Comparison of solution strategies for multibody dynamics equations

In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the choice of the coordinates leads to very different formalisms. The set of constraint equations appears very different in complexity or in size depe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal for numerical methods in engineering Ročník 88; číslo 7; s. 637 - 656
Hlavní autori: Mariti, L., Belfiore, N. P., Pennestrì, E., Valentini, P. P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 18.11.2011
Wiley
Predmet:
ISSN:0029-5981, 1097-0207, 1097-0207
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the choice of the coordinates leads to very different formalisms. The set of constraint equations appears very different in complexity or in size depending on whether either relative, natural or reference point Cartesian coordinates are adopted. Second, once such a choice has been made, different solution strategies can be followed. It seems that formalisms based on redundant coordinates are often used in commercial software, whereas those based on a minimum number of coordinates are usually preferred in real‐time computations. In this paper, with reference to models with redundant absolute coordinates, the problem of coordinate reduction will be discussed and a group of 11 different methods will be compared on the basis of their computational efficiency. In particular, methods based on constraint orthogonalization and on the use of pseudoinverse matrices have been selected, together with other methods based on least‐squares block solution. The methods have been implemented on three different test cases. The main purpose is to provide hints and guidelines on the choice and availability of solution strategies during simulation of moderate size multibody systems. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the choice of the coordinates leads to very different formalisms. The set of constraint equations appears very different in complexity or in size depending on whether either relative , natural or reference point Cartesian coordinates are adopted. Second, once such a choice has been made, different solution strategies can be followed. It seems that formalisms based on redundant coordinates are often used in commercial software, whereas those based on a minimum number of coordinates are usually preferred in real‐time computations. In this paper, with reference to models with redundant absolute coordinates, the problem of coordinate reduction will be discussed and a group of 11 different methods will be compared on the basis of their computational efficiency. In particular, methods based on constraint orthogonalization and on the use of pseudoinverse matrices have been selected, together with other methods based on least‐squares block solution. The methods have been implemented on three different test cases. The main purpose is to provide hints and guidelines on the choice and availability of solution strategies during simulation of moderate size multibody systems. Copyright © 2011 John Wiley & Sons, Ltd.
In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the choice of the coordinates leads to very different formalisms. The set of constraint equations appears very different in complexity or in size depending on whether either relative, natural or reference point Cartesian coordinates are adopted. Second, once such a choice has been made, different solution strategies can be followed. It seems that formalisms based on redundant coordinates are often used in commercial software, whereas those based on a minimum number of coordinates are usually preferred in real‐time computations. In this paper, with reference to models with redundant absolute coordinates, the problem of coordinate reduction will be discussed and a group of 11 different methods will be compared on the basis of their computational efficiency. In particular, methods based on constraint orthogonalization and on the use of pseudoinverse matrices have been selected, together with other methods based on least‐squares block solution. The methods have been implemented on three different test cases. The main purpose is to provide hints and guidelines on the choice and availability of solution strategies during simulation of moderate size multibody systems. Copyright © 2011 John Wiley & Sons, Ltd.
In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the choice of the coordinates leads to very different formalisms. The set of constraint equations appears very different in complexity or in size depending on whether either relative, natural or reference point Cartesian coordinates are adopted. Second, once such a choice has been made, different solution strategies can be followed. It seems that formalisms based on redundant coordinates are often used in commercial software, whereas those based on a minimum number of coordinates are usually preferred in real-time computations. In this paper, with reference to models with redundant absolute coordinates, the problem of coordinate reduction will be discussed and a group of 11 different methods will be compared on the basis of their computational efficiency. In particular, methods based on constraint orthogonalization and on the use of pseudoinverse matrices have been selected, together with other methods based on least-squares block solution. The methods have been implemented on three different test cases. The main purpose is to provide hints and guidelines on the choice and availability of solution strategies during simulation of moderate size multibody systems.
Author Pennestrì, E.
Mariti, L.
Valentini, P. P.
Belfiore, N. P.
Author_xml – sequence: 1
  givenname: L.
  surname: Mariti
  fullname: Mariti, L.
  organization: Department of Mechanical Engineering, University of Rome 'Tor Vergata', via del Politecnico, 1, 00133 Rome, Italy
– sequence: 2
  givenname: N. P.
  surname: Belfiore
  fullname: Belfiore, N. P.
  organization: Department of Mechanical and Aerospace Engineering, 'Sapienza' University of Rome, via Eudossiana, 18, 00184 Rome, Italy
– sequence: 3
  givenname: E.
  surname: Pennestrì
  fullname: Pennestrì, E.
  email: pennestri@mec.uniroma2.it
  organization: Department of Mechanical Engineering, University of Rome 'Tor Vergata', via del Politecnico, 1, 00133 Rome, Italy
– sequence: 4
  givenname: P. P.
  surname: Valentini
  fullname: Valentini, P. P.
  organization: Department of Mechanical Engineering, University of Rome 'Tor Vergata', via del Politecnico, 1, 00133 Rome, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24604167$$DView record in Pascal Francis
BookMark eNp1kE1P3DAQhi0EEgtU6k_IBamXLB47ieNju-IbFlUUKvVieZMJMiTxridRu_--XkBUrehpRppnXr169th273tk7CPwKXAujvoOpxI032IT4FqlXHC1zSbxpNNcl7DL9ogeOQfIuZywLzPfLW1w5PvENwn5dhxc3GkIdsAHh5Q0PiTd2A5u4et1Uq9727mKElyNdoPSAdtpbEv44XXus7uT42-zs_Tq5vR89vkqrWRR8BQKVYISKHTWqHqxqFGC0rLOFaAUiJpDLXKxyBqQWMZ6NUirMyFsLrWutdxnn15yl8GvRqTBdI4qbFvbox_JABeiLBSUIqKHr6ilyrZNsH3lyCyD62xYG5EVPIt9_kRWwRMFbN4Q4Gaj00SdZqMzotN_0MoNzwKiKde-95C-PPx0La7_G2zm18d_844G_PXG2_BkYlOVm-_zUzOb_7i9v7y4NV_lbwp2liI
CODEN IJNMBH
CitedBy_id crossref_primary_10_1016_j_mechmachtheory_2013_06_008
crossref_primary_10_1007_s00419_017_1317_y
crossref_primary_10_1007_s00419_020_01706_2
crossref_primary_10_1016_j_fusengdes_2022_113240
crossref_primary_10_1007_s11071_015_2111_4
crossref_primary_10_1016_j_mechmachtheory_2021_104332
crossref_primary_10_1016_j_ymssp_2021_108701
crossref_primary_10_1016_j_ymssp_2021_107896
crossref_primary_10_1007_s11044_013_9390_7
crossref_primary_10_1016_j_jfranklin_2016_11_027
crossref_primary_10_1016_j_mechmachtheory_2022_105134
crossref_primary_10_3390_buildings11020050
crossref_primary_10_1007_s00170_024_14960_3
crossref_primary_10_1016_j_compstruc_2024_107465
crossref_primary_10_1016_j_mechmachtheory_2018_11_021
crossref_primary_10_1016_j_apm_2023_01_037
crossref_primary_10_1007_s11044_023_09882_z
crossref_primary_10_1007_s00419_017_1279_0
crossref_primary_10_1061__ASCE_EM_1943_7889_0001000
crossref_primary_10_1016_j_mechmachtheory_2020_103999
crossref_primary_10_1007_s13369_022_07062_3
crossref_primary_10_1007_s11044_021_09802_z
crossref_primary_10_1007_s11044_021_09803_y
crossref_primary_10_1061__ASCE_EM_1943_7889_0001119
crossref_primary_10_1061__ASCE_EM_1943_7889_0001937
crossref_primary_10_1177_0954407013505745
crossref_primary_10_1061__ASCE_SC_1943_5576_0000581
crossref_primary_10_1007_s11044_023_09930_8
crossref_primary_10_1016_j_jsv_2017_05_038
crossref_primary_10_1016_j_apm_2016_10_025
crossref_primary_10_3390_a17010035
crossref_primary_10_1016_j_mechmachtheory_2023_105368
crossref_primary_10_1061__ASCE_EM_1943_7889_0002081
crossref_primary_10_1007_s11044_015_9458_7
crossref_primary_10_1007_s12008_023_01704_y
crossref_primary_10_35453_NEDJR_STMECH_2019_0058
crossref_primary_10_1007_s11044_016_9530_y
crossref_primary_10_1061__ASCE_EM_1943_7889_0001232
Cites_doi 10.1007/s11044-007-9069-z
10.1115/1.1364492
10.1016/0093-6413(89)90055-4
10.1007/978-3-642-76159-1
10.1016/0045-7949(88)90267-2
10.1115/1.1961875
10.1023/A:1009724704839
10.1115/1.3260799
10.1007/s11044-007-9047-5
10.1115/1.3167743
10.1115/1.3256318
10.1016/0045-7825(72)90018-7
10.1115/1.3167159
10.1007/BF01559692
10.1007/978-3-663-09828-7
10.1007/s11044-009-9167-1
http://dx.doi.org/10.1115/1.2803257
10.1115/1.3169173
10.1115/1.3258699
10.2514/3.20524
10.1115/1.3258819
10.1115/1.3173739
10.1017/CBO9780511665479
10.1098/rspa.2006.1662
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.3190
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 656
ExternalDocumentID 24604167
10_1002_nme_3190
NME3190
ark_67375_WNG_CNZSVKJS_Q
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWS
WRC
AAYXX
CITATION
O8X
.4S
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
ARCSS
GBZZK
IQODW
M6O
PALCI
RIWAO
SAMSI
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3660-1678172e294f7dbbde31793d571e32ee901d252b4f13e8115d13a9422a5399d93
IEDL.DBID DRFUL
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296445000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
1097-0207
IngestDate Thu Oct 02 06:54:46 EDT 2025
Mon Jul 21 09:14:48 EDT 2025
Sat Nov 29 06:43:44 EST 2025
Tue Nov 18 22:45:31 EST 2025
Wed Jan 22 16:45:36 EST 2025
Tue Nov 11 03:32:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords numerical methods
multibody dynamics
Constraint
Redundancy
Solid dynamic
Pseudoinverse
N body system
Cartesian coordinate
Dynamical system
Real time
Modeling
Complexity
DAE system
Computation time
Orthogonalization
Least squares method
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3660-1678172e294f7dbbde31793d571e32ee901d252b4f13e8115d13a9422a5399d93
Notes istex:A2762931DDE6EC5E4B897DA1EF753426B937D237
ark:/67375/WNG-CNZSVKJS-Q
ArticleID:NME3190
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1022867182
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_1022867182
pascalfrancis_primary_24604167
crossref_primary_10_1002_nme_3190
crossref_citationtrail_10_1002_nme_3190
wiley_primary_10_1002_nme_3190_NME3190
istex_primary_ark_67375_WNG_CNZSVKJS_Q
PublicationCentury 2000
PublicationDate 18 November 2011
PublicationDateYYYYMMDD 2011-11-18
PublicationDate_xml – month: 11
  year: 2011
  text: 18 November 2011
  day: 18
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Wang JT, Huston RL. A comparison of analysis methods of redundant multibody systems. Mechanics Research Communications 1989; 16:175-182.
Kamman RL, Huston JW. Dynamics of constrained multibody systems. ASME Journal of Applied Mechanics 1985; 51:899-903.
Kim SS, Vanderploeg MJ. QR decomposition for state space representation of constrained mechanical dynamic systems. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1986; 108:176-182.
Udwadia FE, Kalaba RE. Analytical Dynamics a New Approach. Cambridge University Press: Cambridge, 1996.
Eich-Soellner E, Führer C. Numerical Methods in Multibody Dynamics. B.G. Teubner: Stuttgart, 1998.
Haug EJ. Computer-aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon: Newton, MA, 1989.
Udwadia FE, Kalaba R. Explicit equations of motion for mechanical systems with nonideal constraints. ASME Journal of Applied Mechanics 2001; 68:462-467.
Campbell SL. Generalized Inverses of Linear Transformations. Dover Publications, Inc.: New York, 1979.
Amirouche FML, Ider SK. Coordinate reduction in the dynamics of constrained multibody systems-a new approach. ASME Journal of Applied Mechanics 1988; 55:899-904.
Shabana AA. Computational Dynamics. Wiley: New York, 1994.
Pennestrì E, Vita L, de Falco D. An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia-Kalaba formulation. Journal of Aerospace Engineering 2008; 22:365-372.
Shabana AA. Dynamics of Multibody Systems. Wiley: New York, 1989.
Nikravesh PE. Initial condition correction in multibody dynamics. Multibody System Dynamics 2007; 18:107-115.
Singh RP, Likins PW. Singular value decomposition for constrained mechanical systems. ASME Journal of Applied Mechanics 1985; 52:943-948.
Kurdila A, Papastravidis JG. Kamat MP. Role of Maggi's equations in computational methods for constrained multibody systems. Journal of Guidance, Control, and Dynamics 1990; 13:113-120.
Unda J, de Jalon JG, Losantos F, Emparantza R. A comparative study of different formulations of the dynamic equations of constrained mechanical systems. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1987; 109:466-474.
Borri M, Bottasso CL, Mantegazza P. Equivalence of Kane's and Maggi's equations. Meccanica 1990; 25:272-274.
Baumgarte JW. A new method of stabilization for holonomic constraints. ASME Journal of Applied Mechanics 1983; 50:869-870.
Wehage RA, Haug EJ. Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. ASME Journal of Mechanical Design 1982; 134:247-255.
Cheli F, Pennestrì E. Cinematica e Dinamica dei Sistemi Multibody, vol. 1. Casa Editrice Ambrosiana: Milano, 2006.
Bauchau O, Laulusa A. Review of classical approaches for constraints enforcement in multibody systems. Journal of Computational and Non Linear Dynamics 2008; 3:1-8.
Mani NK, Haug EJ, Atkinson KE. Singular value decomposition for analysis of mechanical system dynamics. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1985; 107:82-87.
Erberhard P, Schielen W. Computational dynamics of multibody systems: history, formalisms, and applications. ASME Journal of Computational and Nonlinear Dynamics 2006; 1:3-12.
Laulusa A, Bauchau OA. Review of classical approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics 2008; 3. http://dx.doi.org/10.1115/1.2803257.
Golub G, van Loan C. Matrix Computations (3rd edn). The Johns Hopkins University Press: London, 1996.
Vlasenko D, Kasper R. Implementation of consequent stabilization method for simulation of multibodies described in absolute coordinates. Multibody System Dynamics 2009; 22:297-315.
Baumgarte JW. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering 1972; 1:1-16.
Wang JT, Huston RL. Computational methods in constrained multibody dynamics: matrix formalisms. Computers and Structures 1988; 29:331-338.
Amirouche F. Fundamentals of Multibody Dynamics. Birkhhäuser: Basel, 2004.
Pennestrì E, Valentini PP, Vita L. Multibody dynamics simulation of planar linkages with Dahl friction. Multibody System Dynamics 2007; 17:321-347.
Udwadia FE, Phohomsiri P. Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proceedings of the Royal Society, Series A 2006; 462:2097-2117.
Maggi GA. Di alcune nuove forme della dinamica applicabili ai sistemi anolonomi. Rendiconti della Regia Accademia dei Lincei-Serie V 1901; X:287-291.
Arabyan A, Wu F. An improved formulation for constrained mechanical systems. Multibody System Dynamics 1998; 2:49-69.
2007; 17
2009; 22
2007; 18
1990; 13
1987; 109
1998
1988; 55
1996
1994
2004
1983; 50
2006; 1
2008; 3
1985; 107
1991
2001; 68
1972; 1
1979
1986; 108
1990; 25
1988; 29
1982; 134
2006; 462
1985; 51
2008; 22
1985; 52
1998; 2
1989; 16
1901; X
1969
1989
e_1_2_10_22_2
e_1_2_10_23_2
e_1_2_10_21_2
Shabana AA (e_1_2_10_26_2) 1994
Golub G (e_1_2_10_30_2) 1996
Pennestrì E (e_1_2_10_18_2) 2008; 22
Haug EJ (e_1_2_10_7_2) 1989
Bauchau O (e_1_2_10_4_2) 2008; 3
e_1_2_10_19_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_2_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_16_2
e_1_2_10_13_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_32_2
e_1_2_10_10_2
e_1_2_10_31_2
Campbell SL (e_1_2_10_35_2) 1979
Cheli F (e_1_2_10_36_2) 2006
Shabana AA (e_1_2_10_37_2) 1989
Maggi GA (e_1_2_10_20_2) 1901
e_1_2_10_28_2
e_1_2_10_29_2
Amirouche F (e_1_2_10_27_2) 2004
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – reference: Kim SS, Vanderploeg MJ. QR decomposition for state space representation of constrained mechanical dynamic systems. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1986; 108:176-182.
– reference: Cheli F, Pennestrì E. Cinematica e Dinamica dei Sistemi Multibody, vol. 1. Casa Editrice Ambrosiana: Milano, 2006.
– reference: Udwadia FE, Kalaba RE. Analytical Dynamics a New Approach. Cambridge University Press: Cambridge, 1996.
– reference: Udwadia FE, Kalaba R. Explicit equations of motion for mechanical systems with nonideal constraints. ASME Journal of Applied Mechanics 2001; 68:462-467.
– reference: Laulusa A, Bauchau OA. Review of classical approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics 2008; 3. http://dx.doi.org/10.1115/1.2803257.
– reference: Wang JT, Huston RL. Computational methods in constrained multibody dynamics: matrix formalisms. Computers and Structures 1988; 29:331-338.
– reference: Wang JT, Huston RL. A comparison of analysis methods of redundant multibody systems. Mechanics Research Communications 1989; 16:175-182.
– reference: Pennestrì E, Valentini PP, Vita L. Multibody dynamics simulation of planar linkages with Dahl friction. Multibody System Dynamics 2007; 17:321-347.
– reference: Nikravesh PE. Initial condition correction in multibody dynamics. Multibody System Dynamics 2007; 18:107-115.
– reference: Kurdila A, Papastravidis JG. Kamat MP. Role of Maggi's equations in computational methods for constrained multibody systems. Journal of Guidance, Control, and Dynamics 1990; 13:113-120.
– reference: Maggi GA. Di alcune nuove forme della dinamica applicabili ai sistemi anolonomi. Rendiconti della Regia Accademia dei Lincei-Serie V 1901; X:287-291.
– reference: Baumgarte JW. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering 1972; 1:1-16.
– reference: Amirouche FML, Ider SK. Coordinate reduction in the dynamics of constrained multibody systems-a new approach. ASME Journal of Applied Mechanics 1988; 55:899-904.
– reference: Mani NK, Haug EJ, Atkinson KE. Singular value decomposition for analysis of mechanical system dynamics. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1985; 107:82-87.
– reference: Singh RP, Likins PW. Singular value decomposition for constrained mechanical systems. ASME Journal of Applied Mechanics 1985; 52:943-948.
– reference: Wehage RA, Haug EJ. Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. ASME Journal of Mechanical Design 1982; 134:247-255.
– reference: Udwadia FE, Phohomsiri P. Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proceedings of the Royal Society, Series A 2006; 462:2097-2117.
– reference: Campbell SL. Generalized Inverses of Linear Transformations. Dover Publications, Inc.: New York, 1979.
– reference: Haug EJ. Computer-aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon: Newton, MA, 1989.
– reference: Borri M, Bottasso CL, Mantegazza P. Equivalence of Kane's and Maggi's equations. Meccanica 1990; 25:272-274.
– reference: Amirouche F. Fundamentals of Multibody Dynamics. Birkhhäuser: Basel, 2004.
– reference: Golub G, van Loan C. Matrix Computations (3rd edn). The Johns Hopkins University Press: London, 1996.
– reference: Pennestrì E, Vita L, de Falco D. An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia-Kalaba formulation. Journal of Aerospace Engineering 2008; 22:365-372.
– reference: Unda J, de Jalon JG, Losantos F, Emparantza R. A comparative study of different formulations of the dynamic equations of constrained mechanical systems. ASME Journal of Mechanisms, Transmissions, and Automation in Design 1987; 109:466-474.
– reference: Erberhard P, Schielen W. Computational dynamics of multibody systems: history, formalisms, and applications. ASME Journal of Computational and Nonlinear Dynamics 2006; 1:3-12.
– reference: Shabana AA. Dynamics of Multibody Systems. Wiley: New York, 1989.
– reference: Arabyan A, Wu F. An improved formulation for constrained mechanical systems. Multibody System Dynamics 1998; 2:49-69.
– reference: Baumgarte JW. A new method of stabilization for holonomic constraints. ASME Journal of Applied Mechanics 1983; 50:869-870.
– reference: Bauchau O, Laulusa A. Review of classical approaches for constraints enforcement in multibody systems. Journal of Computational and Non Linear Dynamics 2008; 3:1-8.
– reference: Shabana AA. Computational Dynamics. Wiley: New York, 1994.
– reference: Eich-Soellner E, Führer C. Numerical Methods in Multibody Dynamics. B.G. Teubner: Stuttgart, 1998.
– reference: Kamman RL, Huston JW. Dynamics of constrained multibody systems. ASME Journal of Applied Mechanics 1985; 51:899-903.
– reference: Vlasenko D, Kasper R. Implementation of consequent stabilization method for simulation of multibodies described in absolute coordinates. Multibody System Dynamics 2009; 22:297-315.
– volume: 134
  start-page: 247
  year: 1982
  end-page: 255
  article-title: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems
  publication-title: ASME Journal of Mechanical Design
– volume: 25
  start-page: 272
  year: 1990
  end-page: 274
  article-title: Equivalence of Kane's and Maggi's equations
  publication-title: Meccanica
– volume: 3
  start-page: 1
  year: 2008
  end-page: 8
  article-title: Review of classical approaches for constraints enforcement in multibody systems
  publication-title: Journal of Computational and Non Linear Dynamics
– year: 1989
– volume: 29
  start-page: 331
  year: 1988
  end-page: 338
  article-title: Computational methods in constrained multibody dynamics: matrix formalisms
  publication-title: Computers and Structures
– year: 1996
– volume: 51
  start-page: 899
  year: 1985
  end-page: 903
  article-title: Dynamics of constrained multibody systems
  publication-title: ASME Journal of Applied Mechanics
– volume: 22
  start-page: 297
  year: 2009
  end-page: 315
  article-title: Implementation of consequent stabilization method for simulation of multibodies described in absolute coordinates
  publication-title: Multibody System Dynamics
– year: 1979
– volume: 109
  start-page: 466
  year: 1987
  end-page: 474
  article-title: A comparative study of different formulations of the dynamic equations of constrained mechanical systems
  publication-title: ASME Journal of Mechanisms, Transmissions, and Automation in Design
– year: 1994
– volume: 55
  start-page: 899
  year: 1988
  end-page: 904
  article-title: Coordinate reduction in the dynamics of constrained multibody systems—a new approach
  publication-title: ASME Journal of Applied Mechanics
– year: 1998
– volume: 107
  start-page: 82
  year: 1985
  end-page: 87
  article-title: Singular value decomposition for analysis of mechanical system dynamics
  publication-title: ASME Journal of Mechanisms, Transmissions, and Automation in Design
– volume: 52
  start-page: 943
  year: 1985
  end-page: 948
  article-title: Singular value decomposition for constrained mechanical systems
  publication-title: ASME Journal of Applied Mechanics
– volume: 2
  start-page: 49
  year: 1998
  end-page: 69
  article-title: An improved formulation for constrained mechanical systems
  publication-title: Multibody System Dynamics
– volume: 22
  start-page: 365
  year: 2008
  end-page: 372
  article-title: An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation
  publication-title: Journal of Aerospace Engineering
– volume: 16
  start-page: 175
  year: 1989
  end-page: 182
  article-title: A comparison of analysis methods of redundant multibody systems
  publication-title: Mechanics Research Communications
– volume: X
  start-page: 287
  year: 1901
  end-page: 291
  article-title: Di alcune nuove forme della dinamica applicabili ai sistemi anolonomi
  publication-title: Rendiconti della Regia Accademia dei Lincei—Serie V
– year: 1969
– volume: 1
  start-page: 1
  year: 1972
  end-page: 16
  article-title: Stabilization of constraints and integrals of motion in dynamical systems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 18
  start-page: 107
  year: 2007
  end-page: 115
  article-title: Initial condition correction in multibody dynamics
  publication-title: Multibody System Dynamics
– year: 2004
– volume: 1
  year: 2006
– start-page: 97
  year: 1991
  end-page: 114
– volume: 50
  start-page: 869
  year: 1983
  end-page: 870
  article-title: A new method of stabilization for holonomic constraints
  publication-title: ASME Journal of Applied Mechanics
– volume: 3
  year: 2008
  article-title: Review of classical approaches for constraint enforcement in multibody systems
  publication-title: Journal of Computational and Nonlinear Dynamics
– volume: 462
  start-page: 2097
  year: 2006
  end-page: 2117
  article-title: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi‐body dynamics
  publication-title: Proceedings of the Royal Society, Series A
– volume: 17
  start-page: 321
  year: 2007
  end-page: 347
  article-title: Multibody dynamics simulation of planar linkages with Dahl friction
  publication-title: Multibody System Dynamics
– volume: 68
  start-page: 462
  year: 2001
  end-page: 467
  article-title: Explicit equations of motion for mechanical systems with nonideal constraints
  publication-title: ASME Journal of Applied Mechanics
– volume: 1
  start-page: 3
  year: 2006
  end-page: 12
  article-title: Computational dynamics of multibody systems: history, formalisms, and applications
  publication-title: ASME Journal of Computational and Nonlinear Dynamics
– volume: 108
  start-page: 176
  year: 1986
  end-page: 182
  article-title: QR decomposition for state space representation of constrained mechanical dynamic systems
  publication-title: ASME Journal of Mechanisms, Transmissions, and Automation in Design
– volume: 13
  start-page: 113
  year: 1990
  end-page: 120
  article-title: Role of Maggi's equations in computational methods for constrained multibody systems
  publication-title: Journal of Guidance, Control, and Dynamics
– ident: e_1_2_10_25_2
  doi: 10.1007/s11044-007-9069-z
– ident: e_1_2_10_34_2
  doi: 10.1115/1.1364492
– ident: e_1_2_10_9_2
– ident: e_1_2_10_15_2
– ident: e_1_2_10_14_2
  doi: 10.1016/0093-6413(89)90055-4
– ident: e_1_2_10_8_2
  doi: 10.1007/978-3-642-76159-1
– ident: e_1_2_10_13_2
  doi: 10.1016/0045-7949(88)90267-2
– ident: e_1_2_10_3_2
  doi: 10.1115/1.1961875
– ident: e_1_2_10_31_2
  doi: 10.1023/A:1009724704839
– volume-title: Cinematica e Dinamica dei Sistemi Multibody
  year: 2006
  ident: e_1_2_10_36_2
– volume: 3
  start-page: 1
  year: 2008
  ident: e_1_2_10_4_2
  article-title: Review of classical approaches for constraints enforcement in multibody systems
  publication-title: Journal of Computational and Non Linear Dynamics
– ident: e_1_2_10_11_2
  doi: 10.1115/1.3260799
– volume-title: Generalized Inverses of Linear Transformations
  year: 1979
  ident: e_1_2_10_35_2
– ident: e_1_2_10_24_2
  doi: 10.1007/s11044-007-9047-5
– volume-title: Computational Dynamics
  year: 1994
  ident: e_1_2_10_26_2
– ident: e_1_2_10_28_2
  doi: 10.1115/1.3167743
– ident: e_1_2_10_6_2
  doi: 10.1115/1.3256318
– volume-title: Fundamentals of Multibody Dynamics
  year: 2004
  ident: e_1_2_10_27_2
– ident: e_1_2_10_32_2
  doi: 10.1016/0045-7825(72)90018-7
– volume-title: Dynamics of Multibody Systems
  year: 1989
  ident: e_1_2_10_37_2
– ident: e_1_2_10_33_2
  doi: 10.1115/1.3167159
– start-page: 287
  year: 1901
  ident: e_1_2_10_20_2
  article-title: Di alcune nuove forme della dinamica applicabili ai sistemi anolonomi
  publication-title: Rendiconti della Regia Accademia dei Lincei—Serie V
– ident: e_1_2_10_21_2
  doi: 10.1007/BF01559692
– ident: e_1_2_10_23_2
  doi: 10.1007/978-3-663-09828-7
– volume: 22
  start-page: 365
  year: 2008
  ident: e_1_2_10_18_2
  article-title: An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation
  publication-title: Journal of Aerospace Engineering
– ident: e_1_2_10_19_2
  doi: 10.1007/s11044-009-9167-1
– ident: e_1_2_10_5_2
  doi: http://dx.doi.org/10.1115/1.2803257
– ident: e_1_2_10_29_2
  doi: 10.1115/1.3169173
– ident: e_1_2_10_10_2
  doi: 10.1115/1.3258699
– ident: e_1_2_10_22_2
  doi: 10.2514/3.20524
– ident: e_1_2_10_2_2
  doi: 10.1115/1.3258819
– ident: e_1_2_10_12_2
  doi: 10.1115/1.3173739
– ident: e_1_2_10_16_2
  doi: 10.1017/CBO9780511665479
– volume-title: Computer‐aided Kinematics and Dynamics of Mechanical Systems
  year: 1989
  ident: e_1_2_10_7_2
– volume-title: Matrix Computations
  year: 1996
  ident: e_1_2_10_30_2
– ident: e_1_2_10_17_2
  doi: 10.1098/rspa.2006.1662
SSID ssj0011503
Score 2.2636702
Snippet In the last decades, several different formalisms have been proposed in the literature in order to simulate the dynamics of multibody systems. First, the...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 637
SubjectTerms Computer simulation
DAE system
Dynamics
Exact sciences and technology
Formalism
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical models
Mathematics
multibody dynamics
Multibody systems
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
numerical methods
Physics
Redundant
Sciences and techniques of general use
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
Strategy
Title Comparison of solution strategies for multibody dynamics equations
URI https://api.istex.fr/ark:/67375/WNG-CNZSVKJS-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.3190
https://www.proquest.com/docview/1022867182
Volume 88
WOSCitedRecordID wos000296445000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA_i-VAfPGtbPFslhdI-LW4-9nb3sV7vWvxYqlYrvoRskgVR7-zlrtj_vjP7xR1UKAgLy8KEhMnM5jfJ5DeEfDBRziJjWZAWUR5IoU2QaIdpOdYaHYeGlbSLl8dxliVXV-n3OqsS78JU_BDthht6Rvm_RgfXud9fIA29dxBwphCud_BOFQRenS9no4vj9gwBoI5oEjyiNGEN9WzI95u2S4tRB_X6iMmR2oN-iqqwxRLyXMSv5QI06j5n6Jtko4ad9HNlJy_JihtvkW4NQWnt4H6LrC_wE8LXSUvq6l-Rg0Fbs5BOCtoYLfWzhm6CAgKmZYpiPrF_qK2q3XvqflWE4v41uRgNfwy-BXUJhsCIfj8MGKxlAHEcT2UR2zy3TqBH2yhmTnDnAE1YHvFcFky4BFRumdCp5Fwj461NxRuyOp6M3Tahhrm04EaGRicSidV40U904aSQkQZU1SOfmrlQpuYnxzIZd6piVuYK1KZQbT3yvpV8qDg5_iHzsZzOVkBPbzGHLY7Uz-yrGmTX55dHh-fqtEf2lua7bcBlPwS0GkNvjQEocD08T9FjN5l7hcEy0gMmHHor5_vJ4ajsZIjvnf8VfEtelLvX-CTvyOpsOne7ZM38nt346V5t6n8BYGsBsg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD6UXaH2wdqquFrbCEWfhk4uM5PBJ127be3uoPZi8SVkkgwUdVd3tmL_vTlzYxcUBGFgGDgh4VwmX5KT7wDsmyinkbE0SIsoDwTXJpDaYVqOtUYnoaEV7eLlOMkyeXWVvl-DV-1dmJofottww8io_tcY4LghfbDEGvrN-RVn6tfrfRHzRPag__bj6GLcHSJ4rMPbDI8olbTlng3ZQdt2ZTbqo2J_YXakLr2CirqyxQr0XAaw1Qw02vyvsd-Hew3wJK9rT9mCNTfdhs0GhJImxMtt2FhiKPRfk47WtXwAb4Zd1UIyK0jrtqRctIQTxGNgUiUp5jN7S2xd774k7kdNKV4-hIvR4fnwOGiKMASGx3EYUD-beZDjWCqKxOa5dRxj2kYJdZw55_GEZRHLRUG5k17nlnKdCsY0ct7alD-C3nQ2dY-BGOrSghkRGi0FUquxIpa6cIKLSHtcNYCXrTGUaRjKsVDGV1VzKzPl1aZQbQN43kl-r1k5_iDzorJnJ6DnXzCLLYnUp-xIDbPPZ5en787UhwHsrhi8a8BEHHq8mvjeWg9QPvjwREVP3eymVLhcRoJAyXxvlcH_OhyVTQ7x_eRfBfdg_fh8Mlbjk-z0Kdyt9rLxkTvQW8xv3DO4Y34ursv5buP3vwHHLgWi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD6U3SL6YG21uFprBNGnoZPbzgSf2m232m6Hau2FvoRMLlCqu3VnK-2_bzI3dkFBEAaGgRMSzmXyJTn5DsB7zXPMtcGRcDyPGFU6SpUNaTnGaJXEGpe0i2ejJMvSiwtxvASfmrswFT9Eu-EWIqP8X4cAtzfGbc2xhv60fsUp_Hq9y7jgrAPd3W_D01F7iOCxDm0yPLhIccM9G5Otpu3CbNQNir0L2ZGq8ApyVWWLBeg5D2DLGWi48l9jfwZPa-CJtitPWYUlO16DlRqEojrEizV4MsdQ6L-OWlrX4jnsDNqqhWjiUOO2qJg1hBPIY2BUJinmE3OPTFXvvkD2V0UpXryA0-He98HnqC7CEGna78cR9rOZBzmWCOYSk-fG0hDThifYUmKtxxOGcJIzh6lNvc4NpkowQlTgvDWCrkNnPBnbl4A0tsIRzWKtUhao1Yjrp8pZRhlXHlf14GNjDKlrhvJQKOOHrLiVifRqk0FtPXjXSt5UrBx_kPlQ2rMVUNPrkMWWcHme7ctBdnlydnhwIr_2YHPB4G0Dwvqxx6uJ763xAOmDL5yoqLGd3BYyLJcDQWBKfG-lwf86HJkd7YX3q38VfAuPjneHcvQlO3wNj8ut7PCkG9CZTW_tG1jWv2dXxXSzdvsHS48FHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+solution+strategies+for+multibody+dynamics+equations&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Mariti%2C+L.&rft.au=Belfiore%2C+N.+P.&rft.au=Pennestr%C3%AC%2C+E.&rft.au=Valentini%2C+P.+P.&rft.date=2011-11-18&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=88&rft.issue=7&rft.spage=637&rft.epage=656&rft_id=info:doi/10.1002%2Fnme.3190&rft.externalDBID=10.1002%252Fnme.3190&rft.externalDocID=NME3190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon