Newton, MA, 1989. – reference: Borri M, Bottasso CL, Mantegazza P. Equivalence of Kane's and Maggi's equations. Meccanica 1990; 25:272-274. – reference: Amirouche F. Fundamentals of Multibody Dynamics. Birkhhäuser: Basel, 2004. – reference: Golub G, van Loan C. Matrix Computations (3rd edn). The Johns Hopkins University Press: London, 1996. – reference: Pennestrì E, Vita L, de Falco D. An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia-Kalaba formulation. Journal of Aerospace Engineering 2008; 22:365-372. – reference: Unda J, de Jalon JG, Losantos F, Emparantza R. A comparative study of different formulations of the dynamic equations of constrained mechanical systems. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1987; 109:466-474. – reference: Erberhard P, Schielen W. Computational dynamics of multibody systems: history, formalisms, and applications. ASME Journal of Computational and Nonlinear Dynamics 2006; 1:3-12. – reference: Shabana AA. Dynamics of Multibody Systems. Wiley: New York, 1989. – reference: Arabyan A, Wu F. An improved formulation for constrained mechanical systems. Multibody System Dynamics 1998; 2:49-69. – reference: Baumgarte JW. A new method of stabilization for holonomic constraints. ASME Journal of Applied Mechanics 1983; 50:869-870. – reference: Bauchau O, Laulusa A. Review of classical approaches for constraints enforcement in multibody systems. Journal of Computational and Non Linear Dynamics 2008; 3:1-8. – reference: Shabana AA. Computational Dynamics. Wiley: New York, 1994. – reference: Eich-Soellner E, Führer C. Numerical Methods in Multibody Dynamics. B.G. Teubner: Stuttgart, 1998. – reference: Kamman RL, Huston JW. Dynamics of constrained multibody systems. ASME Journal of Applied Mechanics 1985; 51:899-903. – reference: Vlasenko D, Kasper R. Implementation of consequent stabilization method for simulation of multibodies described in absolute coordinates. Multibody System Dynamics 2009; 22:297-315. – volume: 134 start-page: 247 year: 1982 end-page: 255 article-title: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems publication-title: ASME Journal of Mechanical Design – volume: 25 start-page: 272 year: 1990 end-page: 274 article-title: Equivalence of Kane's and Maggi's equations publication-title: Meccanica – volume: 3 start-page: 1 year: 2008 end-page: 8 article-title: Review of classical approaches for constraints enforcement in multibody systems publication-title: Journal of Computational and Non Linear Dynamics – year: 1989 – volume: 29 start-page: 331 year: 1988 end-page: 338 article-title: Computational methods in constrained multibody dynamics: matrix formalisms publication-title: Computers and Structures – year: 1996 – volume: 51 start-page: 899 year: 1985 end-page: 903 article-title: Dynamics of constrained multibody systems publication-title: ASME Journal of Applied Mechanics – volume: 22 start-page: 297 year: 2009 end-page: 315 article-title: Implementation of consequent stabilization method for simulation of multibodies described in absolute coordinates publication-title: Multibody System Dynamics – year: 1979 – volume: 109 start-page: 466 year: 1987 end-page: 474 article-title: A comparative study of different formulations of the dynamic equations of constrained mechanical systems publication-title: ASME Journal of Mechanisms, Transmissions, and Automation in Design – year: 1994 – volume: 55 start-page: 899 year: 1988 end-page: 904 article-title: Coordinate reduction in the dynamics of constrained multibody systems—a new approach publication-title: ASME Journal of Applied Mechanics – year: 1998 – volume: 107 start-page: 82 year: 1985 end-page: 87 article-title: Singular value decomposition for analysis of mechanical system dynamics publication-title: ASME Journal of Mechanisms, Transmissions, and Automation in Design – volume: 52 start-page: 943 year: 1985 end-page: 948 article-title: Singular value decomposition for constrained mechanical systems publication-title: ASME Journal of Applied Mechanics – volume: 2 start-page: 49 year: 1998 end-page: 69 article-title: An improved formulation for constrained mechanical systems publication-title: Multibody System Dynamics – volume: 22 start-page: 365 year: 2008 end-page: 372 article-title: An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation publication-title: Journal of Aerospace Engineering – volume: 16 start-page: 175 year: 1989 end-page: 182 article-title: A comparison of analysis methods of redundant multibody systems publication-title: Mechanics Research Communications – volume: X start-page: 287 year: 1901 end-page: 291 article-title: Di alcune nuove forme della dinamica applicabili ai sistemi anolonomi publication-title: Rendiconti della Regia Accademia dei Lincei—Serie V – year: 1969 – volume: 1 start-page: 1 year: 1972 end-page: 16 article-title: Stabilization of constraints and integrals of motion in dynamical systems publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 18 start-page: 107 year: 2007 end-page: 115 article-title: Initial condition correction in multibody dynamics publication-title: Multibody System Dynamics – year: 2004 – volume: 1 year: 2006 – start-page: 97 year: 1991 end-page: 114 – volume: 50 start-page: 869 year: 1983 end-page: 870 article-title: A new method of stabilization for holonomic constraints publication-title: ASME Journal of Applied Mechanics – volume: 3 year: 2008 article-title: Review of classical approaches for constraint enforcement in multibody systems publication-title: Journal of Computational and Nonlinear Dynamics – volume: 462 start-page: 2097 year: 2006 end-page: 2117 article-title: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi‐body dynamics publication-title: Proceedings of the Royal Society, Series A – volume: 17 start-page: 321 year: 2007 end-page: 347 article-title: Multibody dynamics simulation of planar linkages with Dahl friction publication-title: Multibody System Dynamics – volume: 68 start-page: 462 year: 2001 end-page: 467 article-title: Explicit equations of motion for mechanical systems with nonideal constraints publication-title: ASME Journal of Applied Mechanics – volume: 1 start-page: 3 year: 2006 end-page: 12 article-title: Computational dynamics of multibody systems: history, formalisms, and applications publication-title: ASME Journal of Computational and Nonlinear Dynamics – volume: 108 start-page: 176 year: 1986 end-page: 182 article-title: QR decomposition for state space representation of constrained mechanical dynamic systems publication-title: ASME Journal of Mechanisms, Transmissions, and Automation in Design – volume: 13 start-page: 113 year: 1990 end-page: 120 article-title: Role of Maggi's equations in computational methods for constrained multibody systems publication-title: Journal of Guidance, Control, and Dynamics – ident: e_1_2_10_25_2 doi: 10.1007/s11044-007-9069-z – ident: e_1_2_10_34_2 doi: 10.1115/1.1364492 – ident: e_1_2_10_9_2 – ident: e_1_2_10_15_2 – ident: e_1_2_10_14_2 doi: 10.1016/0093-6413(89)90055-4 – ident: e_1_2_10_8_2 doi: 10.1007/978-3-642-76159-1 – ident: e_1_2_10_13_2 doi: 10.1016/0045-7949(88)90267-2 – ident: e_1_2_10_3_2 doi: 10.1115/1.1961875 – ident: e_1_2_10_31_2 doi: 10.1023/A:1009724704839 – volume-title: Cinematica e Dinamica dei Sistemi Multibody year: 2006 ident: e_1_2_10_36_2 – volume: 3 start-page: 1 year: 2008 ident: e_1_2_10_4_2 article-title: Review of classical approaches for constraints enforcement in multibody systems publication-title: Journal of Computational and Non Linear Dynamics – ident: e_1_2_10_11_2 doi: 10.1115/1.3260799 – volume-title: Generalized Inverses of Linear Transformations year: 1979 ident: e_1_2_10_35_2 – ident: e_1_2_10_24_2 doi: 10.1007/s11044-007-9047-5 – volume-title: Computational Dynamics year: 1994 ident: e_1_2_10_26_2 – ident: e_1_2_10_28_2 doi: 10.1115/1.3167743 – ident: e_1_2_10_6_2 doi: 10.1115/1.3256318 – volume-title: Fundamentals of Multibody Dynamics year: 2004 ident: e_1_2_10_27_2 – ident: e_1_2_10_32_2 doi: 10.1016/0045-7825(72)90018-7 – volume-title: Dynamics of Multibody Systems year: 1989 ident: e_1_2_10_37_2 – ident: e_1_2_10_33_2 doi: 10.1115/1.3167159 – start-page: 287 year: 1901 ident: e_1_2_10_20_2 article-title: Di alcune nuove forme della dinamica applicabili ai sistemi anolonomi publication-title: Rendiconti della Regia Accademia dei Lincei—Serie V – ident: e_1_2_10_21_2 doi: 10.1007/BF01559692 – ident: e_1_2_10_23_2 doi: 10.1007/978-3-663-09828-7 – volume: 22 start-page: 365 year: 2008 ident: e_1_2_10_18_2 article-title: An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation publication-title: Journal of Aerospace Engineering – ident: e_1_2_10_19_2 doi: 10.1007/s11044-009-9167-1 – ident: e_1_2_10_5_2 doi: http://dx.doi.org/10.1115/1.2803257 – ident: e_1_2_10_29_2 doi: 10.1115/1.3169173 – ident: e_1_2_10_10_2 doi: 10.1115/1.3258699 – ident: e_1_2_10_22_2 doi: 10.2514/3.20524 – ident: e_1_2_10_2_2 doi: 10.1115/1.3258819 – ident: e_1_2_10_12_2 doi: 10.1115/1.3173739 – ident: e_1_2_10_16_2 doi: 10.1017/CBO9780511665479 – volume-title: Computer‐aided Kinematics and Dynamics of Mechanical Systems year: 1989 ident: e_1_2_10_7_2 – volume-title: Matrix Computations year: 1996 ident: e_1_2_10_30_2 – ident: e_1_2_10_17_2 doi: 10.1098/rspa.2006.1662 |
| SSID | ssj0011503 |
| Score | 2.2636702 |
| Snippet | In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 637 |
| SubjectTerms | Computer simulation DAE system Dynamics Exact sciences and technology Formalism Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical models Mathematics multibody dynamics Multibody systems Numerical analysis Numerical analysis. Scientific computation Numerical approximation numerical methods Physics Redundant Sciences and techniques of general use Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics Strategy |
| Title | Comparison of solution strategies for multibody dynamics equations |
| URI | https://api.istex.fr/ark:/67375/WNG-CNZSVKJS-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.3190 https://www.proquest.com/docview/1022867182 |
| Volume | 88 |
| WOSCitedRecordID | wos000296445000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 issn: 0029-5981 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA_i-VAfPGtbPFslhdI-LW4-9nb3sV7vWvxYqlYrvoRskgVR7-zlrtj_vjP7xR1UKAgLy8KEhMnM5jfJ5DeEfDBRziJjWZAWUR5IoU2QaIdpOdYaHYeGlbSLl8dxliVXV-n3OqsS78JU_BDthht6Rvm_RgfXud9fIA29dxBwphCud_BOFQRenS9no4vj9gwBoI5oEjyiNGEN9WzI95u2S4tRB_X6iMmR2oN-iqqwxRLyXMSv5QI06j5n6Jtko4ad9HNlJy_JihtvkW4NQWnt4H6LrC_wE8LXSUvq6l-Rg0Fbs5BOCtoYLfWzhm6CAgKmZYpiPrF_qK2q3XvqflWE4v41uRgNfwy-BXUJhsCIfj8MGKxlAHEcT2UR2zy3TqBH2yhmTnDnAE1YHvFcFky4BFRumdCp5Fwj461NxRuyOp6M3Tahhrm04EaGRicSidV40U904aSQkQZU1SOfmrlQpuYnxzIZd6piVuYK1KZQbT3yvpV8qDg5_iHzsZzOVkBPbzGHLY7Uz-yrGmTX55dHh-fqtEf2lua7bcBlPwS0GkNvjQEocD08T9FjN5l7hcEy0gMmHHor5_vJ4ajsZIjvnf8VfEtelLvX-CTvyOpsOne7ZM38nt346V5t6n8BYGsBsg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD6UXaH2wdqquFrbCEWfhk4uM5PBJ127be3uoPZi8SVkkgwUdVd3tmL_vTlzYxcUBGFgGDgh4VwmX5KT7wDsmyinkbE0SIsoDwTXJpDaYVqOtUYnoaEV7eLlOMkyeXWVvl-DV-1dmJofottww8io_tcY4LghfbDEGvrN-RVn6tfrfRHzRPag__bj6GLcHSJ4rMPbDI8olbTlng3ZQdt2ZTbqo2J_YXakLr2CirqyxQr0XAaw1Qw02vyvsd-Hew3wJK9rT9mCNTfdhs0GhJImxMtt2FhiKPRfk47WtXwAb4Zd1UIyK0jrtqRctIQTxGNgUiUp5jN7S2xd774k7kdNKV4-hIvR4fnwOGiKMASGx3EYUD-beZDjWCqKxOa5dRxj2kYJdZw55_GEZRHLRUG5k17nlnKdCsY0ct7alD-C3nQ2dY-BGOrSghkRGi0FUquxIpa6cIKLSHtcNYCXrTGUaRjKsVDGV1VzKzPl1aZQbQN43kl-r1k5_iDzorJnJ6DnXzCLLYnUp-xIDbPPZ5en787UhwHsrhi8a8BEHHq8mvjeWg9QPvjwREVP3eymVLhcRoJAyXxvlcH_OhyVTQ7x_eRfBfdg_fh8Mlbjk-z0Kdyt9rLxkTvQW8xv3DO4Y34ursv5buP3vwHHLgWi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD6U3SL6YG21uFprBNGnoZPbzgSf2m232m6Hau2FvoRMLlCqu3VnK-2_bzI3dkFBEAaGgRMSzmXyJTn5DsB7zXPMtcGRcDyPGFU6SpUNaTnGaJXEGpe0i2ejJMvSiwtxvASfmrswFT9Eu-EWIqP8X4cAtzfGbc2xhv60fsUp_Hq9y7jgrAPd3W_D01F7iOCxDm0yPLhIccM9G5Otpu3CbNQNir0L2ZGq8ApyVWWLBeg5D2DLGWi48l9jfwZPa-CJtitPWYUlO16DlRqEojrEizV4MsdQ6L-OWlrX4jnsDNqqhWjiUOO2qJg1hBPIY2BUJinmE3OPTFXvvkD2V0UpXryA0-He98HnqC7CEGna78cR9rOZBzmWCOYSk-fG0hDThifYUmKtxxOGcJIzh6lNvc4NpkowQlTgvDWCrkNnPBnbl4A0tsIRzWKtUhao1Yjrp8pZRhlXHlf14GNjDKlrhvJQKOOHrLiVifRqk0FtPXjXSt5UrBx_kPlQ2rMVUNPrkMWWcHme7ctBdnlydnhwIr_2YHPB4G0Dwvqxx6uJ763xAOmDL5yoqLGd3BYyLJcDQWBKfG-lwf86HJkd7YX3q38VfAuPjneHcvQlO3wNj8ut7PCkG9CZTW_tG1jWv2dXxXSzdvsHS48FHQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+solution+strategies+for+multibody+dynamics+equations&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Mariti%2C+L.&rft.au=Belfiore%2C+N.+P.&rft.au=Pennestr%C3%AC%2C+E.&rft.au=Valentini%2C+P.+P.&rft.date=2011-11-18&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=88&rft.issue=7&rft.spage=637&rft.epage=656&rft_id=info:doi/10.1002%2Fnme.3190&rft.externalDBID=10.1002%252Fnme.3190&rft.externalDocID=NME3190 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |